1
|
Suoranta T, Laham-Karam N, Ylä-Herttuala S. Optimized Protocol for Accurate Titration of Adeno-Associated Virus Vectors. Hum Gene Ther 2021; 32:1270-1279. [PMID: 33560161 DOI: 10.1089/hum.2020.318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adeno-associated virus (AAV) is currently the most popular gene delivery vector for in vivo gene therapy. However, variability in titration methods between different laboratories affects the reproducibility of experiments and evaluation of safety and efficacy in clinical trials. We describe an optimized protocol for AAV titration, including quantitative PCR (qPCR) standard preparation and quantitation and treatment of AAV samples before qPCR and droplet digital PCR (ddPCR) titration. During the protocol development, we observed that quantitation of the qPCR standard was dependent on its conformation and that A260-based quantitation overestimated the plasmid copy numbers, introducing significant error. Linearized, free inverted terminal repeat (free-ITR), and supercoiled standards were compared with enhanced green fluorescent protein (EGFP), SV40p(A), and AAV2-ITR qPCR assays and we found that using the AAV2-ITR assay together with either linearized or supercoiled standard led to overestimation of the titers, while EGFP and SV40p(A) assays were more accurate with the linearized standard. Finally, we compared extraction of AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9 genomes by heat denaturation, proteinase K treatment, and kit extraction. Kit extraction, which contained proteinase K treatment in denaturing buffer before spin-column purification, significantly increased the titers acquired for all the serotypes in both qPCR and ddPCR. These improvements resulted in an accurate quantitation of the ATCC reference standard and in a robust and reliable protocol for AAV titration.
Collapse
Affiliation(s)
- Tuisku Suoranta
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nihay Laham-Karam
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Heart Center, Kuopio University Hospital, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
2
|
Lu HX, Hao ZM, Jiao Q, Xie WL, Zhang JF, Lu YF, Cai M, Wang YY, Yang ZQ, Parker T, Liu Y. Neurotrophin-3 gene transduction of mouse neural stem cells promotes proliferation and neuronal differentiation in organotypic hippocampal slice cultures. Med Sci Monit 2012; 17:BR305-311. [PMID: 22037732 PMCID: PMC3539508 DOI: 10.12659/msm.882039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The transplantation of neural stem cells (NSCs) has been accepted as a promising therapeutic strategy for central nervous system disorders. However, the beneficial effect of NSC transplantation upon functional recovery is limited due to the unfavorable microenvironment (niche) at the site of trauma or degenerative disease in the brain. Combination of transplantation of NSCs with neurotrophins may overcome the hurdles of impaired cell survival and neuronal differentiation. MATERIAL/METHODS In the current study, the neurotrophin-3 (NT-3) gene was transduced into cultured mouse embryonic cortical NSCs via an AAV vector (NSC-NT-3). The effect of NT-3 over-expression on cell proliferation and differentiation in NSCs was observed by immunohistochemistry, cell culture and organotypic hippocampal slice cultures.<br /> RESULTS The characteristics of self-renewal and multiple differentiation of NSCs were well-preserved. Cells in the NSC-NT-3 group proliferated faster and differentiated into more β-tubulin III-positive neurons compared to the control group in vitro. Furthermore, cells in the NSC-NT-3 group survived in a significantly higher percentage and undertook neuronal differentiation preferably in organotypic hippocampal slice cultures. CONCLUSIONS Our results suggest that the transduction of NT-3 into NSCs could effectively promote NSCs survival, proliferation, and neuronal differentiation in vitro without change of the stemness of NSCs. This work also offers evidence to better understand the safety and efficiency of combined treatment with NT-3 and NSCs for the central nervous system disorders.
