1
|
Pérez-Pertejo Y, García-Estrada C, Martínez-Valladares M, Murugesan S, Reguera RM, Balaña-Fouce R. Polyamine Metabolism for Drug Intervention in Trypanosomatids. Pathogens 2024; 13:79. [PMID: 38251386 PMCID: PMC10820115 DOI: 10.3390/pathogens13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Neglected tropical diseases transmitted by trypanosomatids include three major human scourges that globally affect the world's poorest people: African trypanosomiasis or sleeping sickness, American trypanosomiasis or Chagas disease and different types of leishmaniasis. Different metabolic pathways have been targeted to find antitrypanosomatid drugs, including polyamine metabolism. Since their discovery, the naturally occurring polyamines, putrescine, spermidine and spermine, have been considered important metabolites involved in cell growth. With a complex metabolism involving biosynthesis, catabolism and interconversion, the synthesis of putrescine and spermidine was targeted by thousands of compounds in an effort to produce cell growth blockade in tumor and infectious processes with limited success. However, the discovery of eflornithine (DFMO) as a curative drug against sleeping sickness encouraged researchers to develop new molecules against these diseases. Polyamine synthesis inhibitors have also provided insight into the peculiarities of this pathway between the host and the parasite, and also among different trypanosomatid species, thus allowing the search for new specific chemical entities aimed to treat these diseases and leading to the investigation of target-based scaffolds. The main molecular targets include the enzymes involved in polyamine biosynthesis (ornithine decarboxylase, S-adenosylmethionine decarboxylase and spermidine synthase), enzymes participating in their uptake from the environment, and the enzymes involved in the redox balance of the parasite. In this review, we summarize the research behind polyamine-based treatments, the current trends, and the main challenges in this field.
Collapse
Affiliation(s)
- Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain; (Y.P.-P.); (C.G.-E.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León, 24071 León, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain; (Y.P.-P.); (C.G.-E.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León, 24071 León, Spain
| | | | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani 333031, India;
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain; (Y.P.-P.); (C.G.-E.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain; (Y.P.-P.); (C.G.-E.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León, 24071 León, Spain
| |
Collapse
|
2
|
Li SA, Cadelis MM, Deed RC, Douafer H, Bourguet-Kondracki ML, Michel Brunel J, Copp BR. Valorisation of the diterpene podocarpic acid - Antibiotic and antibiotic enhancing activities of polyamine conjugates. Bioorg Med Chem 2022; 64:116762. [PMID: 35477062 DOI: 10.1016/j.bmc.2022.116762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/02/2022]
Abstract
As part of our search for new antimicrobials and antibiotic adjuvants, a series of podocarpic acid-polyamine conjugates have been synthesized. The library of compounds made use of the phenolic and carboxylic acid moieties of the diterpene allowing attachment of polyamines (PA) of different lengths to afford a structurally-diverse set of analogues. Evaluation of the conjugates for intrinsic antimicrobial properties identified two derivatives of interest: a PA3-4-3 (spermine) amide-bonded variant 7a that was a non-cytotoxic, non-hemolytic potent growth inhibitor of Gram-positive Staphylococcus aureus (MRSA) and 9d, a PA3-8-3 carbamate derivative that was a non-toxic selective antifungal towards Cryptococcus neoformans. Of the compound set, only one example exhibited activity towards Gram-negative bacteria. However, in the presence of sub-therapeutic amounts of either doxycycline (4.5 µM) or erythromycin (2.7 μM) several analogues were observed to exhibit weak to modest antibiotic adjuvant properties against Pseudomonas aeruginosa and/or Escherichia coli. The observation of strong cytotoxicity and/or hemolytic properties for subsets of the library, in particular those analogues bearing methyl ester or n-pentylamide functionality, highlighted the fine balance of structural requirements and lipophilicity for antimicrobial activity as opposed to mammalian cell toxicity.
Collapse
Affiliation(s)
- Steven A Li
- School of Chemical Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand
| | - Melissa M Cadelis
- School of Chemical Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand
| | - Rebecca C Deed
- School of Chemical Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; School of Biological Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand
| | - Hana Douafer
- Aix-Marseille Universite, INSERM, SSA, MCT, Faculté de Pharmacie, 27 bd Jean Moulin, 13385 Marseille, France
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 57 rue Cuvier (C.P. 54), 75005 Paris, France
| | - Jean Michel Brunel
- Aix-Marseille Universite, INSERM, SSA, MCT, Faculté de Pharmacie, 27 bd Jean Moulin, 13385 Marseille, France
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
3
|
El Bissati K, Redel H, Ting LM, Lykins JD, McPhillie MJ, Upadhya R, Woster PM, Yarlett N, Kim K, Weiss LM. Novel Synthetic Polyamines Have Potent Antimalarial Activities in vitro and in vivo by Decreasing Intracellular Spermidine and Spermine Concentrations. Front Cell Infect Microbiol 2019; 9:9. [PMID: 30838177 PMCID: PMC6382690 DOI: 10.3389/fcimb.2019.00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/14/2019] [Indexed: 01/09/2023] Open
Abstract
Twenty-two compounds belonging to several classes of polyamine analogs have been examined for their ability to inhibit the growth of the human malaria parasite Plasmodium falciparum in vitro and in vivo. Four lead compounds from the thiourea sub-series and one compound from the urea-based analogs were found to be potent inhibitors of both chloroquine-resistant (Dd2) and chloroquine-sensitive (3D7) strains of Plasmodium with IC50 values ranging from 150 to 460 nM. In addition, the compound RHW, N1,N7-bis (3-(cyclohexylmethylamino) propyl) heptane-1,7-diamine tetrabromide was found to inhibit Dd2 with an IC50 of 200 nM. When RHW was administered to P. yoelii-infected mice at 35 mg/kg for 4 days, it significantly reduced parasitemia. RHW was also assayed in combination with the ornithine decarboxylase inhibitor difluoromethylornithine, and the two drugs were found not to have synergistic antimalarial activity. Furthermore, these inhibitors led to decreased cellular spermidine and spermine levels in P. falciparum, suggesting that they exert their antimalarial activities by inhibition of spermidine synthase.
