1
|
Brodyagin N, Katkevics M, Kotikam V, Ryan CA, Rozners E. Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications. Beilstein J Org Chem 2021; 17:1641-1688. [PMID: 34367346 PMCID: PMC8313981 DOI: 10.3762/bjoc.17.116] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022] Open
Abstract
Peptide nucleic acid (PNA) is arguably one of the most successful DNA mimics, despite a most dramatic departure from the native structure of DNA. The present review summarizes 30 years of research on PNA's chemistry, optimization of structure and function, applications as probes and diagnostics, and attempts to develop new PNA therapeutics. The discussion starts with a brief review of PNA's binding modes and structural features, followed by the most impactful chemical modifications, PNA enabled assays and diagnostics, and discussion of the current state of development of PNA therapeutics. While many modifications have improved on PNA's binding affinity and specificity, solubility and other biophysical properties, the original PNA is still most frequently used in diagnostic and other in vitro applications. Development of therapeutics and other in vivo applications of PNA has notably lagged behind and is still limited by insufficient bioavailability and difficulties with tissue specific delivery. Relatively high doses are required to overcome poor cellular uptake and endosomal entrapment, which increases the risk of toxicity. These limitations remain unsolved problems waiting for innovative chemistry and biology to unlock the full potential of PNA in biomedical applications.
Collapse
Affiliation(s)
- Nikita Brodyagin
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Martins Katkevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| | - Venubabu Kotikam
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Christopher A Ryan
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, United States
| |
Collapse
|
2
|
Kesy J, Patil KM, Kumar SR, Shu Z, Yong HY, Zimmermann L, Ong AAL, Toh DFK, Krishna MS, Yang L, Decout JL, Luo D, Prabakaran M, Chen G, Kierzek E. A Short Chemically Modified dsRNA-Binding PNA (dbPNA) Inhibits Influenza Viral Replication by Targeting Viral RNA Panhandle Structure. Bioconjug Chem 2019; 30:931-943. [PMID: 30721034 DOI: 10.1021/acs.bioconjchem.9b00039] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNAs play critical roles in diverse catalytic and regulatory biological processes and are emerging as important disease biomarkers and therapeutic targets. Thus, developing chemical compounds for targeting any desired RNA structures has great potential in biomedical applications. The viral and cellular RNA sequence and structure databases lay the groundwork for developing RNA-binding chemical ligands through the recognition of both RNA sequence and RNA structure. Influenza A virion consists of eight segments of negative-strand viral RNA (vRNA), all of which contain a highly conserved panhandle duplex structure formed between the first 13 nucleotides at the 5' end and the last 12 nucleotides at the 3' end. Here, we report our binding and cell culture anti-influenza assays of a short 10-mer chemically modified double-stranded RNA (dsRNA)-binding peptide nucleic acid (PNA) designed to bind to the panhandle duplex structure through novel major-groove PNA·RNA2 triplex formation. We demonstrated that incorporation of chemically modified PNA residues thio-pseudoisocytosine (L) and guanidine-modified 5-methyl cytosine (Q) previously developed by us facilitates the sequence-specific recognition of Watson-Crick G-C and C-G pairs, respectively, at physiologically relevant conditions. Significantly, the chemically modified dsRNA-binding PNA (dbPNA) shows selective binding to the dsRNA region in panhandle structure over a single-stranded RNA (ssRNA) and a dsDNA containing the same sequence. The panhandle structure is not accessible to traditional antisense DNA or RNA with a similar length. Conjugation of the dbPNA with an aminosugar neamine enhances the cellular uptake. We observed that 2-5 μM dbPNA-neamine conjugate results in a significant reduction of viral replication. In addition, the 10-mer dbPNA inhibits innate immune receptor RIG-I binding to panhandle structure and thus RIG-I ATPase activity. These findings would provide the foundation for developing novel dbPNAs for the detection of influenza viral RNAs and therapeutics with optimal antiviral and immunomodulatory activities.