Collapse
Affiliation(s)
- Hai-xia Lu
- Institute of Neurobiology, Environment and Genes Related to Diseases Key Laboratory of Education Ministry, Xi'an Jiaotong University College of Medicine, Xi'an, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Stiefelhagen M, Sellner L, Kleinschmidt JA, Jauch A, Laufs S, Wenz F, Zeller WJ, Fruehauf S, Veldwijk MR. Application of a haematopoetic progenitor cell-targeted adeno-associated viral (AAV) vector established by selection of an AAV random peptide library on a leukaemia cell line. GENETIC VACCINES AND THERAPY 2008; 6:12. [PMID: 18789140 PMCID: PMC2553401 DOI: 10.1186/1479-0556-6-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 09/12/2008] [Indexed: 10/29/2022]
Abstract
BACKGROUND For many promising target cells (e.g.: haematopoeitic progenitors), the susceptibility to standard adeno-associated viral (AAV) vectors is low. Advancements in vector development now allows the generation of target cell-selected AAV capsid mutants. METHODS To determine its suitability, the method was applied on a chronic myelogenous leukaemia (CML) cell line (K562) to obtain a CML-targeted vector and the resulting vectors tested on leukaemia, non-leukaemia, primary human CML and CD34+ peripheral blood progenitor cells (PBPC); standard AAV2 and a random capsid mutant vector served as controls. RESULTS Transduction of CML (BV173, EM3, K562 and Lama84) and AML (HL60 and KG1a) cell lines with the capsid mutants resulted in an up to 36-fold increase in CML transduction efficiency (K562: 2-fold, 60% +/- 2% green fluorescent protein (GFP)+ cells; BV173: 9-fold, 37% +/- 2% GFP+ cells; Lama84: 36-fold, 29% +/- 2% GFP+ cells) compared to controls. For AML (KG1a, HL60) and one CML cell line (EM3), no significant transduction (<1% GFP+ cells) was observed for any vector. Although the capsid mutant clone was established on a cell line, proof-of-principle experiments using primary human cells were performed. For CML (3.2-fold, mutant: 1.75% +/- 0.45% GFP+ cells, p = 0.03) and PBPC (3.5-fold, mutant: 4.21% +/- 3.40% GFP+ cells) a moderate increase in gene transfer of the capsid mutant compared to control vectors was observed. CONCLUSION Using an AAV random peptide library on a CML cell line, we were able to generate a capsid mutant, which transduced CML cell lines and primary human haematopoietic progenitor cells with higher efficiency than standard recombinant AAV vectors.
Collapse
Affiliation(s)
- Marius Stiefelhagen
- Department G402, Pharmacology of Cancer Treatment, German Cancer Research Center, INF 280, D-69120, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sellner L, Stiefelhagen M, Kleinschmidt JA, Laufs S, Wenz F, Fruehauf S, Zeller WJ, Veldwijk MR. Generation of efficient human blood progenitor-targeted recombinant adeno-associated viral vectors (AAV) by applying an AAV random peptide library on primary human hematopoietic progenitor cells. Exp Hematol 2008; 36:957-64. [PMID: 18495326 DOI: 10.1016/j.exphem.2008.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 02/27/2008] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Currently standard recombinant adeno-associated virus serotype 2(rAAV2)-based vectors lack the efficiency for gene transfer into primary human CD34(+) peripheral blood progenitor cells (PBPC). MATERIALS AND METHODS An advancement in vector development now allows the generation of rAAV capsid mutants that offer higher target cell efficiency and specificity. To increase the gene transfer into hematopoietic progenitor cells, we applied this method for the first time on primary human CD34(+) PBPC cells. RESULTS On a panel of leukemia cell lines (CML/AML), significantly higher gene transfer efficiency of the rAAV capsid mutants (up to 100% gene transfer) was observed compared to standard rAAV2 vectors. A higher transduction efficiency in the imatinib-resistant cell line LAMA84-R than in their sensitive counterpart LAMA84-S and a pronounced difference in susceptibility for the capsid mutants vs rAAV2 in LAMA84-S were particularly striking. On solid tumor cell lines, on the other hand, rAAV2 was more efficient than the capsid mutants, suggesting an increased specificity of our capsid mutants for hematopoietic progenitor cells. On primary human CD34(+) PBPC significantly higher (up to eightfold; 16% green fluorescent protein-positive) gene transfer could be obtained with the newly generated vectors compared to standard rAAV2 vectors. CONCLUSION These novel vectors may enable efficient gene transfer using rAAV-based vectors into primary human blood progenitor cells for a future clinical application.
