1
|
Lei T, Graf S, Schöll C, Krätzschmar F, Gregori B, Appleson T, Breder A. Asymmetric Photoaerobic Lactonization and Aza-Wacker Cyclization of Alkenes Enabled by Ternary Selenium-Sulfur Multicatalysis. ACS Catal 2023; 13:16240-16248. [PMID: 38125978 PMCID: PMC10729055 DOI: 10.1021/acscatal.3c04443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
An adaptable, sulfur-accelerated photoaerobic selenium-π-acid ternary catalyst system for the enantioselective allylic redox functionalization of simple, nondirecting alkenes is reported. In contrast to related photoredox catalytic methods, which largely depend on olefinic substrates with heteroatomic directing groups to unfold high degrees of stereoinduction, the current protocol relies on chiral, spirocyclic selenium-π-acids that covalently bind to the alkene moiety. The performance of this ternary catalytic method is demonstrated in the asymmetric, photoaerobic lactonization and cycloamination of enoic acids and unsaturated sulfonamides, respectively, leading to an averaged enantiomeric ratio (er) of 92:8. Notably, this protocol provides for the first time an asymmetric, catalytic entryway to pharmaceutically relevant 3-pyrroline motifs, which was used as a platform to access a 3,4-dihydroxyproline derivative in only seven steps with a 92:8 er.
Collapse
Affiliation(s)
| | | | - Christopher Schöll
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Felix Krätzschmar
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Bernhard Gregori
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Theresa Appleson
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Alexander Breder
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Hwu JR, Panja A, Gupta NK, Huang W, Hu Y, Lin C, Hwang K, Chan W, Tsay S. Asymmetric Synthesis of 3‐Pyrrolines through an Aryne‐Induced Domino Process. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jih Ru Hwu
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
| | - Avijit Panja
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
| | - Nitesh K. Gupta
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
| | - Wen‐Chieh Huang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
| | - Yu‐Chen Hu
- Department of Chemical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Chun‐Cheng Lin
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
| | - Kuo‐Chu Hwang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
| | - Wei‐Jen Chan
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
| | - Shwu‐Chen Tsay
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
3
|
Medran NS, La-Venia A, Testero SA. Metal-mediated synthesis of pyrrolines. RSC Adv 2019; 9:6804-6844. [PMID: 35518475 PMCID: PMC9061060 DOI: 10.1039/c8ra10247c] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/18/2019] [Indexed: 12/21/2022] Open
Abstract
The five-membered, nitrogen-containing pyrroline ring is a privileged structure. This ring is present in many bioactive compounds from natural sources. Pyrrolines-the dihydro derivatives of pyrroles-have three structural isomer classes, depending on the location of the double bond: 1-pyrrolines (3,4-dihydro-2H-pyrroles), 2-pyrrolines (2,3-dihydro-1H-pyrroles) and 3-pyrrolines (2,5-dihydro-1H-pyrroles). This review aims to describe the latest advances for the synthesis of pyrrolines by transition metal-catalyzed cyclizations. Only reactions in which the pyrroline ring is formed by metal promotion are described. Transformations of the pyrroline ring in other heterocycles, and the structural manipulations of the pyrroline itself are not discussed. The review is organized into three parts, each covering the metal-mediated synthesis of the three pyrroline isomers. Each part is subdivided according to the metal involved, and concludes with a brief description of notable biological activities within the class.
Collapse
Affiliation(s)
- Noelia S Medran
- Instituto de Química Rosario - IQUIR (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 Rosario S2002LRK Argentina http://www.iquir-conicet.gov.ar/eng/
| | - Agustina La-Venia
- Instituto de Química Rosario - IQUIR (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 Rosario S2002LRK Argentina http://www.iquir-conicet.gov.ar/eng/
| | - Sebastian A Testero
- Instituto de Química Rosario - IQUIR (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 Rosario S2002LRK Argentina http://www.iquir-conicet.gov.ar/eng/
| |
Collapse
|
4
|
Tata RR, Fu C, Kelley SP, Harmata M. Synthesis of 3-(Arylsulfonyl)-3-pyrrolines from Allenyl Sulfonamides by Silver Ion Catalysis. Org Lett 2018; 20:5723-5726. [DOI: 10.1021/acs.orglett.8b02440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rama Rao Tata
- Department of Chemistry, University of Missouri—Columbia, Columbia, Missouri 65211, United States
| | - Chencheng Fu
- Department of Chemistry, University of Missouri—Columbia, Columbia, Missouri 65211, United States
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri—Columbia, Columbia, Missouri 65211, United States
| | - Michael Harmata
- Department of Chemistry, University of Missouri—Columbia, Columbia, Missouri 65211, United States
| |
Collapse
|
5
|
Balabani A, Hadjipavlou-Litina DJ, Litinas KE, Mainou M, Tsironi CC, Vronteli A. Synthesis and biological evaluation of (2,5-dihydro-1H-pyrrol-1-yl)-2H-chromen-2-ones as free radical scavengers. Eur J Med Chem 2011; 46:5894-901. [PMID: 22000208 DOI: 10.1016/j.ejmech.2011.09.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 09/26/2011] [Accepted: 09/29/2011] [Indexed: 11/22/2022]
Abstract
The allylation of aminocoumarins in the presence of excess of anhydrous K(2)CO(3) and allyl bromide to diallylaminocoumarins is described. The Ring Closing Metathesis reaction of the later with the Grubbs' 1rst generation catalyst under reflux or MW irradiation has resulted mainly to (2,5-dihydro-1H-pyrrol-1-yl)coumarins and (1H-pyrrol-1-yl)coumarins. The new compounds were tested in vitro for their ability: (i) to interact with 1,1-diphenyl-2-picryl-hydrazyl (DPPH) stable free radical, (ii) to inhibit lipid peroxidation, (iii) to scavenge the superoxide anion, (iv) to inhibit the activity of soybean lipoxygenase LO and (v) to scavenge hydroxyl radicals. Most of them were found to be potent lipid peroxidation inhibitors in vitro. The majority of the compounds showed significant hydroxyl radical scavenging activity. Compounds 11a and 12c presenting higher LO inhibitory activity as well as compound 17 were found to present a promising antioxidant and LO inhibitory profile.
