1
|
Bini J. The historical progression of positron emission tomography research in neuroendocrinology. Front Neuroendocrinol 2023; 70:101081. [PMID: 37423505 PMCID: PMC10530506 DOI: 10.1016/j.yfrne.2023.101081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The rapid and continual development of a number of radiopharmaceuticals targeting different receptor, enzyme and small molecule systems has fostered Positron Emission Tomography (PET) imaging of endocrine system actions in vivo in the human brain for several decades. PET radioligands have been developed to measure changes that are regulated by hormone action (e.g., glucose metabolism, cerebral blood flow, dopamine receptors) and actions within endocrine organs or glands such as steroids (e.g., glucocorticoids receptors), hormones (e.g., estrogen, insulin), and enzymes (e.g., aromatase). This systematic review is targeted to the neuroendocrinology community that may be interested in learning about positron emission tomography (PET) imaging for use in their research. Covering neuroendocrine PET research over the past half century, researchers and clinicians will be able to answer the question of where future research may benefit from the strengths of PET imaging.
Collapse
Affiliation(s)
- Jason Bini
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
2
|
Long J, Lee WS, Chough C, Bae IH, Kim BM. Synthesis toward CRHR1 Antagonists through 2,7-Dimethylpyrazolo[1,5-α][1,3,5]triazin-4(3H)-one C–H Arylation. J Org Chem 2015; 80:4716-21. [DOI: 10.1021/jo502894r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinghai Long
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Woong-Sup Lee
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Chieyeon Chough
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Il Hak Bae
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - B. Moon Kim
- Department
of Chemistry,
College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| |
Collapse
|
3
|
Lodge NJ, Li YW, Chin FT, Dischino DD, Zoghbi SS, Deskus JA, Mattson RJ, Imaizumi M, Pieschl R, Molski TF, Fujita M, Dulac H, Zaczek R, Bronson JJ, Macor JE, Innis RB, Pike VW. Synthesis and evaluation of candidate PET radioligands for corticotropin-releasing factor type-1 receptors. Nucl Med Biol 2014; 41:524-35. [PMID: 24793011 DOI: 10.1016/j.nucmedbio.2014.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 02/02/2023]
Abstract
INTRODUCTION A radioligand for measuring the density of corticotropin-releasing factor subtype-1 receptors (CRF1 receptors) in living animal and human brain with positron emission tomography (PET) would be a useful tool for neuropsychiatric investigations and the development of drugs intended to interact with this target. This study was aimed at discovery of such a radioligand from a group of CRF1 receptor ligands based on a core 3-(phenylamino)-pyrazin-2(1H)-one scaffold. METHODS CRF1 receptor ligands were selected for development as possible PET radioligands based on their binding potency at CRF1 receptors (displacement of [(125)I]CRF from rat cortical membranes), measured lipophilicity, autoradiographic binding profile in rat and rhesus monkey brain sections, rat biodistribution, and suitability for radiolabeling with carbon-11 or fluorine-18. Two identified candidates (BMS-721313 and BMS-732098) were labeled with fluorine-18. A third candidate (BMS-709460) was labeled with carbon-11 and all three radioligands were evaluated in PET experiments in rhesus monkey. CRF1 receptor density (Bmax) was assessed in rhesus brain cortical and cerebellum membranes with the CRF1 receptor ligand, [(3)H]BMS-728300. RESULTS The three ligands selected for development showed high binding affinity (IC50 values, 0.3-8nM) at CRF1 receptors and moderate lipophilicity (LogD, 2.8-4.4). [(3)H]BMS-728300 and the two (18)F-labeled ligands showed region-specific binding in rat and rhesus monkey brain autoradiography, namely higher binding density in the frontal and limbic cortex, and cerebellum than in thalamus and brainstem. CRF1 receptor Bmax in rhesus brain was found to be 50-120 fmol/mg protein across cortical regions and cerebellum. PET experiments in rhesus monkey showed that the radioligands [(18)F]BMS-721313, [(18)F]BMS-732098 and [(11)C]BMS-709460 gave acceptably high brain radioactivity uptake but no indication of the specific binding as seen in vitro. CONCLUSIONS Candidate CRF1 receptor PET radioligands were identified but none proved to be effective for imaging monkey brain CRF1 receptors. Higher affinity radioligands are likely required for successful PET imaging of CRF1 receptors.