Collapse
Affiliation(s)
- Julita Kesy
- Institute of Bioorganic Chemistry, Polish Academy of Sciences , Noskowskiego 12/14 , 61-704 Poznan , Poland
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | | | - Zhiyu Shu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Hui Yee Yong
- Lee Kong Chian School of Medicine , Nanyang Technological University , EMB 03-07, 59 Nanyang Drive , 636921 , Singapore.,NTU Institute of Structural Biology , Nanyang Technological University , EMB 06-01, 59 Nanyang Drive , 636921 , Singapore.,School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , 636921 , Singapore
| | - Louis Zimmermann
- Département de Pharmacochimie Moléculaire , University Grenoble Alpes, CNRS, ICMG FR 2607, UMR 5063 , 470 Rue de la Chimie , F-38041 Grenoble , France
| | - Alan Ann Lerk Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Lixia Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Jean-Luc Decout
- Département de Pharmacochimie Moléculaire , University Grenoble Alpes, CNRS, ICMG FR 2607, UMR 5063 , 470 Rue de la Chimie , F-38041 Grenoble , France
| | - Dahai Luo
- Lee Kong Chian School of Medicine , Nanyang Technological University , EMB 03-07, 59 Nanyang Drive , 636921 , Singapore.,NTU Institute of Structural Biology , Nanyang Technological University , EMB 06-01, 59 Nanyang Drive , 636921 , Singapore
| | - Mookkan Prabakaran
- Temasek Life Science Laboratory, 1 Research Link , National University of Singapore , 117604 , Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences , Noskowskiego 12/14 , 61-704 Poznan , Poland
| |
Collapse
|
3
|
Luo LH, Zheng PJ, Nie H, Chen YC, Tong D, Chen J, Cheng Y. Pharmacokinetics and tissue distribution of docetaxel liposome mediated by a novel galactosylated cholesterol derivatives synthesized by lipase-catalyzed esterification in non-aqueous phase. Drug Deliv 2014; 23:1282-90. [DOI: 10.3109/10717544.2014.980525] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Li-hua Luo
- Department of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pin-jing Zheng
- Department of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Nie
- Department of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu-chao Chen
- Department of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Tong
- Department of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin Chen
- Department of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Cheng
- Department of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Susceptibility of methicillin-resistant Staphylococcus aureus to photodynamic antimicrobial chemotherapy with α-d-galactopyranosyl zinc phthalocyanines: in vitro study. Lasers Med Sci 2013; 29:1131-8. [DOI: 10.1007/s10103-013-1488-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/03/2013] [Indexed: 10/26/2022]
|
5
|
Liu SY, Wang GQ, Liang ZY, Wang QA. Synthesis of dihydrobenzofuran neoligans licarin a and dihydrocarinatin as well as related triazolylglycosides. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-3131-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Synthesis and cytotoxicity of chalcones and 5-deoxyflavonoids. ScientificWorldJournal 2013; 2013:649485. [PMID: 23844408 PMCID: PMC3690745 DOI: 10.1155/2013/649485] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/19/2013] [Indexed: 11/17/2022] Open
Abstract
Chalcones 1~8 and 5-deoxyflavonoids 9~22 were synthesized in good yields by aldol condensation, Algar-Flynn-Oyamada reaction, glycosidation, and deacetylation reaction, respectively, starting from 2-acetyl phenols substituted by methoxy or methoxymethoxy group and appropriately benzaldehydes substituted by methoxy, methoxymethoxy group, or chlorine. Among them, 13 and 17~22 are new compounds. The cytotoxicity bioassays of these chalcones and 5-deoxyflavonoids were screened using the sulforhodamine B (SRB) protein staining method, and the results showed that compounds 2, 4, 5, 6, 10, 15, and 19 exhibited moderate cytotoxicity against the cancer cell line of MDA-MB-231, U251, BGC-823, and B16 in comparison with control drugs (HCPT, Vincristine, and Taxol).