Collapse
Affiliation(s)
- Leopold Sellner
- Pharmacology of Cancer Treatment (G402), German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Veldwijk MR, Berlinghoff S, Jauch A, Laufs S, Zeller WJ, Wenz F, Fruehauf S. Characterization of human mesothelioma cell lines as tumor models for suicide gene therapy. ACTA ACUST UNITED AC 2008; 31:91-6. [PMID: 18322411 DOI: 10.1159/000113504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND The median survival time of patients with malignant pleural mesothelioma (MPM) remains poor. Therefore, novel therapeutic options are in high demand, and well characterized model systems for in vitro/vivo screening have to be established. MATERIAL AND METHODS For this purpose, 3 MPM cell lines (H-Meso-1, MSTO211H, and NCI-H28) were characterized and tested for susceptibility to recombinant adeno-associated virus 2 (rAAV2)-based vectors which have the potential for a loco-regional application. RESULTS Using multiplex fluorescence in situ hybridization, several recurrent chromosomal aberrations were observed for each of the MPM cell lines. Tumorigenicity of H-Meso-1 and MSTO-211H cells was shown in an intraperitoneal NOD/SCID mouse model, whereas NCI-H28 cells did not yield any tumors. Although all 3 cell lines were readily susceptible to rAAV2 vectors, differences in susceptibility were observed (H-Meso-1 > NCI-H28 > MSTO-211H). Furthermore, the efficacy of a potential suicide gene therapy using an rAAV2 suicide vector-transduced MPM cell line was determined in a proof-of-feasibility in vivo experiment. CONCLUSION The characterized cell lines described here may serve as a model for in vitro and in vivo preclinical gene therapy for the treatment of MPM using rAAV2 suicide vectors.
Collapse
Affiliation(s)
- Marlon R Veldwijk
- Department of Radiation Oncology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Li C, Bowles DE, van Dyke T, Samulski RJ. Adeno-associated virus vectors: potential applications for cancer gene therapy. Cancer Gene Ther 2006; 12:913-25. [PMID: 15962012 PMCID: PMC1361306 DOI: 10.1038/sj.cgt.7700876] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Augmenting cancer treatment by protein and gene delivery continues to gain momentum based on success in animal models. The primary hurdle of fully exploiting the arsenal of molecular targets and therapeutic transgenes continues to be efficient delivery. Vectors based on adeno-associated virus (AAV) are of particular interest as they are capable of inducing transgene expression in a broad range of tissues for a relatively long time without stimulation of a cell-mediated immune response. Perhaps the most important attribute of AAV vectors is their safety profile in phase I clinical trials ranging from CF to Parkinson's disease. The utility of AAV vectors as a gene delivery agent in cancer therapy is showing promise in preclinical studies. In this review, we will focus on the basic biology of AAV as well as recent progress in the use of this vector in cancer gene therapy.
