1
|
Zhu Y, Hamlow LA, He CC, Lee JK, Gao J, Berden G, Oomens J, Rodgers MT. Gas-Phase Conformations and N-Glycosidic Bond Stabilities of Sodium Cationized 2'-Deoxyguanosine and Guanosine: Sodium Cations Preferentially Bind to the Guanine Residue. J Phys Chem B 2017; 121:4048-4060. [PMID: 28355483 DOI: 10.1021/acs.jpcb.7b02906] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
2'-Deoxyguanosine (dGuo) and guanosine (Guo) are fundamental building blocks of DNA and RNA nucleic acids. In order to understand the effects of sodium cationization on the gas-phase conformations and stabilities of dGuo and Guo, infrared multiple photon dissociation (IRMPD) action spectroscopy experiments and complementary electronic structure calculations are performed. The measured IRMPD spectra of [dGuo+Na]+ and [Guo+Na]+ are compared to calculated IR spectra predicted for the stable low-energy structures computed for these species to determine the most favorable sodium cation binding sites, identify the structures populated in the experiments, and elucidate the influence of the 2'-hydroxyl substituent on the structures and IRMPD spectral features. These results are compared with those from a previous IRMPD study of the protonated guanine nucleosides to elucidate the differences between sodium cationization and protonation on structure. Energy-resolved collision-induced dissociation (ER-CID) experiments and survival yield analyses of protonated and sodium cationized dGuo and Guo are performed to compare the effects of these cations toward activating the N-glycosidic bonds of these nucleosides. For both [dGuo+Na]+ and [Guo+Na]+, the gas-phase structures populated in the experiments are found to involve bidentate binding of the sodium cation to the O6 and N7 atoms of guanine, forming a 5-membered chelation ring, with guanine found in both anti and syn orientations and C2'-endo (2T3 or 3T2) puckering of the sugar. The ER-CID results, IRMPD yields and the computed C1'-N9 bond lengths indicate that sodium cationization activates the N-glycosidic bond less effectively than protonation for both dGuo and Guo. The 2'-hydroxyl substituent of Guo is found to impact the preferred structures very little except that it enables a 2'OH···3'OH hydrogen bond to be formed, and stabilizes the N-glycosidic bond relative to that of dGuo in both the sodium cationized and protonated complexes.
Collapse
Affiliation(s)
- Y Zhu
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - L A Hamlow
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - C C He
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J K Lee
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J Gao
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University , Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University , Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University , Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
2
|
Wu RR, Yang B, Berden G, Oomens J, Rodgers MT. Gas-Phase Conformations and Energetics of Protonated 2′-Deoxyadenosine and Adenosine: IRMPD Action Spectroscopy and Theoretical Studies. J Phys Chem B 2015; 119:2795-805. [DOI: 10.1021/jp509267k] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- R. R. Wu
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Bo Yang
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - G. Berden
- Radboud University Nijmegen, Institute for Molecules and Materials, FELIX Facility, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - J. Oomens
- Radboud University Nijmegen, Institute for Molecules and Materials, FELIX Facility, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
- van’t Hoff
Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - M. T. Rodgers
- Department
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
3
|
Wu RR, Yang B, Berden G, Oomens J, Rodgers MT. Gas-Phase Conformations and Energetics of Protonated 2'-Deoxyguanosine and Guanosine: IRMPD Action Spectroscopy and Theoretical Studies. J Phys Chem B 2014; 118:14774-84. [PMID: 25423364 DOI: 10.1021/jp508019a] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The gas-phase structures of protonated 2'-deoxyguanosine, [dGuo+H](+), and its RNA analogue protonated guanosine, [Guo+H](+), are investigated by infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical electronic structure calculations. IRMPD action spectra are measured over the range extending from ∼550 to 1900 cm(-1) using the FELIX free electron laser and from ∼2800 to 3800 cm(-1) using an optical parametric oscillator/amplifier (OPO/OPA) laser system. The measured IRMPD spectra of [dGuo+H](+) and [Guo+H](+) are compared to each other and to B3LYP/6-311+G(d,p) linear IR spectra predicted for the stable low-energy conformations computed for these species to determine the most favorable site of protonation, identify the structures accessed in the experiments, and elucidate the influence of the 2'-hydroxyl substituent on the structures and the IRMPD spectral features. Theoretical energetics and the measured IRMPD spectra find that N7 protonation is preferred for both [dGuo+H](+) and [Guo+H](+), whereas O6 and N3 protonated conformers are found to be much less stable. The 2'-hydroxyl substituent does not exert a significant influence on the structures and relative stabilities of the stable low-energy conformations of [dGuo+H](+) versus [Guo+H](+) but does provide additional opportunities for hydrogen bonding such that more low-energy structures are found for [Guo+H](+). [dGuo+H](+) and [Guo+H](+) share very parallel IRMPD spectral features in the FELIX and OPO regions, whereas the effect of the 2'-hydroxyl substituent is primarily seen in the relative intensities of the measured IR bands. The measured OPO/OPA spectral signatures, primarily reflecting the IR features associated with the O-H and N-H stretches, provide complementary information to that of the FELIX region and enable the conformers that arise from different protonation sites to be more readily distinguished. Insight gained from this and parallel studies of other DNA and RNA nucleosides and nucleotides should help better elucidate the effects of the local environment on the overall structures of DNA and RNA.