Collapse
|
7
|
Lv F, He X, Wu L, Liu T. Lactose substituted zinc phthalocyanine: A near infrared fluorescence imaging probe for liver cancer targeting. Bioorg Med Chem Lett 2013; 23:1878-82. [DOI: 10.1016/j.bmcl.2012.12.103] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/20/2012] [Accepted: 12/29/2012] [Indexed: 11/26/2022]
|
8
|
Luminescent dinuclear rhenium(I) complexes containing bridging 1,2-diazine ligands: Photophysical properties and application. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Liu J, Chen L, Cai S, Wang Q. Semisynthesis of apigenin and acacetin-7-O-β-D-glycosides from naringin and their cytotoxic activities. Carbohydr Res 2012; 357:41-6. [PMID: 22732304 DOI: 10.1016/j.carres.2012.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 11/19/2022]
Abstract
Apigenin-7-O-β-D-glycosides 1-8 and acacetin-7-O-β-D-glycosides 9-16 were semisynthesized from 4'-O-benzyl apigenin 17 and acacetin 18 by glycosidation and deprotection with the corresponding α-acetylglycosyl bromide, respectively. Compounds 17 and 18 were prepared by iodination followed by base-induced elimination, 4'-O-benzylation, or 4'-O-methylation and acid hydrolysis using naringin as starting material which is readily available and cheap. Their cytotoxic potential against five human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, and SW480) was evaluated by standard MTT method. The results show that compounds 2, 9, and 19 exhibit moderate cytotoxicity against HL-60, SMMC-7721, A-549, MCF-7, and SW480, while compound 3 exhibits potent cytotoxicity against MCF-7 selectively. Among the synthesized target compounds, 3, 4, 7, 11, 12, 15, and 16 were new compounds, the natural product 8 was the first synthesized and the synthesis of natural products 5, 6, 13, and 14 was efficiently improved by the new synthetic routes.
Collapse
Affiliation(s)
- Jidan Liu
- College of Chemistry and Chemical Engineering, Hunan University, ChangSha 410082, PR China
| | | | | | | |
Collapse
|
10
|
Joergensen M, Agerholm-Larsen B, Nielsen PE, Gehl J. Efficiency of cellular delivery of antisense peptide nucleic acid by electroporation depends on charge and electroporation geometry. Oligonucleotides 2011; 21:29-37. [PMID: 21235293 DOI: 10.1089/oli.2010.0266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Electroporation is potentially a very powerful technique for both in vitro cellular and in vivo drug delivery, particularly relating to oligonucleotides and their analogs for genetic therapy. Using a sensitive and quantitative HeLa cell luciferase RNA interference mRNA splice correction assay with a functional luciferase readout, we demonstrate that parameters such as peptide nucleic acid (PNA) charge and the method of electroporation have dramatic influence on the efficiency of productive delivery. In a suspended cell electroporation system (cuvettes), a positively charged PNA (+8) was most efficiently transferred, whereas charge neutral PNA was more effective in a microtiter plate electrotransfer system for monolayer cells. Surprisingly, a negatively charged (-23) PNA did not show appreciable activity in either system. Findings from the functional assay were corroborated by pulse parameter variations, polymerase chain reaction, and confocal microscopy. In conclusion, we have found that the charge of PNA and electroporation system combination greatly influences the transfer efficiency, thereby illustrating the complexity of the electroporation mechanism.
Collapse
Affiliation(s)
- Mette Joergensen
- Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | | | | | | |
Collapse
|
11
|
Ganguly S, Chaubey B, Tripathi S, Upadhyay A, Neti PVSV, Howell RW, Pandey VN. Pharmacokinetic analysis of polyamide nucleic-acid-cell penetrating peptide conjugates targeted against HIV-1 transactivation response element. Oligonucleotides 2009; 18:277-86. [PMID: 18729823 DOI: 10.1089/oli.2008.0140] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have demonstrated that polyamide nucleic acids complementary to the transactivation response (TAR) element of HIV-1 LTR inhibit HIV-1 production when transfected in HIV-1 infected cells. We have further shown that anti-TAR PNA (PNA(TAR)) conjugated with cell-penetrating peptide (CPP) is rapidly taken up by cells and exhibits strong antiviral and anti-HIV-1 virucidal activities. Here, we pharmacokinetically analyzed (125)I-labeled PNA(TAR) conjugated with two CPPs: a 16-mer penetratin derived from antennapedia and a 13-mer Tat peptide derived from HIV-1 Tat. We administered the (125)I-labeled PNA(TAR)-CPP conjugates to male Balb/C mice through intraperitoneal or gavage routes. The naked (125)I-labeled PNA(TAR) was used as a control. Following a single administration of the labeled compounds, their distribution and retention in various organs were monitored at various time points. Regardless of the administration route, a significant accumulation of each PNA(TAR)-CPP conjugate was found in different mouse organs and tissues. The clearance profile of the accumulated radioactivity from different organs displayed a biphasic exponential pathway whereby part of the radioactivity cleared rapidly, but a significant portion of it was slowly released over a prolonged period. The kinetics of clearance of individual PNA(TAR)-CPP conjugates slightly varied in different organs, while the overall biphasic clearance pattern remained unaltered regardless of the administration route. Surprisingly, unconjugated naked PNA(TAR) displayed a similar distribution and clearance profile in most organs studied although extent of its uptake was lower than the PNA(TAR)-CPP conjugates.