Collapse
Affiliation(s)
- Chengwen Li
- Gene Therapy Center, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Dawn E Bowles
- Gene Therapy Center, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Terry van Dyke
- Department of Biochemistry and Biophysics, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA; and
| | - Richard Jude Samulski
- Gene Therapy Center, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Address correspondence and reprint requests to: Professor Richard Jude Samulski/Terry van Dyke, Gene Therapy Center, University of North Carolina (UNC) at Chapel Hill, CB#7352, Chapel Hill, NC27599, USA. E-mails: or
| |
Collapse
|
7
|
Warrington KH, Herzog RW. Treatment of human disease by adeno-associated viral gene transfer. Hum Genet 2006; 119:571-603. [PMID: 16612615 DOI: 10.1007/s00439-006-0165-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 02/28/2006] [Indexed: 11/24/2022]
Abstract
During the past decade, in vivo administration of viral gene transfer vectors for treatment of numerous human diseases has been brought from bench to bedside in the form of clinical trials, mostly aimed at establishing the safety of the protocol. In preclinical studies in animal models of human disease, adeno-associated viral (AAV) vectors have emerged as a favored gene transfer system for this approach. These vectors are derived from a replication-deficient, non-pathogenic parvovirus with a single-stranded DNA genome. Efficient gene transfer to numerous target cells and tissues has been described. AAV is particularly efficient in transduction of non-dividing cells, and the vector genome persists predominantly in episomal forms. Substantial correction, and in some instances complete cure, of genetic disease has been obtained in animal models of hemophilia, lysosomal storage disorders, retinal diseases, disorders of the central nervous system, and other diseases. Therapeutic expression often lasted for months to years. Treatments of genetic disorders, cancer, and other acquired diseases are summarized in this review. Vector development, results in animals, early clinical experience, as well as potential hurdles and challenges are discussed.
Collapse
Affiliation(s)
- Kenneth H Warrington
- Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32615-9586, USA
| | | |
Collapse
|
8
|
Berlinghoff S, Veldwijk MR, Laufs S, Maser HP, Jauch A, Wenz F, Jens Zeller W, Fruehauf S. Susceptibility of mesothelioma cell lines to adeno-associated virus 2 vector-based suicide gene therapy. Lung Cancer 2005; 46:179-86. [PMID: 15474666 DOI: 10.1016/j.lungcan.2004.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 03/30/2004] [Indexed: 11/22/2022]
Abstract
Although great efforts have been made to improve conventional therapy for diffuse malignant pleural mesothelioma, the median survival time of the patients after appearance of clinical symptoms remains poor. Due to confinement of the primary tumor to the pleural space, locoregional approaches are attractive strategies to improve the clinical outcome. In this context locoregional gene therapy using the recombinant adeno-associated virus 2 (rAAV-2) may be a new approach. Vectors were constructed containing a fusion gene, consisting of the Herpes simplex virus thymidine kinase (HSV-TK) and the green fluorescent protein (GFP) genes; the former serving as suicide gene by converting the prodrug ganciclovir (GCV) into a toxic agent, thereby killing infected cells. Among a number of different tumor cell lines, rAAV-2 achieved high GFP expression levels in three mesothelioma cell lines (H-Meso-1, MSTO-211H, NCI-H28). A variety of rAAV-2-constructs containing different promoters were tested. The vector with the elongation factor-1alpha (EF-1alpha) promoter showed the highest expression rates. Expression could be further increased by addition of the tyrosine kinase inhibitor genistein. Using the rAAV-2-based suicide system, a nearly complete eradication of transduced and GCV-treated mesothelioma cells was observed. rAAV-2-based suicide gene therapy may be a new approach for locoregional treatment of mesothelioma.
Collapse
|
9
|
Veldwijk MR, Berlinghoff S, Laufs S, Hengge UR, Zeller WJ, Wenz F, Fruehauf S. Suicide gene therapy of sarcoma cell lines using recombinant adeno-associated virus 2 vectors. Cancer Gene Ther 2005; 11:577-84. [PMID: 15280909 DOI: 10.1038/sj.cgt.7700718] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Soft-tissue sarcomas are mesenchymal tumors that respond poorly to systemic chemotherapy. Suicide gene therapy may be an alternative treatment strategy. Here we show a high susceptibility of human sarcoma cell lines for recombinant adeno-associated virus 2 (rAAV-2) suicide vectors: connective tissue sarcoma (HS-1), fibrosarcoma (HT-1080), Ewing sarcoma (RD-ES), Askin tumor (SK-N-MC), rhabdomyosarcoma (A-204) and soft-tissue sarcoma (WSKL-1). Several vectors containing the thymidine kinase (TK) gene under the control of either the cytomegalovirus promoter or the elongation-factor 1 alpha (EF1alpha) promoter were cloned and tested. Higher expression levels of the transgene were observed in the sarcoma lines when using the EF1alpha-suicide gene-containing vectors. A complete eradication of rAAV-2-EF1alpha-TK/eGFP (TK/enhanced green fluorescent protein fusion gene)-transduced tumor cells was shown following exposure to ganciclovir (2.5 microg/ml) in vitro, while at this dose level > 90% of mock-transduced tumor cells survived. Xenotransplantation tumor models (intraperitoneal, subcutaneous) for the human sarcoma cell line HS-1 were established in nonobese diabetic/severe-combined immunodeficient mice. Mice transplanted with rAAV-2-EF1alpha-TK/eGFP-transduced and ganciclovir-exposed tumor cells survived > 5 months while in the nontransduced group all mice had died approximately 1 month after inoculation. These data hold promise for further development of rAAV-2-based suicide gene therapy of sarcomas.