Collapse
Affiliation(s)
- Kamal El Bissati
- Department of Ophthalmology and Visual Science, The University of Chicago, Chicago, IL, United States
| | - Henry Redel
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Li-Min Ting
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Joseph D Lykins
- Department of Internal Medicine and Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, United States
| | | | - Rajendra Upadhya
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Patrick M Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Nigel Yarlett
- Haskins Laboratories, Department of Chemistry and Physical Sciences, Pace University, New York, NY, United States
| | - Kami Kim
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States.,Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Louis M Weiss
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States.,Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
4
|
Abstract
INTRODUCTION Microsporidia have been increasingly reported to infect humans. The most common presentation of microsporidiosis is chronic diarrhea, a significant mortality risk in immune-compromised patients. Albendazole, which inhibits tubulin, and fumagillin, which inhibits methionine aminopeptidase type 2 (MetAP2), are the two main therapeutic agents used for treatment of microsporidiosis. In addition, to their role as emerging pathogens in humans, microsporidia are important pathogens in insects, aquaculture, and veterinary medicine. New therapeutic targets and therapies have become a recent focus of attention for medicine, veterinary, and agricultural use. Areas covered: Herein, we discuss the detection and symptoms of microsporidiosis in humans and the therapeutic targets that have been utilized for the design of new drugs for the treatment of this infection, including triosephosphate isomerase, tubulin, MetAP2, topoisomerase IV, chitin synthases, and polyamines. Expert opinion: Enterocytozoon bieneusi is the most common microsporidia in human infection. Fumagillin has a broader anti-microsporidian activity than albendazole and is active against both Ent. bieneusi and Encephaliozoonidae. Microsporidia lack methionine aminopeptidase type 1 and are, therefore, dependent on MetAP2, while mammalian cells have both enzymes. Thus, MetAP2 is an essential enzyme in microsporidia and new inhibitors of this pathway have significant promise as therapeutic agents.
Collapse
Affiliation(s)
- Bing Han
- Department of Pathology, Division of Tropical Medicine and Parasitology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Louis M. Weiss
- Department of Pathology, Division of Tropical Medicine and Parasitology, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
5
|
Pearce AN, Kaiser M, Copp BR. Synthesis and antimalarial evaluation of artesunate-polyamine and trioxolane-polyamine conjugates. Eur J Med Chem 2017; 140:595-603. [DOI: 10.1016/j.ejmech.2017.09.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 12/18/2022]
|
6
|
Polyamine-based analogs and conjugates as antikinetoplastid agents. Eur J Med Chem 2017; 139:982-1015. [DOI: 10.1016/j.ejmech.2017.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/24/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
|
7
|
Interrogating alkyl and arylalkylpolyamino (bis)urea and (bis)thiourea isosteres as potent antimalarial chemotypes against multiple lifecycle forms of Plasmodium falciparum parasites. Bioorg Med Chem 2015; 23:5131-43. [PMID: 25684422 DOI: 10.1016/j.bmc.2015.01.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/28/2023]
Abstract
A new series of potent potent aryl/alkylated (bis)urea- and (bis)thiourea polyamine analogues were synthesized and evaluated in vitro for their antiplasmodial activity. Altering the carbon backbone and terminal substituents increased the potency of analogues in the compound library 3-fold, with the most active compounds, 15 and 16, showing half-maximal inhibitory concentrations (IC50 values) of 28 and 30 nM, respectively, against various Plasmodium falciparum parasite strains without any cross-resistance. In vitro evaluation of the cytotoxicity of these analogues revealed marked selectivity towards targeting malaria parasites compared to mammalian HepG2 cells (>5000-fold lower IC50 against the parasite). Preliminary biological evaluation of the polyamine analogue antiplasmodial phenotype revealed that (bis)urea compounds target parasite asexual proliferation, whereas (bis)thiourea compounds of the same series have the unique ability to block transmissible gametocyte forms of the parasite, indicating pluripharmacology against proliferative and non-proliferative forms of the parasite. In this manuscript, we describe these results and postulate a refined structure-activity relationship (SAR) model for antiplasmodial polyamine analogues. The terminally aryl/alkylated (bis)urea- and (bis)thiourea-polyamine analogues featuring a 3-5-3 or 3-6-3 carbon backbone represent a structurally novel and distinct class of potential antiplasmodials with activities in the low nanomolar range, and high selectivity against various lifecycle forms of P. falciparum parasites.