Collapse
Affiliation(s)
- R R Wu
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - Bo Yang
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - G Berden
- Institute for Molecules and Materials, Radbound University Nijmegen , FELIX Facility, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, Radbound University Nijmegen , FELIX Facility, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands.,van't Hoff Institute for Molecular Sciences, University of Amsterdam , Amsterdam, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| |
Collapse
|
4
|
Rahimi-Nasrabadi M, Ahmadi F, Pourmortazavi S, Ganjali M, Alizadeh K. Conductometric study of complex formations between some substituted pyrimidines and some metal ions in acetonitrile and the determination of thermodynamic parameters. J Mol Liq 2009. [DOI: 10.1016/j.molliq.2008.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Ashry ESHE, Kassem AA, Abdel-Hamid H, Louis FF, Khattab SAN, Aouad MR. Novel regioselective formation of S- and N-hydroxyl-alkyls of 5-(3-chlorobenzo[b]thien-2-yl)-3-mercapto-4H-1,2,4-triazole and a facile synthesis of triazolo-thiazoles and thiazolo-triazoles. Role of catalyst and microwave. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2007; 26:437-51. [PMID: 17578742 DOI: 10.1080/15257770701426187] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Regioselective alkylation of 5-(3-chlorobenzo[b]thien-2-yl)-4H-1,2,4-triazole (1) with hydroxy alkylating agents 2, 3, 13, and the 2,3-O-isopropylidene-1-O-(p-tolylsulfonyl)-glycerol (10) afforded the corresponding S-alkylated derivatives 6, 7, 11, and 14 under both conventional and microwave irradiation conditions; bentonite as a solid support gave better results, with no change in regioselectivity. A facile intramolecular dehydrative ring closure of 6, 7, 11, and 14 using K(2)CO(3) in DMF afforded the corresponding fused triazolo-thiazines and thiazolo-triazole 17-19. The isopropylidenes and acetyl derivatives of the products were prepared.
Collapse
Affiliation(s)
- E S H El Ashry
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | | | | | | | | | | |
Collapse
|
6
|
Hadj-Bouazza A, Zerrouki R, Krausz P, Laumond G, Aubertin AM, Champavier Y. New acyclonucleosides: synthesis and anti-HIV activity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:1249-63. [PMID: 16270666 DOI: 10.1081/ncn-200067423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The synthesis of new acyclic nucleosides is described. These syntheses were accomplished by various methods: glycosylation, selective or total deprotection, oxidation/reduction, chlorination or azidation of hydroxyl groups. The compounds were characterized with NMR, mass and IR spectroscopy. Antiviral properties of these compounds were evaluated on HIV-1 infected cell lines.
Collapse
Affiliation(s)
- Amel Hadj-Bouazza
- Laboratoire de Chimie des Substances Naturelles, Faculté des Sciences et Techniques, Université de Limoges, Limoges, France
| | | | | | | | | | | |
Collapse
|
7
|
Davis J, Benhaddou R, Granet R, Krausz P, Demonte M, Aubertin AM. Synthesis and antiviral evaluation of pyrazinones substituted with acyclic chains. NUCLEOSIDES & NUCLEOTIDES 1998; 17:875-93. [PMID: 9708329 DOI: 10.1080/07328319808003460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The synthesis of a series of pyrazine analogues of the anti-herpes compound, acyclovir is described. These syntheses were accomplished by various methods: in the presence of a Lewis acid or NaH for hydroxyethoxymethyl and hydroxybutyl groups or by sequential oxidation/reduction of 1-(beta-D-ribofuranosyl)-2-pyrazinones for 2',3'-acyclonucleosides. Antiviral (HSV-1, CMV, Cox B4, HIV-1) properties of these compounds were determined.
Collapse
Affiliation(s)
- J Davis
- Laboratoire de Chimie des Substances Naturelles, Université de Limoges, France
| | | | | | | | | | | |
Collapse
|
8
|
El Ashry E, El Kilany Y. Acyclonucleosides: Part 3. tri-, tetra-, and pentaseco-Nucleosides**Part 1 can be found in Volume 67; Part 2 appears in Volume 68. ADVANCES IN HETEROCYCLIC CHEMISTRY 1997. [DOI: 10.1016/s0065-2725(08)60082-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Charron M, Tse HLA, Mansour TS, Knight DJ, O'Sullivan C, Coates JAV. Synthesis of 1-(8-phosphonomethoxy-3,6-dioxaoctyl)pyrimidines and purines, a novel series of acyclonucleotide analogues. HETEROATOM CHEMISTRY 1994. [DOI: 10.1002/hc.520050512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
El-Kattan Y, Gosselin G, Imbach JL. New acyclic nucleoside analogues. Stereospecific synthesis of purines and pyrimidines substituted with chiral chains by sugar-ring opening of β-D-galactopyranosyl nucleosides. ACTA ACUST UNITED AC 1994. [DOI: 10.1039/p19940001289] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|