1
|
Gai S, Henneveld JS, Cording AP, Badart MP, Lucas NT, Hawkins BC. The synthesis of benzannulated spiroketals from 1,1-diacyl-2-phenylcyclopropanes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
2
|
Gai S, Lucas NT, Hawkins BC. Benzannulated 6,5-Spiroketals from Donor–Acceptor Cyclopropanes. Org Lett 2019; 21:2872-2875. [DOI: 10.1021/acs.orglett.9b00878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sinan Gai
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Nigel T. Lucas
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Bill C. Hawkins
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
3
|
Temple KJ, Wright EN, Fierke CA, Gibbs RA. Exploration of GGTase-I substrate requirements. Part 1: Synthesis and biochemical evaluation of novel aryl-modified geranylgeranyl diphosphate analogs. Bioorg Med Chem Lett 2016; 26:3499-502. [PMID: 27342750 DOI: 10.1016/j.bmcl.2016.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/11/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
Protein geranylgeranylation is a type of post-translational modification that aids in the localization of proteins to the plasma member where they elicit cellular signals. To better understand the isoprenoid requirements of GGTase-I, a series of aryl-modified geranylgeranyl diphosphate analogs were synthesized and screened against mammalian GGTase-I. Of our seven-member library of compounds, six analogs proved to be substrates of GGTase-I, with 6d having a krel=1.93 when compared to GGPP (krel=1.0).
Collapse
Affiliation(s)
- Kayla J Temple
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; The Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47909, USA.
| | - Elia N Wright
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard A Gibbs
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; The Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47909, USA
| |
Collapse
|
4
|
Chassaing S, Specklin S, Weibel JM, Pale P. Vinyl triflates derived from 1,3-dicarbonyl compounds and analogs: access and applications to organic synthesis. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.05.107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Lujan DK, Stanziale JA, Mostafavi AZ, Sharma S, Troutman JM. Chemoenzymatic synthesis of an isoprenoid phosphate tool for the analysis of complex bacterial oligosaccharide biosynthesis. Carbohydr Res 2012; 359:44-53. [PMID: 22925763 DOI: 10.1016/j.carres.2012.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/22/2012] [Accepted: 06/23/2012] [Indexed: 10/28/2022]
Abstract
Undecaprenyl Pyrophosphate Synthase (UPPS) is a key enzyme that catalyzes the production of bactoprenols, which act as membrane anchors for the assembly of complex bacterial oligosaccharides. One of the major hurdles in understanding the assembly of oligosaccharide assembly is a lack of chemical tools to study this process, since bactoprenols and the resulting isoprenoid-linked oligosaccharides lack handles or chromophores for use in pathway analysis. Here we describe the isolation of a new UPPS from the symbiotic microorganism Bacteroides fragilis, a key species in the human microbiome. The protein was purified to homogeneity and utilized to accept a chromophore containing farnesyl diphosphate analogue as a substrate. The analogue was utilized by the enzyme and resulted in a bactoprenyl diphosphate product with an easy to monitor tag associated with it. Furthermore, the diphosphate is shown to be readily converted to monophosphate using a common molecular biology reagent. This monophosphate product allowed for the investigation of complex oligosaccharide biosynthesis, and was used to probe the activity of glycosyltransferases involved in the well characterized Campylobacter jejuni N-linked protein glycosylation. Novel reagents similar to this will provide key tools for the study of uncharacterized oligosaccharide assemblies, and open the possibility for the development of rapid screening methodology for these biosynthetic systems.