Collapse
|
8
|
Santiana M, Pau C, Takvorian PM, Cali A. Analysis of the beta-tubulin gene and morphological changes of the microsporidium Anncaliia algerae both suggest albendazole sensitivity. J Eukaryot Microbiol 2014; 62:60-8. [PMID: 25105446 DOI: 10.1111/jeu.12160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/27/2014] [Accepted: 07/08/2014] [Indexed: 11/29/2022]
Abstract
The Microsporidium, Anncaliia algerae, an obligate intracellular parasite, has been identified as an opportunistic human pathogen, but treatment has not been evaluated for infections with this organism. Albendazole, an antitubulin polymerization drug used against parasitic worm infections, has been the medication of choice used to treat some microsporidial infections affecting humans, with varying results ranging from clearing infection (Encephalitozoon) to resistance (Enterocytozoon). This study illustrates the effect of albendazole treatment on A. algerae infection in Rabbit Kidney (RK13) cells and Human Fetal Lung (HFL-1) fibroblasts. Albendazole appears to have an attenuating effect on A. algerae infection and albendazole's IC50 in RK13 cells is 0.1 μg/ml. Long-term treatment inhibits up to 98% of spore production, but interrupting treatment reestablishes the infection without new exposure to the parasite as supported by microscopic observations. The parasite's beta-tubulin gene was purified, cloned, and sequenced. Five of the six specific amino acids, associated with benzimidazole sensitivity, are conserved in A. algerae. These findings suggest that A. algerae is sensitive to albendazole; however, the organism is not completely cleared from cultures.
Collapse
|
9
|
Investigation of indolglyoxamide and indolacetamide analogues of polyamines as antimalarial and antitrypanosomal agents. Mar Drugs 2014; 12:3138-60. [PMID: 24879541 PMCID: PMC4071569 DOI: 10.3390/md12063138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/30/2014] [Accepted: 05/04/2014] [Indexed: 01/21/2023] Open
Abstract
Pure compound screening has previously identified the indolglyoxylamidospermidine ascidian metabolites didemnidine A and B (2 and 3) to be weak growth inhibitors of Trypanosoma brucei rhodesiense (IC50 59 and 44 μM, respectively) and Plasmodium falciparum (K1 dual drug resistant strain) (IC50 41 and 15 μM, respectively), but lacking in selectivity (L6 rat myoblast, IC50 24 μM and 25 μM, respectively). To expand the structure–activity relationship of this compound class towards both parasites, we have prepared and biologically tested a library of analogues that includes indoleglyoxyl and indoleacetic “capping acids”, and polyamines including spermine (PA3-4-3) and extended analogues PA3-8-3 and PA3-12-3. 7-Methoxy substituted indoleglyoxylamides were typically found to exhibit the most potent antimalarial activity (IC50 10–92 nM) but with varying degrees of selectivity versus the L6 rat myoblast cell line. A 6-methoxyindolglyoxylamide analogue was the most potent growth inhibitor of T.brucei (IC50 0.18 μM) identified in the study: it, however, also exhibited poor selectivity (L6 IC50 6.0 μM). There was no apparent correlation between antimalarial and anti-T. brucei activity in the series. In vivo evaluation of one analogue against Plasmodium berghei was undertaken, demonstrating a modest 20.9% reduction in parasitaemia.
Collapse
|
10
|
Khan FA, Ahmad S, Kodipelli N, Shivange G, Anindya R. Syntheses of a library of molecules on the marine natural product ianthelliformisamines platform and their biological evaluation. Org Biomol Chem 2014; 12:3847-65. [DOI: 10.1039/c3ob42537a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Sen A, Sahu D, Ganguly B. In silico studies toward understanding the interactions of DNA base pairs with protonated linear/cyclic diamines. J Phys Chem B 2013; 117:9840-50. [PMID: 23909683 DOI: 10.1021/jp402847u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protonated amino groups are ubiquitous in nature and important in the fields of chemistry and biology. In search of efficient polyamine analogues, we have performed DFT calculations on the interactions of some simple cyclic and constrained protonated diamines with the DNA base pairs and compared the results with those obtained for the corresponding interactions involving linear diamines, which mimic biogenic polyamines such as spermine. The interactions are mainly governed by the strong hydrogen bonding between the ligand and the DNA base pairs. The DFT calculations suggest that the major-groove N7 interaction (GC base pair) with linear diamine is energetically more favored than other possible interactions, as reported with spermine. The cyclic diamines exhibited better interactions with the N7 site of the AT and GC base pairs of DNA than the linear diamines. The net atomic charges calculated for the protonated amine hydrogens were higher for the cyclic systems than for the linear diamines, inducing better binding affinity with the DNA base pairs. The stable conformers of cyclic diamines were predicted using the MP2/aug-cc-pVDZ level of theory. The positions of the protonated diamine groups in these cyclic systems are crucial for effective binding with the DNA base pairs. The DFT-calculated results show that diequatorial (ee) 1,2-cyclohexadiamine (CHDA) is a promising candidate as a polyamine analogue for biogenic polyamines. Molecular dynamics simulations were performed using explicit water molecules for the interaction of representative ligands with the DNA base pairs to examine the influence of solvent molecules on such interactions.