Collapse
Affiliation(s)
- Sabyasachi Ganguly
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Rasmussen FW, Bendifallah N, Zachar V, Shiraishi T, Fink T, Ebbesen P, Nielsen PE, Koppelhus U. Evaluation of transfection protocols for unmodified and modified peptide nucleic acid (PNA) oligomers. Oligonucleotides 2006; 16:43-57. [PMID: 16584294 DOI: 10.1089/oli.2006.16.43] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have compared the efficacy of different transfection protocols reported for peptide nucleic acid (PNA) oligomers. A precise evaluation of uptake efficacy was achieved by using a positive readout assay based on the ability of a PNA oligomer to correct aberrant splicing of a recombinant luciferase gene. The study comprised transfection of PNA conjugated to acridine, adamantyl, decanoic acid, and porphyrine (acr-PNA, ada-PNA, deca-PNA, and por-RNA, respectively) and unmodified PNA partially hybridized to a DNA oligomer (PNA/DNA cotransfection). Furthermore, the effect of conjugation to a nuclear localization signal (NLS) was evaluated as part of the PNA/DNA cotransfection protocol. Transfection of the tested PNAs was systematically optimized. PNA/DNA cotransfection was found to produce the highest luciferase activity, but only after careful selection of the DNA oligonucleotide. Both a cationic lipid, Lipofectamine, and a nonliposomal cationic polymer, polyethylenimine (PEI, ExGen 500), were efficient transfection reagents for the PNA/DNA complex. However, Lipofectamine, in contrast to PEI, showed severe side effects, such as cytotoxicity. acr-PNA, ada-PNA, and por-PNA were transfectable with efficacies between 5 and 10 times lower than that seen with PNA/DNA cotransfection. Conjugation of PNA to NLS had no effect on PNA/DNA cotransfection efficacy. An important lesson from the study was the finding that because of uncontrollable biologic variations, even optimal transfection conditions differed to a certain extend from experiment to experiment in an unpredictable way.
Collapse
|
13
|
Périno S, Contino-Pépin C, Jasseron S, Rapp M, Maurizis JC, Pucci B. Design, synthesis and preliminary biological evaluations of novel amphiphilic drug carriers. Bioorg Med Chem Lett 2006; 16:1111-4. [PMID: 16386903 DOI: 10.1016/j.bmcl.2005.11.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 11/25/2005] [Accepted: 11/28/2005] [Indexed: 11/19/2022]
Abstract
The synthesis of a new fluorocarbon amphiphilic drug carrier is described. A polyfunctional amino acid endowed with a fluorocarbon chain and a sugar moiety providing the amphiphilic character constitutes the central element of this structure. A (14)C-radiolabelled acetyl group was grafted onto the third function and the bioavailability of this molecule was specified in mice after IV administration. This amphiphilic drug carrier exhibits a rapid and homogeneous distribution to the whole tissues and slow elimination half-lives (higher than one day) through a biliary excretion without any toxicity (no measured DL 50 for concentrations up to 500 mg/kg).
Collapse
Affiliation(s)
- Sandrine Périno
- Laboratoire de Chimie Bioorganique et des Systèmes Moléculaires Vectoriels, Faculté des Sciences, 33, rue Louis Pasteur, 84000 Avignon, France
| | | | | | | | | | | |
Collapse
|
14
|
Lundin KE, Good L, Strömberg R, Gräslund A, Smith CIE. Biological activity and biotechnological aspects of peptide nucleic acid. ADVANCES IN GENETICS 2006; 56:1-51. [PMID: 16735154 DOI: 10.1016/s0065-2660(06)56001-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the latest decades a number of different nucleic acid analogs containing natural nucleobases on a modified backbone have been synthesized. An example of this is peptide nucleic acid (PNA), a DNA mimic with a noncyclic peptide-like backbone, which was first synthesized in 1991. Owing to its flexible and neutral backbone PNA displays very good hybridization properties also at low-ion concentrations and has subsequently attracted large interest both in biotechnology and biomedicine. Numerous modifications have been made, which could be of value for particular settings. However, the original PNA does so far perform well in many diverse applications. The high biostability makes it interesting for in vivo use, although the very limited diffusion over lipid membranes requires further modifications in order to make it suitable for treatment in eukaryotic cells. The possibility to use this nucleic acid analog for gene regulation and gene editing is discussed. Peptide nucleic acid is now also used for specific genetic detection in a number of diagnostic techniques, as well as for site-specific labeling and hybridization of functional molecules to both DNA and RNA, areas that are also discussed in this chapter.
