1
|
Hu K, Xiao M, Chen S, Huang Y, Hou Z, Li X, Yang L. Innovative applications of natural polysaccharide polymers in intravesical therapy of bladder diseases. Carbohydr Polym 2025; 354:123307. [PMID: 39978897 DOI: 10.1016/j.carbpol.2025.123307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
Natural polysaccharide polymers, characterized by their remarkable biocompatibility, biodegradability, and structural versatility, hold great promise for intravesical therapy in treating of bladder diseases. Conditions such as bladder cancer and interstitial cystitis compromise drug efficacy by affecting the permeability of the bladder wall. Traditional therapeutic approaches are often hindered by physiological challenges, including rapid drug clearance and the intrinsic permeability barrier of the bladder. Polysaccharides like hyaluronic acid (HA) and chitosan (CS) have emerged as promising materials for intravesical drug delivery systems (IDDS), owing to their ability to repair tight junctions in the bladder wall, mitigate inflammation, and enhance permeability. This review provides a comprehensive overview of the mechanisms through which polysaccharide-based natural polymers regulate bladder wall permeability and highlights their advancements in delivery platforms, including nanoparticles, hydrogels, floating systems, and composite materials. By improving drug retention, enhancing bioavailability, and promoting patient adherence, these materials offer a solid foundation for the development of innovative therapeutic strategies for bladder diseases.
Collapse
Affiliation(s)
- Ke Hu
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China; Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Miaomiao Xiao
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Siwen Chen
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Yuanbing Huang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China.
| | - Xiancheng Li
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Liqun Yang
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China.
| |
Collapse
|
2
|
Wang Z, Pang S, Liu X, Dong Z, Tian Y, Ashrafizadeh M, Rabiee N, Ertas YN, Mao Y. Chitosan- and hyaluronic acid-based nanoarchitectures in phototherapy: Combination cancer chemotherapy, immunotherapy and gene therapy. Int J Biol Macromol 2024; 273:132579. [PMID: 38795895 DOI: 10.1016/j.ijbiomac.2024.132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Cancer phototherapy has been introduced as a new potential modality for tumor suppression. However, the efficacy of phototherapy has been limited due to a lack of targeted delivery of photosensitizers. Therefore, the application of biocompatible and multifunctional nanoparticles in phototherapy is appreciated. Chitosan (CS) as a cationic polymer and hyaluronic acid (HA) as a CD44-targeting agent are two widely utilized polymers in nanoparticle synthesis and functionalization. The current review focuses on the application of HA and CS nanostructures in cancer phototherapy. These nanocarriers can be used in phototherapy to induce hyperthermia and singlet oxygen generation for tumor ablation. CS and HA can be used for the synthesis of nanostructures, or they can functionalize other kinds of nanostructures used for phototherapy, such as gold nanorods. The HA and CS nanostructures can combine chemotherapy or immunotherapy with phototherapy to augment tumor suppression. Moreover, the CS nanostructures can be functionalized with HA for specific cancer phototherapy. The CS and HA nanostructures promote the cellular uptake of genes and photosensitizers to facilitate gene therapy and phototherapy. Such nanostructures specifically stimulate phototherapy at the tumor site, with particle toxic impacts on normal cells. Moreover, CS and HA nanostructures demonstrate high biocompatibility for further clinical applications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng 252000, Shandong, PR China
| | - Shuo Pang
- Department of Urinary Surgery, Jinan Third People's Hospital, Jinan, Shandong 250101, PR China
| | - Xiaoli Liu
- Department of Dermatology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zi Dong
- Department of Gastroenterology, Lincang People's Hospital, Lincang, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, United States
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, 600077 India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Türkiye; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Türkiye.
| | - Ying Mao
- Department of Oncology, Suining Central Hospital, Suining City, Sichuan, China.