Collapse
Affiliation(s)
- Anik Sen
- Computation and Simulation Unit, Analytical Discipline & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | | | | |
Collapse
|
12
|
Caminos AP, Panozzo-Zenere EA, Wilkinson SR, Tekwani BL, Labadie GR. Synthesis and antikinetoplastid activity of a series of N,N′-substituted diamines. Bioorg Med Chem Lett 2012; 22:1712-5. [DOI: 10.1016/j.bmcl.2011.12.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 12/18/2011] [Accepted: 12/20/2011] [Indexed: 02/06/2023]
|
13
|
Hanfrey CC, Pearson BM, Hazeldine S, Lee J, Gaskin DJ, Woster PM, Phillips MA, Michael AJ. Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota. J Biol Chem 2011; 286:43301-12. [PMID: 22025614 PMCID: PMC3234850 DOI: 10.1074/jbc.m111.307835] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The availability of fully sequenced bacterial genomes has revealed that many species known to synthesize the polyamine spermidine lack the spermidine biosynthetic enzymes S-adenosylmethionine decarboxylase and spermidine synthase. We found that such species possess orthologues of the sym-norspermidine biosynthetic enzymes carboxynorspermidine dehydrogenase and carboxynorspermidine decarboxylase. By deleting these genes in the food-borne pathogen Campylobacter jejuni, we found that the carboxynorspermidine decarboxylase orthologue is responsible for synthesizing spermidine and not sym-norspermidine in vivo. In polyamine auxotrophic gene deletion strains of C. jejuni, growth is highly compromised but can be restored by exogenous sym-homospermidine and to a lesser extent by sym-norspermidine. The alternative spermidine biosynthetic pathway is present in many bacterial phyla and is the dominant spermidine route in the human gut, stomach, and oral microbiomes, and it appears to have supplanted the S-adenosylmethionine decarboxylase/spermidine synthase pathway in the gut microbiota. Approximately half of the gut Firmicutes species appear to be polyamine auxotrophs, but all encode the potABCD spermidine/putrescine transporter. Orthologues encoding carboxyspermidine dehydrogenase and carboxyspermidine decarboxylase are found clustered with an array of diverse putrescine biosynthetic genes in different bacterial genomes, consistent with a role in spermidine, rather than sym-norspermidine biosynthesis. Due to the pervasiveness of ε-proteobacteria in deep sea hydrothermal vents and to the ubiquity of the alternative spermidine biosynthetic pathway in that phylum, the carboxyspermidine route is also dominant in deep sea hydrothermal vents. The carboxyspermidine pathway for polyamine biosynthesis is found in diverse human pathogens, and this alternative spermidine biosynthetic route presents an attractive target for developing novel antimicrobial compounds.
Collapse
Affiliation(s)
- Colin C. Hanfrey
- From the Institute of Food Research, Norwich, NR4 7UA, United Kingdom
| | - Bruce M. Pearson
- From the Institute of Food Research, Norwich, NR4 7UA, United Kingdom
| | - Stuart Hazeldine
- the Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202
| | - Jeongmi Lee
- the School of Pharmacy, Sungkyunkwan University, Suwon, 440-747, Korea
| | - Duncan J. Gaskin
- From the Institute of Food Research, Norwich, NR4 7UA, United Kingdom
| | - Patrick M. Woster
- the Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, and
| | - Margaret A. Phillips
- the Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 7539
| | - Anthony J. Michael
- the Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 7539, To whom correspondence should be addressed: Dept. of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park, Dallas, TX. Tel.: 214-645-6129; E-mail:
| |
Collapse
|
14
|
Verlinden BK, Niemand J, Snyman J, Sharma SK, Beattie RJ, Woster PM, Birkholtz LM. Discovery of novel alkylated (bis)urea and (bis)thiourea polyamine analogues with potent antimalarial activities. J Med Chem 2011; 54:6624-33. [PMID: 21882831 DOI: 10.1021/jm200463z] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of alkylated (bis)urea and (bis)thiourea polyamine analogues were synthesized and screened for antimalarial activity against chloroquine-sensitive and -resistant strains of Plasmodium falciparum in vitro. All analogues showed growth inhibitory activity against P. falciparum at less than 3 μM, with the majority having effective IC(50) values in the 100-650 nM range. Analogues arrested parasitic growth within 24 h of exposure due to a block in nuclear division and therefore asexual development. Moreover, this effect appears to be cytotoxic and highly selective to malaria parasites (>7000-fold lower IC(50) against P. falciparum) and is not reversible by the exogenous addition of polyamines. With this first report of potent antimalarial activity of polyamine analogues containing 3-7-3 or 3-6-3 carbon backbones and substituted terminal urea- or thiourea moieties, we propose that these compounds represent a structurally novel class of antimalarial agents.
Collapse
Affiliation(s)
- Bianca K Verlinden
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, PO Box x20, Pretoria, 0028, South Africa
| | | | | | | | | | | | | |
Collapse
|
15
|
Castagnolo D, Schenone S, Botta M. Guanylated Diamines, Triamines, and Polyamines: Chemistry and Biological Properties. Chem Rev 2011; 111:5247-300. [PMID: 21657224 DOI: 10.1021/cr100423x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Daniele Castagnolo
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, via Alcide de Gasperi 2, 53100 Siena, Italy
| | - Silvia Schenone
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Genova, Viale Benedetto XV 3, I-16132 Genova, Italy
| | - Maurizio Botta
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, via Alcide de Gasperi 2, 53100 Siena, Italy
| |
Collapse
|
16
|
Abstract
This chapter provides an overview of the polyamine field and introduces the 32 other chapters that make up this volume. These chapters provide a wide range of methods, advice, and background relevant to studies of the function of polyamines, the regulation of their content, their role in disease, and the therapeutic potential of drugs targeting polyamine content and function. The methodology provided in this new volume will enable laboratories already working in this area to expand their experimental techniques and facilitate the entry of additional workers into this rapidly expanding field.