Collapse
Affiliation(s)
- Nicholas J Lodge
- Department of Neuroscience Biology, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Yu-Wen Li
- Department of Neuroscience Biology, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Frederick T Chin
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA; Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305-5484, USA
| | - Douglas D Dischino
- Department of Radiochemistry, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Jeffrey A Deskus
- Department of Neuroscience Chemistry, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Ronald J Mattson
- Department of Neuroscience Chemistry, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Masao Imaizumi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Rick Pieschl
- Department of Neuroscience Biology, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Thaddeus F Molski
- Department of Neuroscience Biology, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Heidi Dulac
- Department of Veterinary Sciences, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Robert Zaczek
- Department of Neuroscience Biology, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Joanne J Bronson
- Department of Neuroscience Chemistry, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - John E Macor
- Department of Neuroscience Chemistry, Bristol-Myers Squibb, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Denhart DJ, Zuev D, Ditta JL, Hartz RA, Ahuja VT, Mattson RJ, Huang H, Mattson GK, Zueva L, Nielsen JM, Kozlowski ES, Lodge NJ, Bronson JJ, Macor JE. Potential CRF1R PET imaging agents: 1-fluoroalkylsubstituted 5-halo-3-(arylamino)pyrazin-2(1H)-ones. Bioorg Med Chem Lett 2013; 23:2052-5. [PMID: 23465610 DOI: 10.1016/j.bmcl.2013.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/25/2013] [Accepted: 02/01/2013] [Indexed: 11/24/2022]
Abstract
A series of pyrazinones were prepared and evaluated as potential CRF(1)R PET imaging agents. Optimization of their CRF(1)R binding potencies and octanol-phosphate buffer phase distribution coefficients are discussed herein.
Collapse
Affiliation(s)
- Derek J Denhart
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Reul JMHM, Holsboer F. On the role of corticotropin-releasing hormone receptors in anxiety and depression. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22033745 PMCID: PMC3181666 DOI: 10.31887/dcns.2002.4.1/jreul] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
On the basis of extensive basic and clinical studies, corticotropin-releasing hormone (CRH) and its related family members are considered to play a pivotal role in stress-related disorders, such as anxiety and depression. CRH is regarded as the principal mediator in the brain of the stress response, as it mediates neuroendocrine, autonomic, and behavioral responses to stressful challenges. Recently, this neuropeptide family has expanded due to the discovery of two new members, urocortin II (also termed stresscopin-related peptide) and urocortin III (also termed stresscopin), which are selective agonists for the CRH receptor type 2. They show a discrete neuroanatomical localization and are involved in stress-coping responses, such as anxiolysis. Here, on the basis of recent developments, we suggest that CRH, the urocortins, and their receptors form a complex system in the brain, which is recruited during both the acute and the recovery phases of the stress response.
Collapse
|
6
|
Paez-Pereda M, Hausch F, Holsboer F. Corticotropin releasing factor receptor antagonists for major depressive disorder. Expert Opin Investig Drugs 2011; 20:519-35. [PMID: 21395482 DOI: 10.1517/13543784.2011.565330] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Major depressive disorder is a serious and common psychiatric illness, and many of the depressive patients benefit from pharmacological treatment. Available antidepressants produce remission in only about 30 -- 40% of the patients. Therefore, new concepts are being explored for the development of innovative antidepressants with higher efficacy. AREAS COVERED The use of corticotropin releasing factor type 1 (CRF1) receptor antagonists for depression is supported by abundant evidence of target validation, the availability of in vitro and in vivo assays and specific small ligands. Some of these compounds have advanced to clinical studies, with discouraging results so far in depression. This review covers the development of CRF1 receptor antagonists at different stages of the development pipeline of the pharmaceutical industry and its bottlenecks. Most of the available CRF1 receptor antagonists known so far share a common chemical scaffold. We present possible strategies to overcome obstacles in the discovery and development process at the levels of library screenings and clinical studies to find more diverse compounds. EXPERT OPINION CRF1 receptor antagonists are expected to be beneficial only for those patients with CRF overexpression and the need for tests to identify these individuals is discussed. New technical developments and diagnostic tools might eventually lead to a more successful treatment of major depression with CRF1 receptor antagonists.