Collapse
Affiliation(s)
- Marlon R Veldwijk
- Department of Radiation Oncology, Universitätsklinikum Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, D-68135, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Shiau AL, Liu PS, Wu CL. Novel strategy for generation and titration of recombinant adeno-associated virus vectors. J Virol 2005; 79:193-201. [PMID: 15596815 PMCID: PMC538720 DOI: 10.1128/jvi.79.1.193-201.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have many advantages for gene therapeutic applications compared with other vector systems. Several methods that use plasmids or helper viruses have been reported for the generation of rAAV vectors. Unfortunately, the preparation of large-scale rAAV stocks is labor-intensive. Moreover, the biological titration of rAAV is still difficult, which may limit its preclinical and clinical applications. For this study, we developed a novel strategy to generate and biologically titrate rAAV vectors. A recombinant pseudorabies virus (PrV) with defects in its gD, gE, and thymidine kinase genes was engineered to express the AAV rep and cap genes, yielding PS virus, which served as a packaging and helper virus for the generation of rAAV vectors. PS virus was useful not only for generating high-titer rAAV vectors by cotransfection with an rAAV vector plasmid, but also for amplifying rAAV stocks. Notably, the biological titration of rAAV vectors was also feasible when cells were coinfected with rAAV and PS virus. Based on this strategy, we produced an rAAV that expresses prothymosin alpha (ProT). Expression of the ProT protein in vitro and in vivo mediated by rAAV/ProT gene transfer was detected by immunohistochemistry and a bioassay. Taken together, our results demonstrate that the PrV vector-based system is useful for generating rAAV vectors carrying various transgenes.
Collapse
Affiliation(s)
- Ai-Li Shiau
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | |
Collapse
|
11
|
Rohr UP, Wulf MA, Stahn S, Steidl U, Haas R, Kronenwett R. Fast and reliable titration of recombinant adeno-associated virus type-2 using quantitative real-time PCR. J Virol Methods 2002; 106:81-8. [PMID: 12367732 DOI: 10.1016/s0166-0934(02)00138-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, a quantitative real-time PCR (qPCR) was developed to determine genomic rAAV-2 titers using the Light-Cycler technology. Since the CMV promoter is the most commonly used promoter in gene therapeutic approaches, primers were designed which hybridize with the human CMV promoter sequence. PCR products were detected by the addition of SYBR green. qPCR of a 5 log spanning serial dilution of the vector plasmid containing one CMV promoter per plasmid molecule yielded a high amplification efficiency of 1.99 per cycle. To quantify the copy number of viral genomes, the qPCR curves of adeno-associated virus type 2 (AAV-2) samples were related to a standard curve assessed by the 5 log spanning serial vector plasmid dilution (0.01-100 pg DNA). For validation of the method, rAAV-2 preparations were analyzed by a standard method and qPCR in parallel. As standard method, flow cytometry was used for titration of infectious viral particles on HeLa cells using the Enhanced Green Fluorescent Protein as a marker. A significant correlation was found between the results obtained by flow cytometry and the results from the qPCR over a 5 log range (r=0.85, P<0.0001). The mean ratio between infectious rAAV-2 particles titrated via flow cytometry and genomic copies of rAAV-2 measured by qPCR of the same sample was 1:253. The higher titers found by qPCR might be due to multiple transduction of a single cell or to non-infectious particles generated during rAAV-2 preparation. In conclusion, qPCR is a fast and reliable method for determination of rAAV-2 titers and might be a powerful tool for standardization of rAAV-2 preparations particularly in the context of clinical studies.
