1
|
Omar AM, Khayat MT, Ahmed F, Muhammad YA, Malebari AM, Ibrahim SM, Khan MI, Shah DK, Childers WE, El-Araby ME. SAR Probing of KX2-391 Provided Analogues With Juxtaposed Activity Profile Against Major Oncogenic Kinases. Front Oncol 2022; 12:879457. [PMID: 35669422 PMCID: PMC9166630 DOI: 10.3389/fonc.2022.879457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Tirbanibulin (KX2-391, KX-01), a dual non-ATP (substrate site) Src kinase and tubulin-polymerization inhibitor, demonstrated a universal anti-cancer activity for variety of cancer types. The notion that KX2-391 is a highly selective Src kinase inhibitor have been challenged by recent reports on the activities of this drug against FLT3-ITD mutations in some leukemic cell lines. Therefore, we hypothesized that analogues of KX2-391 may inhibit oncogenic kinases other than Src. A set of 4-aroylaminophenyl-N-benzylacetamides were synthesized and found to be more active against leukemia cell lines compared to solid tumor cell lines. N-(4-(2-(benzylamino)-2-oxoethyl)phenyl)-4-chlorobenzamide (4e) exhibited activities at IC50 0.96 µM, 1.62 µM, 1.90 µM and 4.23 µM against NB4, HL60, MV4-11 and K562 leukemia cell lines, respectively. We found that underlying mechanisms of 4e did not include tubulin polymerization or Src inhibition. Such results interestingly suggested that scaffold-hopping of KX2-391 may change the two main underlying cytotoxic mechanisms (Src and tubulin). Kinase profiling using two methods revealed that 4e significantly reduces the activities of some other potent oncogenic kinases like the MAPK member ERK1/2 (>99%) and it also greatly upregulates the pro-apoptotic c-Jun kinase (84%). This research also underscores the importance of thorough investigation of total kinase activities as part of the structure-activity relationship studies.
Collapse
Affiliation(s)
- Abdelsattar M Omar
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Al-Azhar University, Cairo, Egypt
| | - Maan T Khayat
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yosra A Muhammad
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Azizah M Malebari
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sara M Ibrahim
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad I Khan
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dhaval K Shah
- School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Wayne E Childers
- Moulder Center for Drug Discovery Research, School of Pharmacy, Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA, United States
| | - Moustafa E El-Araby
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Smolinski MP, Bu Y, Clements J, Gelman IH, Hegab T, Cutler DL, Fang JWS, Fetterly G, Kwan R, Barnett A, Lau JYN, Hangauer DG. Discovery of Novel Dual Mechanism of Action Src Signaling and Tubulin Polymerization Inhibitors (KX2-391 and KX2-361). J Med Chem 2018; 61:4704-4719. [PMID: 29617135 DOI: 10.1021/acs.jmedchem.8b00164] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The discovery of potent, peptide site directed, tyrosine kinase inhibitors has remained an elusive goal. Herein we describe the discovery of two such clinical candidates that inhibit the tyrosine kinase Src. Compound 1 is a phase 3 clinical trial candidate that is likely to provide a first in class topical treatment for actinic keratosis (AK) with good efficacy and dramatically less toxicity compared to existing standard therapy. Compound 2 is a phase 1 clinical trial candidate that is likely to provide a first in class treatment of malignant glioblastoma and induces 30% long-term complete tumor remission in animal models. The discovery strategy for these compounds iteratively utilized molecular modeling, along with the synthesis and testing of increasingly elaborated proof of concept compounds, until the final clinical candidates were arrived at. This was followed with mechanism of action (MOA) studies that revealed tubulin polymerization inhibition as the second MOA.
Collapse
Affiliation(s)
- Michael P Smolinski
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Yahao Bu
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - James Clements
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Irwin H Gelman
- Department of Cancer Genetics & Genomics , Roswell Park Comprehensive Cancer Center , Elm and Carlton Streets , Buffalo , New York 14263 , United States
| | - Taher Hegab
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - David L Cutler
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Jane W S Fang
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Gerald Fetterly
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Rudolf Kwan
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Allen Barnett
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - Johnson Y N Lau
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| | - David G Hangauer
- Athenex Inc. , Conventus Building, 1001 Main Street, Suite 600 , Buffalo , New York 14203 , United States
| |
Collapse
|
3
|
Breen ME, Soellner MB. Small molecule substrate phosphorylation site inhibitors of protein kinases: approaches and challenges. ACS Chem Biol 2015; 10:175-89. [PMID: 25494294 PMCID: PMC4301090 DOI: 10.1021/cb5008376] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Protein kinases are
important mediators of cellular communication
and attractive drug targets for many diseases. Although success has
been achieved with developing ATP-competitive kinase inhibitors, the
disadvantages of ATP-competitive inhibitors have led to increased
interest in targeting sites outside of the ATP binding pocket. Kinase
inhibitors with substrate-competitive, ATP-noncompetitive binding
modes are promising due to the possibility of increased selectivity
and better agreement between biochemical and in vitro potency. However, the difficulty of identifying these types of inhibitors
has resulted in significantly fewer small molecule substrate phosphorylation
site inhibitors being reported compared to ATP-competitive inhibitors.