Collapse
Affiliation(s)
- Donovan K Lujan
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, United States
| | | | | | | | | |
Collapse
|
6
|
Bergman JA, Hahne K, Song J, Hrycyna CA, Gibbs RA. S-Farnesyl-Thiopropionic Acid (FTPA) Triazoles as Potent Inhibitors of Isoprenylcysteine Carboxyl Methyltransferase. ACS Med Chem Lett 2012; 3:15-19. [PMID: 22754607 DOI: 10.1021/ml200106d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We report the design and synthesis of novel FTPA-triazole compounds as potent inhibitors of isoprenylcysteine carboxyl methyltransferase (Icmt), through a focus on thioether and isoprenoid mimetics. These mimetics were coupled utilizing a copper-assisted cycloaddition to assemble the potential inhibitors. Using the resulting triazole from the coupling as an isoprenyl mimetic resulted in the biphenyl substituted FTPA triazole 10n. This lipid-modified analog is a potent inhibitor of Icmt (IC(50) = 0.8 ± 0.1 μM; calculated K(i) = 0.4 μM).
Collapse
Affiliation(s)
- Joel A. Bergman
- Department
of Medicinal Chemistry and Molecular Pharmacology and the Center for
Cancer Research, and ‡Department of Chemistry and the Center for Cancer Research, Purdue University, West Lafayette, Indiana
47907, United States
| | - Kalub Hahne
- Department
of Medicinal Chemistry and Molecular Pharmacology and the Center for
Cancer Research, and ‡Department of Chemistry and the Center for Cancer Research, Purdue University, West Lafayette, Indiana
47907, United States
| | - Jiao Song
- Department
of Medicinal Chemistry and Molecular Pharmacology and the Center for
Cancer Research, and ‡Department of Chemistry and the Center for Cancer Research, Purdue University, West Lafayette, Indiana
47907, United States
| | - Christine A. Hrycyna
- Department
of Medicinal Chemistry and Molecular Pharmacology and the Center for
Cancer Research, and ‡Department of Chemistry and the Center for Cancer Research, Purdue University, West Lafayette, Indiana
47907, United States
| | - Richard A. Gibbs
- Department
of Medicinal Chemistry and Molecular Pharmacology and the Center for
Cancer Research, and ‡Department of Chemistry and the Center for Cancer Research, Purdue University, West Lafayette, Indiana
47907, United States
| |
Collapse
|
7
|
Bergman JA, Hahne K, Hrycyna CA, Gibbs RA. Lipid and sulfur substituted prenylcysteine analogs as human Icmt inhibitors. Bioorg Med Chem Lett 2011; 21:5616-9. [PMID: 21782433 PMCID: PMC4037158 DOI: 10.1016/j.bmcl.2011.06.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 11/23/2022]
Abstract
Inhibition of isoprenylcysteine carboxyl methyltransferase (Icmt) offers a promising strategy for K-Ras driven cancers. We describe the synthesis and inhibitory activity of substrate-based analogs derived from several novel scaffolds. Modifications of both the prenyl group and thioether of N-acetyl-S-farnesyl-L-cysteine (AFC), a substrate for human Icmt (hIcmt), have resulted in low micromolar inhibitors of Icmt and have given insights into the nature of the prenyl binding site of hIcmt.