Collapse
Affiliation(s)
- Ulrich-Peter Rohr
- Klinik für Hämatologie, Onkologie und klinische Immunologie, Heinrich-Heine-Universität Düsseldorf, Moorenstrasse 5, D-40225, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Veldwijk MR, Topaly J, Laufs S, Hengge UR, Wenz F, Zeller WJ, Fruehauf S. Development and optimization of a real-time quantitative PCR-based method for the titration of AAV-2 vector stocks. Mol Ther 2002; 6:272-8. [PMID: 12349826 DOI: 10.1006/mthe.2002.0659] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite the clinical application of adeno-associated virus (AAV) gene therapy, the titration of viral stocks has not yet been standardized. This complicates the comparison of viral stocks between laboratories. Functional titering of AAV is time-consuming, requires the manipulation of hazardous material, and often has a high degree of variability. We established an optimized real-time quantitative polymerase chain reaction (RQ-PCR) titration assay to determine viral titers and compared it with a functional green fluorescent protein (GFP)-based titration method. With a combination of improved lysis procedures and RQ-PCR protocols we could decrease the intraexperimental coefficient of variation (CV) from 0.24 +/- 0.03 to 0.042 +/- 0.004 and the interexperimental CV from 0.34 +/- 0.06 to 0.093 +/- 0.028 following functional and RQPCR-based titration, respectively. This low variability conforms to even the strictest quality standards required, for example, in clinical laboratories. The highly standardized titration by RQPCR described here will be especially advantageous for groups working on AAV-based gene therapy in a good manufacturing practice setting.
Collapse
Affiliation(s)
- Marlon R Veldwijk
- German Cancer Research Center, Im Neuenheimer Feld 280 D-69120, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Vermeij J, Zeinoun Z, Neyns B, Teugels E, Bourgain C, De Grève J. Transduction of ovarian cancer cells: a recombinant adeno-associated viral vector compared to an adenoviral vector. Br J Cancer 2001; 85:1592-9. [PMID: 11720450 PMCID: PMC2363936 DOI: 10.1054/bjoc.2001.2082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have emerged as vehicles for gene therapy. In addition, anti-neoplastic properties have been attributed to wild-type AAV. To take advantage of both features and to overcome technical problems associated with rAAV preparation, we developed a production method in which rAAV particles are amplified in an infectious cycle in the presence of wtAAV. This results in a 10(3)-10(4)-fold amplification of rAAV input particles. rAAV-GFP particles generated by this method were used to transduce ovarian cancer cell lines to evaluate their potential in ovarian cancer gene therapy, in comparison to a rAd-GFP vector. The transduction efficiency of NIH-OVCAR3, MDAH 2774 and SKOV3 cells with rAAV-GFP particles was low (< 1%) and did not improve by increasing the number of particles/cell. Repeated administration and continued exposure of NIH-OVCAR3 and MDAH 2774 improved transduction to over 3%. In contrast, these cell lines were more efficiently transduced by rAAV-GFP in the presence of adenovirus (approximately 15%) and by rAd-GFP (> 50%). These results indicate that in contrast to rAd vectors, rAAV particles are not suitable for therapeutic gene transfer in ovarian cancer cells unless efficient help can be provided to mediate ss to ds DNA conversion.
Collapse
Affiliation(s)
- J Vermeij
- Laboratory of Medical and Molecular Oncology and Oncology Center, Akademisch Ziekenhuis Vrije Universiteit, Brussel, Belgium
| | | | | | | | | | | |
Collapse
|