This review surveys reported substrate phosphorylation site inhibitors
and methods that can be applied to the discovery of such inhibitors,
including a discussion of the challenges inherent to these screening
methods.
Collapse
Affiliation(s)
- Meghan E. Breen
- Department of Medicinal Chemistry and ‡Department of
Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Matthew B. Soellner
- Department of Medicinal Chemistry and ‡Department of
Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Su B, Gillard B, Gao L, Eng KH, Gelman IH. Src controls castration recurrence of CWR22 prostate cancer xenografts. Cancer Med 2013; 2:784-92. [PMID: 24403252 PMCID: PMC3892383 DOI: 10.1002/cam4.144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 12/17/2022] Open
Abstract
Recurrence of prostate cancer (CaP) after androgen-deprivation therapy continues to have the greatest impact on patient survival. Castration-recurrent (CR)-CaP is likely driven by the activation of androgen receptor (AR) through multiple mechanisms including induction of AR coregulators, AR mutants or splice variants, and AR posttranslational modification such as phosphorylation by Src-family and Ack1 tyrosine kinases. Here, we address whether Src is required for the CR growth of human CWR22 CaP xenografts. The shRNA-mediated Src knockdown or treatment with the Src inhibitors, dasatinib or KXO1, reduced CaP recurrence over controls and increased time-to-recurrence following castration. Moreover, CR-CaP [Src-shRNA] tumors that recurred had similar Src protein and activation levels as those of parental cells, strengthening the notion that Src activity is required for progression to CR-CaP. In contrast, the ability of dasatinib or KXO1 to inhibit Src kinase activity in vitro did not correlate with their ability to inhibit serum-driven in vitro proliferation of CR and androgen-dependent stable cell lines derived from CWR22 tumors (CWR22Rv1 and CWR22PC, respectively), suggesting that the in vitro proliferation of these CaP lines is Src independent. Taken together, these findings strongly suggest that Src is a potent and specific therapeutic target for CR-CaP progression.
Collapse
Affiliation(s)
- Bing Su
- Biomedical Research Institute, Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangzhou, China; Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| | | | | | | | | |
Collapse
|
5
|
Abstract
This review will highlight the most commonly used methods to discover small molecule Type III/IV kinase inhibitors.
Collapse
Affiliation(s)
- Lori Krim Gavrin
- Pfizer Research
- Rare Disease Chemistry and Chemical Biology
- BioTherapeutics Chemistry
- Cambridge
- USA
| | - Eddine Saiah
- Pfizer Research
- Rare Disease Chemistry and Chemical Biology
- BioTherapeutics Chemistry
- Cambridge
- USA
| |
Collapse
|
6
|
Moy FJ, Lee A, Gavrin LK, Xu ZB, Sievers A, Kieras E, Stochaj W, Mosyak L, McKew J, Tsao DHH. Novel synthesis and structural characterization of a high-affinity paramagnetic kinase probe for the identification of non-ATP site binders by nuclear magnetic resonance. J Med Chem 2010; 53:1238-49. [PMID: 20038108 DOI: 10.1021/jm901525b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To aid in the pursuit of selective kinase inhibitors, we have developed a unique ATP site binder tool for the detection of binders outside the ATP site by nuclear magnetic resonance (NMR). We report here the novel synthesis that led to this paramagnetic spin-labeled pyrazolopyrimidine probe (1), which exhibits nanomolar inhibitory activity against multiple kinases. We demonstrate the application of this probe by performing NMR binding experiments with Lck and Src kinases and utilize it to detect the binding of two compounds proximal to the ATP site. The complex structure of the probe with Lck is also presented, revealing how the probe fits in the ATP site and the specific interactions it has with the protein. We believe that this spin-labeled probe is a valuable tool that holds broad applicability in a screen for non-ATP site binders.