| |
Collapse
|
3
|
Shaygani H, Shamloo A, Akbarnataj K, Maleki S. In vitro and in vivo investigation of chitosan/silk fibroin injectable interpenetrating network hydrogel with microspheres for cartilage regeneration. Int J Biol Macromol 2024; 270:132126. [PMID: 38723805 DOI: 10.1016/j.ijbiomac.2024.132126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 06/05/2024]
Abstract
Articular cartilage is an avascular and almost acellular tissue with limited self-regenerating capabilities. Although injectable hydrogels have garnered a lot of attention as a promising treatment, a biocompatible hydrogel with adequate mechanical properties is yet to be created. In this study, an interpenetrating network hydrogel comprised of chitosan and silk fibroin was created through electrostatic and hydrophobic bonds, respectively. The polymeric network of the scaffold combined an effective microenvironment for cell activity with enhanced mechanical properties to address the current issues in cartilage scaffolds. Furthermore, microspheres (MS) were utilized for a controlled release of methylprednisolone acetate (MPA), around ~75 % after 35 days. The proposed scaffolds demonstrated great mechanical stability with ~0.047 MPa compressive moduli and ~145 kPa compressive strength. Moreover, the degradation rate of the samples (~45 % after 35 days) was optimized to match neo-cartilage formation. Furthermore, the use of natural biomaterials yielded good biocompatibility with ~76 % chondrocyte viability after 7 days. According to gross observation after 12 weeks the defect site of the treated groups was filled with minimally discernible boundary. These results were confirmed by histopathology assays were the treated groups showed higher chondrocyte count and collagen type II expression.
Collapse
Affiliation(s)
- Hossein Shaygani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
| | - Kazem Akbarnataj
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Sasan Maleki
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
4
|
Imam SS, Alshammari SO, Alshehri S, Mahdi WA, Al-Agamy MH. Formulation of silymarin surface modified vesicles: In vitro characterization to cell viability assessment. Saudi Pharm J 2024; 32:102072. [PMID: 38726227 PMCID: PMC11079526 DOI: 10.1016/j.jsps.2024.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Silymarin (SLR) is a poorly water-soluble bioactive compound with a wide range of therapeutic activities. Nanosized silymarin vesicles (F1-F6) were prepared by the solvent evaporation rehydration method. The silymarin vesicles were evaluated for vesicle size, surface charge, entrapment efficiency, and drug release studies. The optimized SLR lipid vesicle (F3) was further modified with the addition of the cationic polymer chitosan. After that, the modified vesicle (F3C1) was assessed for permeation flux, antimicrobial activity, cell viability, and molecular docking studies. The silymarin vesicles showed nanometric size (<250 nm), low polydispersibility index (<0.05), negative surface charge, and high SLR entrapment (85-95 %). The drug release study result demonstrated a maximum drug release of 91.2 ± 2.8 %. After adding chitosan to the surface, there was a significant change in the size, polydispersibility index, surface charge (positive), and encapsulation efficiency. The drug release was found to be prolonged, and the permeation flux was also increased in comparison to free SLR. A comparative antimicrobial result was observed in comparison to the free SLR and standard drug. The cell viability assay also demonstrated a low IC50 value for F3C1 against the cell line.
Collapse
Affiliation(s)
- Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Owaid Alshammari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed H. Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
El-Ghannam G, Moawad M, Abo-Elfadl MT, Elfeky SA. Beetroot extract@chitosan nanocomposite as a promising approach towards cancer therapy. Int J Biol Macromol 2024; 261:129700. [PMID: 38278395 DOI: 10.1016/j.ijbiomac.2024.129700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
The exceptional antioxidant properties of beetroot (BR) and the cancer antiproliferative effects of chitosan nanoparticles (CS NP) have led to the synthesis of a BR@CS nanocomposite (NC) in this study. The novel BR@CS NC was applied to human epithelial colorectal adenocarcinoma (Caco-2), human epithelial ductal breast carcinoma (T-47D), and human epithelial lung carcinoma (A549) cells. SEM characterization of CS NP revealed a variety of particle shapes ranging from 20 to 58 nm in diameter. UV-VIS analysis confirmed the formation of the BR@CS NC, while FTIR analysis demonstrated strong hydrogen bonds between CS NP and BR. These bonds reduced the positive surface charge of CS NP, as indicated by zeta potential analysis. When applied to cancer cell lines at a concentration of 250 μg/mL, the BR@CS NC successfully eradicated 89 % of A549, 88 % of T-47D, and 83 % of Caco-2 cell lines. The cell death mode exhibited extensive, apoptotic, and massive necrotic changes in all cell lines treated with BR@CS NC. Caspase 3 (CasP3) and P53 levels were elevated in BR@CS NC-treated cells. This study merges BR's antioxidant and anti-inflammatory properties with the antiangiogenic mechanism and inhibition of tumors by CS NP, resulting in a unique and innovative strategy for cancer treatment.