Collapse
Affiliation(s)
- Anthony E Pegg
- College of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA, USA
| | | |
Collapse
|
17
|
Elias BC, Bhattacharya S, Ray RM, Johnson LR. Polyamine-dependent activation of Rac1 is stimulated by focal adhesion-mediated Tiam1 activation. Cell Adh Migr 2010; 4:419-30. [PMID: 20448461 DOI: 10.4161/cam.4.3.12043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Integrin receptors cluster on the cell surface and bind to extra cellular matrix (ECM) proteins triggering the formation of focal contacts and the activation of various signal transduction pathways that affect the morphology, motility, gene expression and survival of adherent cells. Polyamine depletion prevents the increase in autophosphorylation of focal adhesion kinase (FAK) and Src during attachment. Rac activity also shows a steady decline, and its upstream guanine nucleotide exchange factor (GEF), Tiam1 also shows a reduction in total protein level when cells are depleted of polyamines. When Tiam1 and Rac1 interaction was inhibited by NSC-23766, there was not only a decrease in Rac1 activity as expected but also a decrease in FAK auto-phosphorylation. Inhibition of Src activity by PP2 also reduced FAK autophosphorylation, which implies that Src modulates FAK autophosphorylation. From the data obtained in this study we conclude that FAK and Src are rapidly activated upon fibronectin mediated signaling leading to Tiam1-mediated Rac1 activation and that intracellular polyamines influence the signaling strength by modulating interaction of Src with Tiam1 using focal adhesion kinase as a scaffolding site.
Collapse
Affiliation(s)
- Bertha C Elias
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | |
Collapse
|
18
|
Abstract
Enzymes in the biosynthetic and catabolic polyamine pathway have long been considered targets for drug development, and early drug discovery efforts in the polyamine area focused on the design and development of specific inhibitors of the biosynthetic pathway, or polyamine analogues that specifically bind DNA. More recently, it has become clear that the natural polyamines are involved in numerous known and unknown cellular processes, and disruption of polyamine functions at their effector sites can potentially produce beneficial therapeutic effects. As new targets for polyamine drug discovery continue to evolve, the rational design of polyamine analogues will result in more structurally diverse agents. In addition, the physical linkage of polyamine-like structures to putative drug molecules can have beneficial effects resulting from increases in DNA affinity and selective cellular uptake. The present chapter will summarize recent advances in the development of alkylpolyamine analogues as antitumour agents, and describe subsequent advances that have resulted from incorporating polyamine character into more diverse drug molecules. Specifically, new polyamine analogues, and the role of polyamine fragments in the design of antiparasitic agents, antitumour metal complexes, histone deacetylase inhibitors and lysine-specific demethylase 1 inhibitors, will be described.
Collapse
|
19
|
Casero RA, Woster PM. Recent advances in the development of polyamine analogues as antitumor agents. J Med Chem 2009; 52:4551-73. [PMID: 19534534 DOI: 10.1021/jm900187v] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Robert A Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
20
|
Antiprotozoal activity of 1-phenethyl-4-aminopiperidine derivatives. Antimicrob Agents Chemother 2009; 53:3815-21. [PMID: 19564359 DOI: 10.1128/aac.00124-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A series of 44 4-aminopiperidine derivatives was screened in vitro against four protozoan parasites (Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani, and Plasmodium falciparum). This screening identified 29 molecules selectively active against bloodstream-form T. b. rhodesiense trypomastigotes, with 50% inhibitory concentrations (IC50) ranging from 0.12 to 10 microM, and 33 compounds active against the chloroquine- and pyrimethamine-resistant K1 strain of P. falciparum (IC50 range, 0.17 to 5 microM). In addition, seven compounds displayed activity against intracellular T. cruzi amastigotes in the same range as the reference drug benznidazole (IC50, 1.97 microM) but were also cytotoxic to L-6 cells, showing little selectivity for T. cruzi. None of the molecules tested showed interesting antileishmanial activity against axenic amastigotes of L. donovani. To our knowledge, this is the first report of the antitrypanosomal activity of molecules bearing the 4-aminopiperidine skeleton.
Collapse
|
21
|
Bacchi CJ, Yarlett N, Faciane E, Bi X, Rattendi D, Weiss LM, Woster PM. Metabolism of an alkyl polyamine analog by a polyamine oxidase from the microsporidian Encephalitozoon cuniculi. Antimicrob Agents Chemother 2009; 53:2599-604. [PMID: 19223636 PMCID: PMC2687184 DOI: 10.1128/aac.00267-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/07/2008] [Accepted: 02/04/2009] [Indexed: 11/20/2022] Open
Abstract
Encephalitozoon cuniculi is a microsporidium responsible for systemic illness in mammals. In the course of developing leads to new therapy for microsporidiosis, we found that a bis(phenylbenzyl)3-7-3 analog of spermine, 1,15-bis{N-[o-(phenyl)benzylamino}-4,12-diazapentadecane (BW-1), was a substrate for an E. cuniculi amine oxidase activity. The primary natural substrate for this oxidase activity was N'-acetylspermine, but BW-1 had activity comparable to that of the substrate. As the sole substrate, BW-1 gave linear reaction rates over 15 min and K(m) of 2 microM. In the presence of N'-acetylspermine, BW-1 acted as a competitive inhibitor of oxidase activity and may be a subversive substrate, resulting in increased peroxide production. By use of (13)C-labeled BW-1 as a substrate and nuclear magnetic resonance analysis, two products were determined to be oxidative metabolites, a hydrated aldehyde or dicarboxylate and 2(phenyl)benzylamine. These products were detected after exposure of (13)C-labeled BW-1 to E. cuniculi preemergent spore preparations and to uninfected host cells. In previous studies, BW-1 was curative in a rodent model of infection with E. cuniculi. The results in this study demonstrate competitive inhibition of oxidase activity by BW-1 and support further studies of this oxidase activity by the parasite and host.