Collapse
Affiliation(s)
- Franklin J Moy
- Structural Biology and Computational Chemistry, Wyeth Research, 200 CambridgePark Drive, Cambridge, Massachusetts 02140, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kiliç Z, Işgör YG, Olgen S. Evaluation of new indole and bromoindole derivatives as pp60(c-Src) tyrosine kinase inhibitors. Chem Biol Drug Des 2009; 74:397-404. [PMID: 19691468 DOI: 10.1111/j.1747-0285.2009.00876.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A series of N-benzyl-indole-3-imine-, amine derivatives and their 5-bromo congeners were synthesized and their biological activity were evaluated against the pp60(c-Src) tyrosine kinase target. To afford the imine derivatives, aldehydes were reacted with substituted benzylamines and the corresponding amine derivatives were obtained by NaBH(4) reduction of these imines. Except insoluble N-benzyl-indole-3-imine derivatives, all the derivatives showed some activity against the kinase target. Screening of these compounds for their biological activity revealed that among N-benzyl-indole derivatives, those bearing 5-bromo substitution have the enhanced potency, where the amine derivatives were more active than imines.
Collapse
Affiliation(s)
- Zühal Kiliç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ankara, 06100, Tandoğan-Ankara, Turkey
| | | | | |
Collapse
|
8
|
Kiliç Z, Isgör YG, Olgen S. Synthesis and pp60c‐SrcTyrosine Kinase Inhibitory Activities of Novel Indole‐3‐Imine and Amine Derivatives Substituted at N1 and C5. Arch Pharm (Weinheim) 2009; 342:333-43. [PMID: 19475593 DOI: 10.1002/ardp.200800216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zuhal Kiliç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ankara, Tandogan-Ankara, Turkey
| | | | | |
Collapse
|
9
|
Işgör YG, Kiliç Z, Olgen S. Novel aminomethylindole derivatives as inhibitors of pp60c-Src tyrosine kinase: synthesis and biological activity. Chem Biol Drug Des 2008; 72:599-604. [PMID: 19090928 DOI: 10.1111/j.1747-0285.2008.00734.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pp60(c-Src) is one of the ubiquitously expressed Src family kinases and has important functions in malignant cells, including regulation of cell division, growth factor signaling, and movement. Therefore, investigating new small molecule inhibitors of pp60(c-Src) is important to discover and develop novel therapeutics for cancer and metastasis. Moreover, some of the small molecule inhibitors that do not qualify for therapeutic use may become very useful tool to explore the role of Src kinase in normal cells as well as in a variety of disease models. Our continuous efforts to find novel inhibitors of pp60(c-Src) aimed for therapeutic and research use, we synthesized newly designed aminomethylindole derivatives as novel small molecule inhibitors and investigated their inhibitory effect on pp60(c-Src) tyrosine kinase. Here, we report one potential inhibitor of the pp60(c-Src) from five active molecules of all nine compounds, which were synthesized and screened for the biological activity of the molecules against pp60(c-Src) target.
Collapse
Affiliation(s)
- Yasemin G Işgör
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| | | | | |
Collapse
|
10
|
Harris KC, Hu B, Hangauer D, Henderson D. Prevention of noise-induced hearing loss with Src-PTK inhibitors. Hear Res 2005; 208:14-25. [PMID: 15950415 DOI: 10.1016/j.heares.2005.04.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 04/15/2005] [Accepted: 04/18/2005] [Indexed: 10/25/2022]
Abstract
Studies from our lab show that noise exposure initiates cell death by multiple pathways [Nicotera, T.M., Hu, B.H., Henderson, D., 2003. The caspase pathway in noise-induced apoptosis of the chinchilla cochlea. J. Assoc. Res. Otolaryngol. 4, 466-477] therefore, protection against noise may be most effective with a multifaceted approach. The Src protein tyrosine kinase (PTK) signaling cascade may be involved in both metabolic and mechanically induced initiation of apoptosis in sensory cells of the cochlea. The current study compares three Src-PTK inhibitors, KX1-004, KX1-005 and KX1-174 as potential protective drugs for NIHL. Chinchillas were used as subjects. A 30 microl drop of one of the Src inhibitors was placed on the round window membrane of the anesthetized chinchilla; the vehicle (DMSO and buffered saline) alone was placed on the other ear. After the drug application, the middle ear was sutured and the subjects were exposed to noise. Hearing was measured before and several times after the noise exposure and treatment using evoked responses. At 20 days post-exposure, the animals were anesthetized their cochleae extracted and cochleograms were constructed. All three Src inhibitors provided protection from a 4 h, 4 kHz octave band noise at 106 dB. The most effective drug, KX1-004 was further evaluated by repeating the exposure with different doses, as well as, substituting an impulse noise exposure. For all conditions, the results suggest a role for Src-PTK activation in noise-induced hearing loss (NIHL), and that therapeutic intervention with a Src-PTK inhibitor may offer a novel approach in the treatment of NIHL.