Collapse
Affiliation(s)
- Anna Balabani
- Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | | | | | | | | |
Collapse
|
6
|
Xu JF, Li PB, Wu LL, Huang X. Regio- and stereo-selective synthesis of multi-substituted 3-pyrrolines. CHINESE CHEM LETT 2009. [DOI: 10.1016/j.cclet.2009.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Huang X, Xu JF. Solid-Phase Synthesis of 2,5-Dihydro-1H-pyrroles, 1,3-Dioxo-2,3,5,7a-tetrahydro-1H-pyrrolo[1,2-c]imidazoles and 1,4-Dioxo-1,2,3,4,6,8a-hexahydropyrrolo[1,2-a]pyrazines Using a Supported Selenium Resin. ACTA ACUST UNITED AC 2009; 11:350-4. [DOI: 10.1021/cc800161g] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xian Huang
- Department of Chemistry, Zhejiang University (XixiCampus), Hangzhou 310028, P. R. China, and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, P. R. China
| | - Jian-Feng Xu
- Department of Chemistry, Zhejiang University (XixiCampus), Hangzhou 310028, P. R. China, and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, P. R. China
| |
Collapse
|
8
|
Tao YM, Li QL, Zhang CF, Xu XJ, Chen J, Ju YW, Chi ZQ, Long YQ, Liu JG. LPK-26, a novel kappa-opioid receptor agonist with potent antinociceptive effects and low dependence potential. Eur J Pharmacol 2008; 584:306-11. [PMID: 18353307 DOI: 10.1016/j.ejphar.2008.02.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/02/2008] [Accepted: 02/13/2008] [Indexed: 11/30/2022]
Abstract
Analgesics such as morphine cause many side effects including addiction, but kappa-opioid receptor agonist can produce antinociception without morphine-like side effects. With the aim of developing new and potent analgesics with lower abuse potential, we studied the antinociceptive and physical dependent properties of a derivate of ICI-199441, an analogue of (-)U50,488H, named (2-(3,4-dichloro)-phenyl)-N-methyl-N-[(1S)-1-(2-isopropyl)-2-(1-(3-pyrrolinyl))ethyl] acetamides (LPK-26). LPK-26 showed a high affinity to kappa-opioid receptor with the Ki value of 0.64 nM and the low affinities to micro-opioid receptor and delta-opioid receptor with the Ki values of 1170 nM and >10,000 nM, respectively. It stimulated [(35)S]GTPgammaS binding to G-proteins with an EC50 value of 0.0094 nM. In vivo, LPK-26 was more potent than (-)U50,488H and morphine in analgesia, with the ED50 values of 0.049 mg/kg and 0.0084 mg/kg in hot plat and acetic acid writhing tests, respectively. Moreover, LPK-26 failed to induce physical dependence, but it could suppress naloxone-precipitated jumping in mice when given simultaneously with morphine. Taken together, our results show that LPK-26 is a novel selective kappa-opioid receptor agonist with highly potent antinociception effects and low physical dependence potential. It may be valuable for the development of analgesic and drug that can be used to reduce morphine-induced physical dependence.
Collapse
Affiliation(s)
- Yi-Min Tao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Morita N, Krause N. Gold-Catalyzed Cycloisomerization of α-Aminoallenes to 3-Pyrrolines –Optimization and Mechanistic Studies. European J Org Chem 2006. [DOI: 10.1002/ejoc.200600438] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
|