Collapse
Affiliation(s)
- Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center Karolinska Institutet, Karolinska University Hospital, Huddinge 141 86 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
15
|
Westerlind U, Westman J, Törnquist E, Smith CIE, Oscarson S, Lahmann M, Norberg T. Ligands of the asialoglycoprotein receptor for targeted gene delivery, part 1: Synthesis of and binding studies with biotinylated cluster glycosides containing N-acetylgalactosamine. Glycoconj J 2005; 21:227-41. [PMID: 15486455 DOI: 10.1023/b:glyc.0000045095.86867.c0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In order to develop the non-viral Bioplex vector system for targeted delivery of genes to hepatocytes, we have evaluated the structure-function relationship for a number of synthetic ligands designed for specific interaction with the hepatic lectin ASGPr. Biotinylated ligand derivatives containing two, three or six beta-linked N-acetylgalactosamine (GalNAc) residues were synthesized, bound to fluorescent-labeled streptavidin and tested for binding and uptake to HepG2 cells using flow cytometry analysis (FACS). Uptake efficiency increased with number of displayed GalNAc units per ligand, in a receptor dependent manner. Thus, a derivative displaying six GalNAc units showed the highest uptake efficacy both in terms of number of internalizing cells and increased amount of material taken up per each cell. However, this higher efficiency was shown to be due not so much to higher number of sugar units, but to higher accessibility of the sugar units for interaction with the receptor (longer spacer). Improving the flexibility and accessibility of a trimeric GalNAc ligand through use of a longer spacer markedly influenced the uptake efficiency, while increasing the number of GalNAc units per ligand above three only provided a minor contribution to the overall affinity. We hereby report the details of the chemical synthesis of the ligands and the structure-function studies in vitro.
Collapse
Affiliation(s)
- Ulrika Westerlind
- Department of Chemistry, Swedish University of Agricultural Sciences, P.O. Box 7015, S-750 07 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
16
|
Zelphati O, Felgner J, Wang Y, Liang X, Felgner P. Medicinal chemistry of plasmid DNA with peptide nucleic acids: A new strategy for gene therapy. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Bastide L, Lebleu B, Robbins I. Modulation of nucleic acid information processing by PNAs: Potential use in anti-viral therapeutics. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Abstract
Peptide nucleic acids (PNA) are deoxyribonucleic acid (DNA) mimics with a pseudopeptide backbone. PNA is an extremely good structural mimic of DNA (or of ribonucleic acid [RNA]), and PNA oligomers are able to form very stable duplex structures with Watson-Crick complementary DNA and RNA (or PNA) oligomers, and they can also bind to targets in duplex DNA by helix invasion. Therefore, these molecules are of interest in many areas of chemistry, biology, and medicine, including drug discovery, genetic diagnostics, molecular recognition, and the origin of life. Recent progress in studies of PNA properties and applications is reviewed.
Collapse
Affiliation(s)
- Peter E Nielsen
- Center for Biomolecular Recognition, IMBG, The Panum Institute, University of Copenhagen, Blegdamsvej 3C, Copenhagen DK-2200N, Denmark.