Collapse
Affiliation(s)
- Cyrus J Bacchi
- Haskins Laboratories, Pace University, 41 Park Row, New York, NY 10038, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Boncher T, Bi X, Varghese S, Casero RA, Woster PM. Polyamine-based analogues as biochemical probes and potential therapeutics. Biochem Soc Trans 2007; 35:356-63. [PMID: 17371278 DOI: 10.1042/bst0350356] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The polyamines putrescine, spermidine and spermine are ubiquitous polycationic compounds that are found in nearly every cell type, and are required to support a wide variety of cellular functions. The existence of multiple cellular effector sites for naturally occurring polyamines implies that there are numerous targets for polyamine-based therapeutic agents. Through a programme aimed at the synthesis and evaluation of biologically active polyamine analogues, our laboratory has identified three distinct structural classes of polyamine derivatives that exhibit promising biological activity in vitro. We have synthesized more than 200 symmetrically and unsymmetrically substituted alkylpolyamines that possess potent antitumour or antiparasitic activity, depending on their backbone architecture and terminal alkyl substituents. Along similar lines, we have developed novel polyamino(bis)guanidines and polyaminobiguanides that are promising antitrypanosomal agents and that interfere with biofilm formation in the pathogenic bacterium Yersinia pestis. Finally, we recently reported a series of PAHAs (polyaminohydroxamic acids) and PABAs (polyaminobenzamides) that inhibit HDACs (histone deacetylases), and in some cases are selective for individual HDAC isoforms. These studies support the hypothesis that polyamine-based small molecules can be developed for use as biochemical probes and as potential therapies for multiple diseases.
Collapse
Affiliation(s)
- T Boncher
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
23
|
Heby O, Persson L, Rentala M. Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas' disease, and leishmaniasis. Amino Acids 2007; 33:359-66. [PMID: 17610127 DOI: 10.1007/s00726-007-0537-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 02/01/2007] [Indexed: 12/11/2022]
Abstract
Trypanosomatids depend on spermidine for growth and survival. Consequently, enzymes involved in spermidine synthesis and utilization, i.e. arginase, ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (AdoMetDC), spermidine synthase, trypanothione synthetase (TryS), and trypanothione reductase (TryR), are promising targets for drug development. The ODC inhibitor alpha-difluoromethylornithine (DFMO) is about to become a first-line drug against human late-stage gambiense sleeping sickness. Another ODC inhibitor, 3-aminooxy-1-aminopropane (APA), is considerably more effective than DFMO against Leishmania promastigotes and amastigotes multiplying in macrophages. AdoMetDC inhibitors can cure animals infected with isolates from patients with rhodesiense sleeping sickness and leishmaniasis, but have not been tested on humans. The antiparasitic effects of inhibitors of polyamine and trypanothione formation, reviewed here, emphasize the relevance of these enzymes as drug targets. By taking advantage of the differences in enzyme structure between parasite and host, it should be possible to design new drugs that can selectively kill the parasites.
Collapse
Affiliation(s)
- O Heby
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
| | | | | |
Collapse
|
24
|
Rodríguez-Ciria M, Sanz AM, Yunta MJR, Gómez-Contreras F, Navarro P, Sánchez-Moreno M, Boutaleb-Charki S, Osuna A, Castiñeiras A, Pardo M, Cano C, Campayo L. 1,4-Bis(alkylamino)benzo[g]phthalazines able to form dinuclear complexes of Cu(II) which as free ligands behave as SOD inhibitors and show efficient in vitro activity against Trypanosoma cruzi. Bioorg Med Chem 2007; 15:2081-91. [PMID: 17222558 DOI: 10.1016/j.bmc.2006.12.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 12/12/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
The synthesis of a new series of 1,4-bis(alkylamino)benzo[g]phthalazines 1-3 is reported, and their ability to form dinuclear complexes with Cu(II) assayed. The geometry of the complexes is dependent on the nature of the electron-donor sites at the sidechains. Compounds 1 and 2, that contain sp3 or sp2 nitrogens at the end of the alkylamino groups, originate monopodal dinuclear complexes which seem to include endogenous OH bridges, and the sidechains seem to actively participate in complexation. However, the substitution of nitrogen by oxygen in 3 leads to a tripodal dinuclear complex in which the sidechains are not involved. The in vitro antiparasitic activity on Trypanosoma cruzi epimastigotes and amastigotes and the SOD activity inhibition have been evaluated for compounds 1-3, and, as expected, 1 and 2 show in all cases relevant results, whereas 3 is always the less active among the three substrates tested.