Collapse
Affiliation(s)
- Gamal El-Ghannam
- National Institute of Laser Enhanced Sciences (NILES), Department of Laser Applications in Metrology, Photochemistry, and Agriculture (LAMPA), Cairo University, 12613 Giza, Egypt.
| | - Mahmoud Moawad
- Department of Surgical Pathology, National Cancer Institute, Cairo University, Egypt
| | - Mahmoud T Abo-Elfadl
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt; Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo 12622, Egypt
| | - Souad A Elfeky
- National Institute of Laser Enhanced Sciences (NILES), Department of Laser Applications in Metrology, Photochemistry, and Agriculture (LAMPA), Cairo University, 12613 Giza, Egypt.
| |
Collapse
|
6
|
Guo X, Xiu F, Bera H, Abbasi YF, Chen Y, Si L, Liu P, Zhao C, Tang X, Feng Y, Cun D, Zhao X, Yang M. 20(R)-ginsenoside Rg3-loaded polyurethane/marine polysaccharide based nanofiber dressings improved burn wound healing potentials. Carbohydr Polym 2023; 317:121085. [PMID: 37364955 DOI: 10.1016/j.carbpol.2023.121085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
The management of deep burn injuries is extremely challenging, ascribed to their delayed wound healing rate, susceptibility for bacterial infections, pain, and increased risk of hypertrophic scarring. In our current investigation, a series of composite nanofiber dressings (NFDs) based on polyurethane (PU) and marine polysaccharides (i.e., hydroxypropyl trimethyl ammonium chloride chitosan, HACC and sodium alginate, SA) were accomplished by electrospinning and freeze-drying protocols. The 20(R)-ginsenoside Rg3 (Rg3) was further loaded into these NFDs to inhibit the formation of excessive wound scars. The PU/HACC/SA/Rg3 dressings showed a sandwich-like structure. The Rg3 was encapsulated in the middle layers of these NFDs and slowly released over 30 days. The PU/HACC/SA and PU/HACC/SA/Rg3 composite dressings demonstrated superior wound healing potentials over other NFDs. These dressings also displayed favorable cytocompatibility with keratinocytes and fibroblasts and could dramatically accelerate epidermal wound closure rate following 21 days of the treatment of a deep burn wound animal model. Interestingly, the PU/HACC/SA/Rg3 obviously reduced the excessive scar formation, with a collagen type I/III ratio closer to the normal skin. Overall, this study represented PU/HACC/SA/Rg3 as a promising multifunctional wound dressing, which promoted the regeneration of burn skins and attenuated scar formation.
Collapse
Affiliation(s)
- Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Fangfang Xiu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China; Roy College of Pharmacy & Allied Health Sciences, Durgapur, West Bengal, 713206, India
| | - Yasir Faraz Abbasi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Yang Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Liangwei Si
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Peixin Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Chunwei Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Feng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China.