| |
Collapse
|
19
|
Nulf CJ, Corey D. Intracellular inhibition of hepatitis C virus (HCV) internal ribosomal entry site (IRES)-dependent translation by peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). Nucleic Acids Res 2004; 32:3792-8. [PMID: 15263060 PMCID: PMC506796 DOI: 10.1093/nar/gkh706] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) is the major etiological agent of non-A, non-B hepatitis. Current therapies are not effective in all patients and can result in the generation of resistant mutants, leading to a need for new therapeutic options. HCV has an RNA genome that contains a well-defined and highly conserved secondary structure within the 5'-untranslated region. This structure is known as the internal ribosomal entry site (IRES) and is necessary for translation and viral replication. Here, we test the hypothesis that antisense peptide nucleic acid (PNA) and locked nucleic acid (LNA) oligomers can bind key IRES sequences and block translation. We used lipid-mediated transfections to introduce PNAs and LNAs into cells. Our data suggest that PNAs and LNAs can invade critical sequences within the HCV IRES and inhibit translation. Seventeen base PNA or LNA oligomers targeting different regions of the HCV IRES demonstrated a sequence-specific dose-response inhibition of translation with EC(50) values of 50-150 nM. Inhibition was also achieved by PNAs ranging in length from 15 to 21 bases. IRES-directed inhibition of gene expression widens the range of mechanisms for antisense inhibition by PNAs and LNAs and may provide further therapeutic lead compounds for the treatment of HCV.
Collapse
Affiliation(s)
- Christopher J Nulf
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390 9041, USA
| | | |
Collapse
|
20
|
Marin VL, Roy S, Armitage BA. Recent advances in the development of peptide nucleic acid as a gene-targeted drug. Expert Opin Biol Ther 2004; 4:337-48. [PMID: 15006728 DOI: 10.1517/14712598.4.3.337] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Peptide nucleic acid (PNA) is a non-ionic mimic of DNA that binds to complementary DNA and RNA sequences with high affinity and selectivity. Targeting of single-stranded RNA leads to antisense effects, whereas PNAs directed toward double-stranded DNA exhibit antigene properties. Recent advances in cell uptake and in antisense and antigene effects in biological systems are summarised in this review. In addition to traditional targets, namely genomic DNA and messenger RNA, applications for PNA as a bacteriocidal antibiotic, for regulating splice site selection and as a telomerase inhibitor are described.
Collapse
Affiliation(s)
- Violeta L Marin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213-3890, USA
| | | | | |
Collapse
|
21
|
He Y, Panyutin IG, Karavanov A, Demidov VV, Neumann RD. Sequence-specific DNA strand cleavage by 111In-labeled peptide nucleic acids. Eur J Nucl Med Mol Imaging 2004; 31:837-45. [PMID: 14762696 DOI: 10.1007/s00259-003-1446-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 12/09/2003] [Indexed: 10/26/2022]
Abstract
Peptide nucleic acids (PNAs) bind tightly and sequence-specifically to single- and double-stranded nucleic acids, and are hence of interest in the design of gene-targeted radiotherapeutics that could deliver the radiodamage to designated DNA and/or RNA sites. As a first step towards this goal, we developed a procedure for incorporation of Auger electron-emitting radionuclide (indium-111) into PNA oligomers and studied the efficiency of PNA-directed cleavage of single-stranded DNA targets. Accordingly, diethylene triamine penta-acetic acid (DTPA) was conjugated to the lysine-appended mixed-base PNAs and sequence-homologous DNA oligomer with a proper linker for comparative studies. By chelation of PNA-DTPA and DNA-DTPA conjugates with (111)In(3+) in acidic aqueous solutions, (111)In-labeled PNA and DNA oligomers were obtained. Targeting of single-stranded DNA with PNA-DTPA-[(111)In] conjugates yielded highly localized DNA strand cleavage; the distribution of breaks along the target DNA strand has two maxima corresponding to both termini of PNA oligomer. After 10-14 days, the overall yield of breaks thus generated within the PNA-targeted DNA by (111)In decay was 5-7% versus < or =2% in the case of control oligonucleotide DNA-DTPA-[(111)In]. The estimated yield of DNA strand breaks per nuclear decay is ~0.1 for the PNA-directed delivery of (111)In, which is three times more than for the DNA-directed delivery of this radionuclide. This in vitro study shows that (111)In-labeled PNAs are much more effective than radiolabeled DNA oligonucleotides for site-specific damaging of DNA targets. Accordingly, we believe that PNA oligomers are promising radionuclide delivery tools for future antisense/antigene radiotherapy trials.