Collapse
Affiliation(s)
- Marinela Rodríguez-Ciria
- Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Peña C, Alfonso I, Tooth B, Voelcker NH, Gotor V. Synthesis and Stereoselective DNA Binding Abilities of New Optically Active Open-Chain Polyamines. J Org Chem 2007; 72:1924-30. [PMID: 17291047 DOI: 10.1021/jo0619837] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The efficient synthesis of new open-chain enantiopure polyamines bearing (R,R)- and/or (S,S)-trans-cyclohexane-1,2-diamine moieties is described. The key step for the synthetic procedure is the selective monoalkylation of the cyclohexanebis(sulfonamide) core, which allows the subsequent functionalization of this moiety. Compounds bearing different combinations of absolute configurations, length of the aliphatic spacers and terminal groups have been prepared. As a demonstration of the potential utility of the obtained compounds, the preliminary DNA binding abilities of some of them have been studied by UV-measurements of melting temperatures (Tm). The effects of the absolute configuration of the corresponding chiral centers and the length of the spacer separating the cyclohexanediamine moieties on the strength of the interaction with DNA are also discussed.
Collapse
Affiliation(s)
- Carmen Peña
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Spain
| | | | | | | | | |
Collapse
|
26
|
Abstract
Trypanosomes are the causative agents of Chagas' disease in Central and South America and sleeping sickness in sub-Saharan Africa. The current chemotherapy of the human trypanosomiases relies on only six drugs, five of which were developed > 30 years ago. In addition, these drugs display undesirable toxic side effects and the emergence of drug-resistant trypanosomes has been reported. Therefore, the development of new drugs in the treatment of Chagas' disease and sleeping sickness is urgently required. This article summarises the recent progress in identifying novel lead compounds for antitrypanosomal chemotherapy. Particular emphasis is placed on those agents showing promising, selective antitrypanosomal activity.
Collapse
Affiliation(s)
- Dietmar Steverding
- School of Medicine, Health Policy and Practice, University of East Anglia, Norwich NR4 TJ7, UK.
| | | |
Collapse
|
27
|
Bi X, Lopez C, Bacchi CJ, Rattendi D, Woster PM. Novel alkylpolyaminoguanidines and alkylpolyaminobiguanides with potent antitrypanosomal activity. Bioorg Med Chem Lett 2006; 16:3229-32. [PMID: 16616495 DOI: 10.1016/j.bmcl.2006.03.048] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/13/2006] [Accepted: 03/14/2006] [Indexed: 12/01/2022]
Abstract
A series of polyaminoguanidines and polyaminobiguanides were synthesized and evaluated as potential antitrypanosomal agents. These analogues inhibit trypanothione reductase (TR) with IC50 values as low as 0.95 microM, but do not inhibit the closely related human enzyme glutathione reductase (GR). The most effective analogues, 7a, 7b and 8d, inhibited parasitic growth in vitro with IC50 values of 0.18, 0.09 and 0.18 microM, respectively. These agents represent a promising new class of potential antitrypanosomal agents.
Collapse
Affiliation(s)
- Xiangdong Bi
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
28
|
Peña C, Alfonso I, Voelcker NH, Gotor V. Solvent dependent selective alkylation of a bis(sulfonamide) for the synthesis of a DNA-binding chiral polyamine. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.02.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Reguera RM, Tekwani BL, Balaña-Fouce R. Polyamine transport in parasites: a potential target for new antiparasitic drug development. Comp Biochem Physiol C Toxicol Pharmacol 2005; 140:151-64. [PMID: 15907761 DOI: 10.1016/j.cca.2005.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 02/07/2005] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
The metabolism of the naturally occurring polyamines-putrescine, spermidine and spermine-is a highly integrated system involving biosynthesis, uptake, degradation and interconversion. Metabolic differences in polyamine metabolism have long been considered to be a potential target to arrest proliferative processes ranging from cancer to microbial and parasitic diseases. Despite the early success of polyamine inhibitors such as alpha-difluoromethylornithine (DFMO) in treating the latter stages of African sleeping sickness, in which the central nervous system is affected, they proved to be ineffective in checking other major diseases caused by parasitic protozoa, such as Chagas' disease, leishmaniasis or malaria. In the use and design of new polyamine-based inhibitors, account must be taken of the presence of up-regulated polyamine transporters in the plasma membrane of the infectious agent that are able to circumvent the effect of the drug by providing the parasite with polyamines from the host. This review contains information on the polyamine requirements and molecular, biochemical and genetic characterization of different transport mechanisms in the parasitic agents responsible for a number of the deadly diseases that afflict underdeveloped and developing countries.