Collapse
|
7
|
Potential CRF1R PET imaging agents: N-Fluoroalkyl-8-(6-methoxy-2-methylpyridin-3-yl)-2,7-dimethyl-N-alkylpyrazolo[1,5-a][1,3,5]triazin-4-amines. Bioorg Med Chem Lett 2011; 21:2484-8. [DOI: 10.1016/j.bmcl.2011.02.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/09/2011] [Accepted: 02/14/2011] [Indexed: 11/18/2022]
|
8
|
Lang L, Ma Y, Kim BM, Jagoda EM, Rice KC, Szajek LP, Contoreggi C, Gold PW, Chrousos GP, Eckelman WC, Kiesewetter DO. [76Br]BMK-I-152, a non-peptide analogue for PET imaging of corticotropin-releasing hormone type 1 receptor (CRHR1). J Labelled Comp Radiopharm 2009. [DOI: 10.1002/jlcr.1616] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Sullivan GM, Parsey RV, Kumar JSD, Arango V, Kassir SA, Huang YY, Simpson NR, Van Heertum RL, Mann JJ. PET Imaging of CRF1 with [11C]R121920 and [11C]DMP696: is the target of sufficient density? Nucl Med Biol 2007; 34:353-61. [PMID: 17499724 PMCID: PMC1933490 DOI: 10.1016/j.nucmedbio.2007.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/29/2007] [Accepted: 01/29/2007] [Indexed: 11/18/2022]
Abstract
AIM Overstimulation of the CRF type 1 receptor (CRF1) is implicated in anxiety and depressive disorders. The aim of this study was to investigate the in vivo binding characteristics of [11C]R121920 and [11C]DMP696 in the nonhuman primate for application in positron emission tomography (PET) studies of CRF1. METHODS PET imaging with the two novel CRF1 radioligands was performed in baboon. In vitro binding studies for CRF1 were performed in postmortem brain tissue of baboon and human to assess sufficiency of receptor density for PET. RESULTS Both [11C]R121920 and [11C]DMP696 distributed rapidly and uniformly throughout the brain. Washout was comparable across brain regions, without differences in volume of distribution between regions reported to have high and low in vitro CRF1 binding. Membrane-enriched tissue homogenate assay using [(125)I]Tyr(0)-sauvagine and specific CRF1 antagonists CP154,526 and SN003 in human occipital cortex yielded maximal binding (Bmax) of 63.3 and 147.3 fmol/mg protein, respectively, and in human cerebellar cortex yielded Bmax of 103.6 and 64.6 fmol/mg protein, respectively. Dissociation constants (K(D)) were subnanomolar. In baboon, specific binding was not detectable in the same regions; therefore, Bmax and K(D) were not measurable. Autoradiographic results were consistent except there was also detectable CRF1-specific binding in baboon cerebellum. CONCLUSION Neither [11C]R121920 nor [11C]DMP696 demonstrated quantifiable regional binding in vivo in baboon. In vitro results suggest CRF1 density in baboon may be insufficient for PET. Studies in man may generate more promising results due to the higher CRF1 density compared with baboon in cerebral cortex and cerebellum.
Collapse
Affiliation(s)
- Gregory M Sullivan
- Division of Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Saunders J, Williams J. Antagonists of the corticotropin releasing factor receptor. PROGRESS IN MEDICINAL CHEMISTRY 2003; 41:195-247. [PMID: 12774695 DOI: 10.1016/s0079-6468(02)41006-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John Saunders
- Department of Chemistry, Neurocrine Biosciences, 10555 Science Center Drive, San Diego, CA 92121, USA
| | | |
Collapse
|
11
|
Grammatopoulos DK, Chrousos GP. Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends Endocrinol Metab 2002; 13:436-44. [PMID: 12431840 DOI: 10.1016/s1043-2760(02)00670-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Corticotropin-releasing hormone (CRH) plays a major role in coordinating the behavioral, endocrine, autonomic and immune responses to stress. CRH and CRH-related peptides and their receptors are present in the central nervous system and in a wide variety of peripheral tissues, including the immune, cardiovascular and reproductive systems, and have been associated with the pathophysiology of many disease states. These observations have led to the development of several CRH receptor type-selective antagonists, which have been used experimentally to elucidate the role of CRH and related peptides in physiological and disease processes, such as anxiety and depression, sleep disorders, addictive behavior, inflammatory and allergic disorders, neurological diseases and pre-term labor. Because of the complex network of multiple CRH receptor subtypes and their tissue- and agonist-specific signaling diversity, antagonists need to be developed that can target specific CRH receptor isoform-driven signaling pathways.