Collapse
Affiliation(s)
- Yujian He
- Department of Nuclear Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892-1180, USA
| | | | | | | | | |
Collapse
|
22
|
van Rossenberg SMW, Sliedregt-Bol KM, Koning G, van den Elst H, van Berkel TJC, van Boom JH, van der Marel GA, Biessen EAL. Improvement of hepatocyte-specific gene expression by a targeted colchicine prodrug. Chembiochem 2003; 4:633-9. [PMID: 12851933 DOI: 10.1002/cbic.200300582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Colchicine, an established tubulin inhibitor, interferes with the trafficking of endocytotic vesicles and thereby promotes the escape of lysosome-entrapped compounds. To improve its potency and cell specificity, a targeted prodrug of colchicine was synthesized by conjugation to a high-affinity ligand (di-N(alpha),N(epsilon)-(5-(2-acetamido-2-deoxy-beta-D-galactopyranosyloxy)pentanomido)lysine, K(GalNAc)(2)) for the asialoglycoprotein receptor on parenchymal liver cells. The resulting colchicine-K(GalNAc)(2) conjugate bound to this receptor with an affinity of 4.5 nM. Confocal microscopy studies confirmed rapid uptake and receptor dependency of a prodrug conjugated with fluorescein isothiocyanate. Colchicine-K(GalNAc)(2) substantially increased the transfection efficiency of polyplexed DNA in parenchymal liver cells in a concentration- and receptor-dependent fashion. Colchicine-K(GalNAc)(2) was found to enhance the transfection efficiency by 50-fold at 1 nM, whereas the parental colchicine was ineffective. In conclusion, this nontoxic colchicine-K(GalNAc)(2) conjugate can be a useful tool to improve the transfection efficiency of hepatic nonviral gene transfer vehicles.
Collapse
Affiliation(s)
- Sabine M W van Rossenberg
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Modulation of nucleic acid information processing by PNAs: potential use in anti-viral therapeutics. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-4923-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
PNAs as novel cancer therapeutics. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-4909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
|
26
|
Medicinal chemistry of plasmid DNA with peptide nucleic acids: A new strategy for gene therapy. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-4906-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Medicinal chemistry of plasmid DNA with peptide nucleic acids: A new strategy for gene therapy. Int J Pept Res Ther 2003. [DOI: 10.1007/bf02484566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Modulation of nucleic acid information processing by PNAs: potential use in anti-viral therapeutics. Int J Pept Res Ther 2003. [DOI: 10.1007/bf02484556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Abstract
Peptide nucleic acid (PNA) is a DNA mimic having a pseudopeptide backbone that makes it extremely stable in biological fluids. PNA binds complementary RNA and DNA with high affinity and specificity. These qualities make PNA a leading agent among "third generation" antisense and antigene agents. Unfortunately, fast progress in the exploration of PNA as an experimental and therapeutical regulator of gene expression has been hampered by the poor cellular uptake of PNA. However, a number of transfection protocols for PNA have now been established. These include microinjection, electroporation, co-transfection with DNA, conjugation to lipophilic moieties, conjugation to peptides, etc. Here we give a short introduction to the basic findings on PNA as an antisense and antigene agent in cell-free in vitro systems. This is followed by a comprehensive evaluation of the most interesting literature concerning cellular delivery and the intracellular effect of PNA. Also the current progress as regards using PNA as co-factor in DNA delivery is reviewed.