Collapse
Affiliation(s)
- Kelly Carney Harris
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
11
|
Bogoyevitch MA, Barr RK, Ketterman AJ. Peptide inhibitors of protein kinases-discovery, characterisation and use. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:79-99. [PMID: 16182621 DOI: 10.1016/j.bbapap.2005.07.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 07/26/2005] [Accepted: 07/28/2005] [Indexed: 12/20/2022]
Abstract
Protein kinases are now the second largest group of drug targets, and most protein kinase inhibitors in clinical development are directed towards the ATP-binding site. However, these inhibitors must compete with high intracellular ATP concentrations and they must discriminate between the ATP-binding sites of all protein kinases as well the other proteins that also utilise ATP. It would therefore be beneficial to target sites on protein kinases other than the ATP-binding site. This review describes the discovery, characterisation and use of peptide inhibitors of protein kinases. In many cases, the development of these peptides has resulted from an understanding of the specific protein-binding partners for a particular protein kinase. In addition, novel peptide sequences have been discovered in library screening approaches and have provided new leads in the discovery and/or design of peptide inhibitors of protein kinases. These approaches are therefore providing exciting new opportunities in the development of ATP non-competitive inhibitors of protein kinases.
Collapse
Affiliation(s)
- Marie A Bogoyevitch
- Cell Signalling Laboratory, Biochemistry and Molecular Biology (M310), School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| | | | | |
Collapse
|
12
|
Abstract
JAK(s)/STAT(s) relay cytokine signals through tyrosine site-specific phosphorylation of the proteins involved in cellular responses for the activation and proliferation of bone marrow-derived cells. In recent years, the constitutive or elevated expression of JAK/STAT has been found in cancer cells and oncogene transfected cells, and has been shown to be involved in the immune rejection of allografts and the inflammatory processes of autoimmune diseases. This review discusses the strategies for screening and rational design of selective, potent JAK/STAT and kinase inhibitors that are either ATP-competitive or non-ATP competitive, naturally derived or synthetic, as well as other unique inhibitors and analogues for different therapeutic indications.
Collapse
Affiliation(s)
- Cheng Luo
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
13
|
Burke TR, Lee K. Phosphotyrosyl mimetics in the development of signal transduction inhibitors. Acc Chem Res 2003; 36:426-33. [PMID: 12809529 DOI: 10.1021/ar020127o] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphotyrosyl (pTyr) residues play important roles in cellular signal transduction by facilitating recognition and binding necessary for critical protein-protein interactions, and for this reason pTyr motifs represent attractive starting points in the development of signaling antagonists. Although the pTyr phosphoryl moiety is central in these phenomena, its incorporation into signaling inhibitors is contraindicated due to enzymatic lability and limited bioavailability associated with phosphate esters. To address these limitations, an entire field of study has arisen devoted to the design and utilization of pTyr mimetics. This Account provides a perspective on the roles of pTyr residues in signal transduction and approaches to pTyr mimetic development.
Collapse
Affiliation(s)
- Terrence R Burke
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NCI-Frederick, Frederick, Maryland, USA
| | | |
Collapse
|
14
|
Marsilje TH, Milkiewicz KL, Hangauer DG. The design, synthesis and activity of non-ATP competitive inhibitors of pp60(c-src) tyrosine kinase. Part 1: hydroxynaphthalene derivatives. Bioorg Med Chem Lett 2000; 10:477-81. [PMID: 10743952 DOI: 10.1016/s0960-894x(00)00039-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A series of hydroxynaphthalene pp60(c-src) non-peptide inhibitors was designed, using the crystal structure of the insulin receptor tyrosine kinase as a qualitative model, to target the peptide substrate binding site. Representative inhibitors were shown to bind non-competitively with respect to ATP.
Collapse
Affiliation(s)
- T H Marsilje
- Department of Medicinal Chemistry, School of Pharmacy, State University of New York at Buffalo, 14260-1200, USA
| | | | | |
Collapse
|