Collapse
Affiliation(s)
- Dimitris K Grammatopoulos
- Sir Quinton Hazell Molecular Medicine Research Centre, Dept of Biological Sciences, The University of Warwick, Coventry, UK CV4 7AL.
| | | |
Collapse
|
12
|
Gold PW, Chrousos GP. Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry 2002; 7:254-75. [PMID: 11920153 DOI: 10.1038/sj.mp.4001032] [Citation(s) in RCA: 875] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2001] [Accepted: 10/17/2001] [Indexed: 01/17/2023]
Abstract
Stress precipitates depression and alters its natural history. Major depression and the stress response share similar phenomena, mediators and circuitries. Thus, many of the features of major depression potentially reflect dysregulations of the stress response. The stress response itself consists of alterations in levels of anxiety, a loss of cognitive and affective flexibility, activation of the hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system, and inhibition of vegetative processes that are likely to impede survival during a life-threatening situation (eg sleep, sexual activity, and endocrine programs for growth and reproduction). Because depression is a heterogeneous illness, we studied two diagnostic subtypes, melancholic and atypical depression. In melancholia, the stress response seems hyperactive, and patients are anxious, dread the future, lose responsiveness to the environment, have insomnia, lose their appetite, and a diurnal variation with depression at its worst in the morning. They also have an activated CRH system and may have diminished activities of the growth hormone and reproductive axes. Patients with atypical depression present with a syndrome that seems the antithesis of melancholia. They are lethargic, fatigued, hyperphagic, hypersomnic, reactive to the environment, and show diurnal variation of depression that is at its best in the morning. In contrast to melancholia, we have advanced several lines of evidence of a down-regulated hypothalamic-pituitary adrenal axis and CRH deficiency in atypical depression, and our data show us that these are of central origin. Given the diversity of effects exerted by CRH and cortisol, the differences in melancholic and atypical depression suggest that studies of depression should examine each subtype separately. In the present paper, we shall first review the mediators and circuitries of the stress system to lay the groundwork for placing in context physiologic and structural alterations in depression that may occur as part of stress system dysfunction.
Collapse
Affiliation(s)
- P W Gold
- Clinical Neuroendocrinology Branch, Intramural Research Program, NIMH/NIH, NIH Clinical Center, Room 2D-46-1284, Bethesda, MD 20892-1284, USA.
| | | |
Collapse
|
13
|
Hsin LW, Tian X, Webster EL, Coop A, Caldwell TM, Jacobson AE, Chrousos GP, Gold PW, Habib KE, Ayala A, Eckelman WC, Contoreggi C, Rice KC. CRHR1 Receptor binding and lipophilicity of pyrrolopyrimidines, potential nonpeptide corticotropin-releasing hormone type 1 receptor antagonists. Bioorg Med Chem 2002; 10:175-83. [PMID: 11738619 DOI: 10.1016/s0968-0896(01)00261-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A series of compounds related to N-butyl-N-ethyl[2,5,6-trimethyl-7-(2,4,6-trimethylphenyl)pyrrolo[2,3-d]pyrimidin-4-yl]amine (1, antalarmin) have been prepared and evaluated for their CRHR1 binding affinity as the initial step in the development of selective high affinity hydrophilic nonpeptide corticotropin-releasing hormone type 1 receptor (CRHR1) antagonists. Calculated log P (Clog P) values were used to evaluate the rank order of hydrophilicity for these analogues. Introducing oxygenated functionalities (delta-hydroxy or bis-beta-ethereal) into 1 gave more hydrophilic compounds, which had good affinity for the receptor. Introducing an amino group or shortening the alkyl side chain was detrimental to CRHR1 affinity. The alcohol 4-[ethyl[2,5,6-trimethyl-7-(2,4,6-trimethylphenyl)pyrrolo[2,3-d]pyrimidin-4-yl]amino]butan-1-ol (3), bearing a terminal hydroxyl group on an N-alkyl side-chain, showed the highest CRHR1 binding affinity among these compounds (K(i)=0.68 nM), and is one of the highest affinity CRHR1 ligands known. Compounds 3-5, and 8, which are likely to be less lipophilic than 1, have high CRHR1 affinity and may be valuable probes to further study the CRH system.