Collapse
Affiliation(s)
- Uffe Koppelhus
- Biochemistry Laboratory B, Center for Biomolecular Recognition, Department of Medical Biochemistry and Genetics, The Panum Institute, Blegdamsvej 3c, 2200 N Copenhagen, Denmark
| | | |
Collapse
|
30
|
Van Rossenberg SMW, Sliedregt-Bol KM, Meeuwenoord NJ, Van Berkel TJC, Van Boom JH, Van Der Marel GA, Biessen EAL. Targeted lysosome disruptive elements for improvement of parenchymal liver cell-specific gene delivery. J Biol Chem 2002; 277:45803-10. [PMID: 12237290 DOI: 10.1074/jbc.m203510200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transfection ability of nonviral gene therapy vehicles is generally hampered by untimely lysosomal degradation of internalized DNA. In this study we describe the development of a targeted lysosome disruptive element to facilitate the escape of DNA from the lysosomal compartment, thus enhancing the transfection efficacy, in a cell-specific fashion. Two peptides (INF7 and JTS-1) were tested for their capacity to disrupt liposomes. In contrast to JTS-1, INF7 induced rapid cholesterol-independent leakage (EC(50), 1.3 microm). INF7 was therefore selected for coupling to a high affinity ligand for the asialoglycoprotein receptor (ASGPr), K(GalNAc)(2), to im- prove its uptake by parenchymal liver cells. Although the parent peptide disrupted both cholesterol-rich and -poor liposomes, the conjugate, INF7-K(GalNAc)(2), only induced leakage of cholesterol-poor liposomes. Given that endosomal membranes of eukaryotic cells contain <5% cholesterol, this implies that the conjugate will display a higher selectivity toward endosomal membranes. Although both INF7 and INF7-K(GalNAc)(2) were found to increase the transfection efficiency on polyplex-mediated gene transfer to parenchymal liver cells by 30-fold, only INF7-K(GalNAc)(2) appeared to do so in an ASGPr-specific manner. In mice, INF7-K(GalNAc)(2) was specifically targeted to the liver, whereas INF7 was distributed evenly over various organs. In summary, we have prepared a nontoxic cell-specific lysosome disruptive element that improves gene delivery to parenchymal liver cells via the ASGPr. Its high cell specificity and preference to lyse intracellular membranes make this conjugate a promising lead in hepatocyte-specific drug/gene delivery protocols.
Collapse
Affiliation(s)
- Sabine M W Van Rossenberg
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research and the Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P. O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
31
|
Rapozzi V, Burm BEA, Cogoi S, van der Marel GA, van Boom JH, Quadrifoglio F, Xodo LE. Antiproliferative effect in chronic myeloid leukaemia cells by antisense peptide nucleic acids. Nucleic Acids Res 2002; 30:3712-21. [PMID: 12202756 PMCID: PMC137404 DOI: 10.1093/nar/gkf451] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Peptide nucleic acid (PNA) is a synthetic DNA analogue that is resistant to nucleases and proteases and binds with exceptional affinity to RNA. Because of these properties PNA has the potential to become a powerful therapeutic agent to be used in vivo. Until now, however, the use of PNA in vivo has not been much investigated. Here, we have attempted to reduce the expression of the bcr/abl oncogene in chronic myeloid leukaemia KYO-1 cells using a 13mer PNA sequence (asPNA) designed to hybridise to the b2a2 junction of bcr/abl mRNA. To enhance cellular uptake asPNA was covalently linked to the basic peptide VKRKKKP (NLS-asPNA). Moreover, to investigate the cellular uptake by confocal microscopy, both PNAs were linked by their N-terminus to fluorescein (FL). Studies of uptake, carried out at 4 and 37 degrees C on living KYO-1 cells stained with hexidium iodide, showed that both NLS-asPNA-FL and asPNA-FL were taken up by the cells, through a receptor-independent mechanism. The intracellular amount of NLS-asPNA-FL was about two to three times higher than that of asPNA-FL. Using a semi-quantitative RT- PCR technique we found that 10 micro M asPNA and NLS-asPNA reduced the level of b2a2 mRNA in KYO-1 cells to 20 +/- 5% and 60 +/- 10% of the control, respectively. Western blot analysis showed that asPNA promoted a significant inhibition of p210(BCR/ABL) protein: residual protein measured in cells exposed for 48 h to asPNA was approximately 35% of the control. Additionally, asPNA impaired cell growth to 50 +/- 5% of the control and inhibited completion of the cell cycle. In summary, these results demonstrate that a PNA 13mer is taken up by KYO-1 cells and is capable of producing a significant and specific down-regulation of the bcr/abl oncogene involved in leukaemogenesis.
Collapse
MESH Headings
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Base Sequence
- Cell Cycle/drug effects
- Cell Division/drug effects
- DNA, Antisense/chemistry
- DNA, Antisense/genetics
- DNA, Antisense/pharmacology
- Down-Regulation
- Flow Cytometry
- Fluorescein/chemistry
- Fusion Proteins, bcr-abl/genetics
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Microscopy, Confocal
- Molecular Sequence Data
- Nuclear Localization Signals/genetics
- Peptide Nucleic Acids/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- Valentina Rapozzi
- Department of Biomedical Sciences and Technologies, School of Medicine, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | | | | | | | | | | | | |
Collapse
|