Collapse
Affiliation(s)
- Rosa María Reguera
- Department of Pharmacology and Toxicology (INTOXCAL), University of Leon, Campus de Vegazana (s/n) 24071 Leon, Spain
| | | | | |
Collapse
|
30
|
Bacchi CJ, Rattendi D, Faciane E, Yarlett N, Weiss LM, Frydman B, Woster P, Wei B, Marton LJ, Wittner M. Polyamine metabolism in a member of the phylum Microspora (Encephalitozoon cuniculi): effects of polyamine analogues. MICROBIOLOGY (READING, ENGLAND) 2004; 150:1215-1224. [PMID: 15133083 PMCID: PMC3109667 DOI: 10.1099/mic.0.26889-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The uptake, biosynthesis and catabolism of polyamines in the microsporidian parasite Encephalitozoon cuniculi are detailed with reference to the effects of oligoamine and arylamine analogues of polyamines. Enc. cuniculi, an intracellular parasite of mammalian cells, has both biosynthetic and catabolic enzymes of polyamine metabolism, as demonstrated in cell-free extracts of mature spores. The uptake of polyamines was measured in immature, pre-emergent spores isolated from host cells by Percoll gradient. Spermine was rapidly taken up and metabolized to spermidine and an unknown, possibly acetamidopropanal, by spermidine/spermine N(1)-acetyltransferase (SSAT) and polyamine oxidase (PAO). Most of the spermidine and the unknown product were found in the cell incubation medium, indicating they were released from the cell. bis(Ethyl) oligoamine analogues of polyamines, such as SL-11144 and SL-11158, as well as arylamine analogues [BW-1, a bis(phenylbenzyl) 3-7-3 analogue] blocked uptake and interconversion of spermine at micromolar levels and, in the case of BW-1, acted as substrate for PAO. The Enc. cuniculi PAO activity differed from that found in mammalian cells with respect to pH optimum, substrate specificity and sensitivity to known PAO inhibitors. SL-11158 inhibited SSAT activity with a mixed type of inhibition in which the analogue had a 70-fold higher affinity for the enzyme than the natural substrate, spermine. The interest in Enc. cuniculi polyamine metabolism and the biochemical effects of these polyamine analogues is warranted since they cure model infections of Enc. cuniculi in mice and are potential candidates for human clinical trials.
Collapse
Affiliation(s)
- Cyrus J. Bacchi
- Haskins Laboratories and Department of Biology, Pace University, New York, NY 10038, USA
| | - Donna Rattendi
- Haskins Laboratories and Department of Biology, Pace University, New York, NY 10038, USA
| | - Evangeline Faciane
- Haskins Laboratories and Department of Biology, Pace University, New York, NY 10038, USA
| | - Nigel Yarlett
- Haskins Laboratories and Department of Biology, Pace University, New York, NY 10038, USA
- Haskins Laboratories and Department of Chemistry, Pace University, New York, NY 10038, USA
| | - Louis M. Weiss
- Departments of Medicine and Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Patrick Woster
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Benjamin Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | - Murray Wittner
- Departments of Medicine and Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
31
|
Silva ET, Cunha AS, Lima ELS. An efficient protocol for solution- and solid-phase end-group differentiation of spermidine. Bioorg Med Chem Lett 2002; 12:3207-8. [PMID: 12372535 DOI: 10.1016/s0960-894x(02)00519-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The end-group differentiation of a selectively protected spermidine was achieved through a short sequence of steps. The functionalization of spermidine in solid-phase was monitored by FT-IR.
Collapse
Affiliation(s)
- Emerson T Silva
- Universidade Federal do Rio de Janeiro, Instituto de Química, Departamento de Química Orgânica, Cidade Universitária, 21945-970, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
32
|
Luna A, Alfonso I, Gotor V. Biocatalytic approaches toward the synthesis of both enantiomers of trans-cyclopentane-1,2-diamine. Org Lett 2002; 4:3627-9. [PMID: 12375904 DOI: 10.1021/ol026574l] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] A lipase-catalyzed double monoaminolysis of dimethyl malonate by (+/-)-trans-cyclopentane-1,2-diamine allows the sequential resolution of the latter compound, affording an enantiopure bis(amidoester), which is subsequently transformed into an optically active polyamine. As an alternative, both enantiomers of the diamine can be obtained from enantiopure (+)- or (-)-2-aminocyclopentanol, prepared by enzymatic resolution.
Collapse
Affiliation(s)
- Amparo Luna
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, 33071-Oviedo, Spain
| | | | | |
Collapse
|
33
|
Brendle JJ, Outlaw A, Kumar A, Boykin DW, Patrick DA, Tidwell RR, Werbovetz KA. Antileishmanial activities of several classes of aromatic dications. Antimicrob Agents Chemother 2002; 46:797-807. [PMID: 11850264 PMCID: PMC127500 DOI: 10.1128/aac.46.3.797-807.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aromatic dicationic molecules possess impressive activity against a broad spectrum of microbial pathogens, including Pneumocystis carinii, Cryptosporidium parvum, and Candida albicans. In this work, 58 aromatic cations were examined for inhibitory activity against axenic amastigote-like Leishmania donovani parasites. In general, the most potent of the compounds were substituted diphenyl furan and thiophene dications. 2,5-Bis-(4-amidinophenyl)thiophene was the most active compound. This agent displayed a 50% inhibitory concentration (IC50) of 0.42 +/- 0.08 microM against L. donovani and an in vitro antileishmanial potency 6.2-fold greater than that of the clinical antileishmanial dication pentamidine and was 155-fold more toxic to the parasites than to a mouse macrophage cell line. 2,4-Bis-(4-amidinopheny)furan was twice as active as pentamidine (IC50), 1.30 +/- 0.21 microM), while 2,5-bis-(4-amidinopheny)furan and pentamidine were essentially equipotent in our in vitro antileishmanial assay. Carbazoles, dibenzofurans, dibenzothiophenes, and benzimidazoles containing amidine or substituted amidine groups were generally less active than the diphenyl furans and thiophenes. In all cases, aromatic dications possessing strong antileishmanial activity were severalfold more toxic to the parasites than to a cultured mouse macrophage cell line. These structure-activity relationships demonstrate the potent antileishmanial activity of several aromatic dications and provide valuable information for the future design and synthesis of more potent antiparasitic agents.
Collapse
Affiliation(s)
- James J Brendle
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | | | | | | | | | | | | |
Collapse
|