Collapse
Affiliation(s)
- Joel A. Bergman
- Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Kalub Hahne
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Christine A. Hrycyna
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Richard A. Gibbs
- Department of Medicinal Chemistry and Molecular Pharmacology and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Placzek AT, Krzysiak AJ, Gibbs RA. Chemical Probes of Protein Prenylation. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-12-415922-8.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Yang Z, Kim KR, Park AY, Lee HR, Kang JA, Kim WH, Chun P, Gong P, Lee B, Jeong LS, Moon HR. Highly Concise Synthesis of 3'-"Up"-ethynyl-5'-methylbicyclo- [3.1.0]hexyl Purine and Pyrimidine Nucleoside Derivatives Using Rhodium(II) Carbenoid Cycloaddition and Highly Diastereoselective Grignard Reaction. CHINESE J CHEM 2009. [DOI: 10.1002/cjoc.201090016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Anderson JL, Henriksen BS, Gibbs RA, Hrycyna CA. The isoprenoid substrate specificity of isoprenylcysteine carboxylmethyltransferase: development of novel inhibitors. J Biol Chem 2005; 280:29454-61. [PMID: 15946942 PMCID: PMC3401627 DOI: 10.1074/jbc.m504982200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isoprenylcysteine carboxylmethyltransferase (Icmt) is an integral membrane protein localized to the endoplasmic reticulum of eukaryotic cells that catalyzes the post-translational alpha-carboxylmethylesterification of CAAX motif proteins, including the oncoprotein Ras. Prior to methylation, these protein substrates all contain an isoprenylcysteine residue at the C terminus. In this study, we developed a variety of substrates and inhibitors of Icmt that vary in the isoprene moiety in order to gain information about the nature of the lipophilic substrate binding site. These isoprenoid-modified analogs of the minimal Icmt substrate N-acetyl-S-farnesyl-L-cysteine (AFC) were synthesized from newly and previously prepared farnesol analogs. Using both yeast and human Icmt enzymes, these compounds were found to vary widely in their ability to act as substrates, supporting the isoprenoid moiety as a key substrate recognition element for Icmt. Compound 3 is a competitive inhibitor of overexpressed yeast Icmt (K(I) = 17.1 +/- 1.7 microm). Compound 4 shows a mix of competitive and uncompetitive inhibition for both the yeast and the human Icmt proteins (yeast K(IC) = 35.4 +/- 3.4 microm, K(IU) = 614.4 +/- 148 microm; human K(IC) = 119.3 +/- 18.1 microm, K(IU) = 377.2 +/- 42.5 microm). These data further suggest that differences in substrate specificity exist between the human and yeast enzymes. Biological studies suggest that inhibition of Icmt results in Ras mislocalization and loss of cellular transformation ability, making Icmt an attractive and novel anticancer target. Further elaboration of the lead compounds synthesized and assayed here may lead to clinically useful higher potency inhibitors.
Collapse
Affiliation(s)
- Jessica L. Anderson
- Department of Chemistry, Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Brian S. Henriksen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
| | - Richard A. Gibbs
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
- Address correspondence to: Christine A. Hrycyna, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, Tel: 765-494-7322, Fax: 765-494-0239, ; Richard A. Gibbs, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, Tel: 765-494-1456, Fax: 765-494-1414,
| | - Christine A. Hrycyna
- Department of Chemistry, Purdue Cancer Center, Purdue University, West Lafayette, IN 47907
- Address correspondence to: Christine A. Hrycyna, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, Tel: 765-494-7322, Fax: 765-494-0239, ; Richard A. Gibbs, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, Tel: 765-494-1456, Fax: 765-494-1414,
| |
Collapse
|
11
|
Lannuzel M, Lamothe M, Schambel P, Etiévant C, Hill B, Perez M. From pure FPP to mixed FPP and CAAX competitive inhibitors of farnesyl protein transferase. Bioorg Med Chem Lett 2003; 13:1459-62. [PMID: 12668012 DOI: 10.1016/s0960-894x(03)00171-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Starting from a FPP analogue with nanomolar inhibitory activity against isolated FPTase, yet lacking activity in cellular assays, structural modifications were performed to enhance cellular activity by removing all acidic functionalities. Overall, these changes resulted in the transformation of a pure FPP to a mixed FPP and CAAX competitive inhibitor with nanomolar activity on isolated FPTase and micromolar inhibitory activity in the farnesylation of H-Ras in cultured DLD-1 cells.
Collapse
Affiliation(s)
- Marc Lannuzel
- Department of Medicinal Chemistry 4, Centre de Recherche Pierre Fabre, 17, Avenue Jean Moulin, 81106 Castres Cedex, France
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
[structure: see text] Six farnesyl diphosphate analogues modified in the central isoprene unit have been prepared via our stereoselective vinyl triflate-mediated route to isoprenoids. The 7-allyl compound 6 is a modest inhibitor of mammalian protein-farnesyl transferase, but surprisingly the other five analogues are effective alternative substrates for this enzyme.
Collapse
Affiliation(s)
- Diwan S Rawat
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|