Collapse
Affiliation(s)
- Ling-Wei Hsin
- Laboratory of Medicinal Chemistry, Building 8, Room B1-23, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 8 Center Drive MSC 0815, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Greiner E, Atkinson AJ, Ayala A, Chrousos GP, Contoreggi C, Eckelman WC, Gold PW, Habib KE, Jacobson AE, Whittaker N, Webster EL, Rice KC. Synthesis of doubly13C-labelled antalarmin isotopomers for pharmacokinetic studies. J Labelled Comp Radiopharm 2002. [DOI: 10.1002/jlcr.576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Tian X, Hsin LW, Webster EL, Contoreggi C, Chrousos GP, Gold PW, Habib K, Ayala A, Eckelman WC, Jacobson AE, Rice KC. The development of a potential single photon emission computed tomography (SPECT) imaging agent for the corticotropin-releasing hormone receptor type. Bioorg Med Chem Lett 2001; 11:331-3. [PMID: 11212103 DOI: 10.1016/s0960-894x(00)00661-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A high-affinity radioligand for CRHR1 has been prepared that can serve as a template for the development of SPECT imaging agents. The 5-chloro-N-cyclopropylmethyl-N-(2,6-dichloro-4-iodophenyl)-2-methyl-N-propylpyrimidine-4,6-diamine (6b, Ki = 14 nM), and the corresponding 4-bromophenyl analogue (6a, Ki = 21 nM), were synthesized in four steps from compound 3.
Collapse
Affiliation(s)
- X Tian
- Laboratory of Medicinal Chemistry, NIDDK, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Martarello L, Kilts CD, Ely T, Owens MJ, Nemeroff CB, Camp M, Goodman MM. Synthesis and characterization of fluorinated and iodinated pyrrolopyrimidines as PET/SPECT ligands for the CRF1 receptor. Nucl Med Biol 2001; 28:187-95. [PMID: 11295429 DOI: 10.1016/s0969-8051(00)00199-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluorine-18 labeled fluorobutyl[2,5-dimethyl-7-(2,4,6-trimethylphenyl)-7H-pyrrolo [2,3-d] pyrimidin-4-yl]ethylamine (FBPPA) and iodine-123 labeled butyl[2,5-dimethyl-7-(4-iodo-2,6-dimethylphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]ethyl-amine (IBPPA) were synthesized in the development of a CRF receptor ligand. The methods of synthesis, in vitro binding assays, radiolabeling and in vivo tissue distribution in rats are described. Fluorine-18 labeled FBPPA was prepared with high specific activity (3 x 10(4) Ci/mmol) by nucleophilic displacement with an average radiochemical yield of 6% (EOB). Iodine-123 labeled IBPPA was prepared by electrophilic iododestannylation with good yield (60%) and high specific activity (3.3 x 10(3) Ci/mmol). The retention of FBPPA and IBPPA in the pituitary was good (1.16% i.d./g and 2.35% i.d./g respectively at 60 min). However, the accumulation of radioactivity in the brain for both radiotracers was very low at all time points of the study, which demonstrated the difficulties for these radiopharmaceuticals to penetrate the blood brain barrier (BBB).
Collapse
Affiliation(s)
- L Martarello
- Department of Radiology, Emory Center for Positron Emission Tomography, Emory University School of Medicine, 1634 Clifton Road N.E., Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Chapter 3. New developments in the study of corticotropin releasing factor. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2001. [DOI: 10.1016/s0065-7743(01)36043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|