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang l10016, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
7
|
Mohsen AM, Nagy YI, Shehabeldine AM, Okba MM. Thymol-Loaded Eudragit RS30D Cationic Nanoparticles-Based Hydrogels for Topical Application in Wounds: In Vitro and In Vivo Evaluation. Pharmaceutics 2022; 15:pharmaceutics15010019. [PMID: 36678648 PMCID: PMC9861126 DOI: 10.3390/pharmaceutics15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Natural medicines formulated using nanotechnology-based systems are a rich source of new wound-treating therapeutics. This study aims to develop thymol-loaded cationic polymeric nanoparticles (CPNPs) to enhance the skin retention and wound healing efficacy of thymol. The developed materials exhibited entrapment efficiencies of 56.58 to 68.97%, particle sizes of 36.30 to 99.41 nm, and positively charged zeta potential. In Vitro sustained release of thymol up to 24 h was achieved. Selected thymol CPNPs (F5 and C2) were mixed with methylcellulose to form hydrogels (GF5 and GC2). An In Vivo skin-retention study revealed that GF5 and GC2 showed 3.3- and 3.6-fold higher retention than free thymol, respectively. An In Vitro scratch-wound healing assay revealed a significant acceleration in wound closure at 24 h by 58.09% (GF5) and 57.45% (GC2). The potential for free thymol hydrogel, GF5, and GC2 to combat MRSA in a murine skin model was evaluated. The bacterial counts, recovered from skin lesions and the spleen, were assessed. Although a significant reduction in the bacterial counts recovered from the skin lesions was shown by all three formulations, only GF5 and GC2 were able to reduce the bacterial dissemination to the spleen. Thus, our study suggests that Eudragit RS30D nanoparticles-based hydrogels are a potential delivery system for enhancing thymol skin retention and wound healing activity.
Collapse
Affiliation(s)
- Amira Mohamed Mohsen
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth Street, Dokki, Cairo 12622, Egypt
| | - Yosra Ibrahim Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr M. Shehabeldine
- Department of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mona M. Okba
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Ainy, Cairo 11562, Egypt
- Correspondence:
| |
Collapse
|
8
|
Duceac IA, Coseri S. Biopolymers and their derivatives: Key components of advanced biomedical technologies. Biotechnol Adv 2022; 61:108056. [DOI: 10.1016/j.biotechadv.2022.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 11/02/2022]
|
9
|
Phunpee S, Chirachanchai S, Ruktanonchai UR. Brush-Structured Chitosan/PolyHEMA with Thymine and Its Synergistic Effect on the Specific Interaction with ssDNA and Cellular Uptake. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5915-5923. [PMID: 35439019 DOI: 10.1021/acs.langmuir.2c00559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cationic polymers are known to attach on an anionic cell surface and favor gene transportation/transfection into the cells. However, when the positive charges accumulate, they tend to cause cell damage and delivery failure. Chitosan (CS) is a potential cationic bio-derived polymer whose chemical structures can be modified to fine-tune the charges as well as the add-on functions. The present work demonstrates (i) the decoration of a nucleic acid sequence-like brush structure on CS to allow the specific interaction with DNA and (ii) delivery into the cell. By simply applying mercaptoacetic acid as the chain transfer agent, the grafting of poly(hydroxyethyl methacrylate) (PHEMA) containing Thy (P(HEMA-Thy)) on CS is possible. The brush-like P(HEMA-Thy) leads Thy moieties to be in sequences. The Thy sequences perform as poly[T] for the specific interaction with ssDNA. The synergistic effect of CS and Thy sequences, i.e., electrostatic and base pairing interactions, results in an effective and efficient binding with ssDNA as well as significant delivery, especially in cellular uptake and cell viability. The use of CS in combination with Thy sequences in brush-like structures on CS is a model for other polysaccharides to be conjugated with the as-designed nucleic acid sequences for potential gene delivery.
Collapse
Affiliation(s)
- Sarunya Phunpee
- Bioresources to Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwabun Chirachanchai
- Bioresources to Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Uracha R Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| |
Collapse
|
10
|
Muthu M, Gopal J, Chun S, Devadoss AJP, Hasan N, Sivanesan I. Crustacean Waste-Derived Chitosan: Antioxidant Properties and Future Perspective. Antioxidants (Basel) 2021; 10:228. [PMID: 33546282 PMCID: PMC7913366 DOI: 10.3390/antiox10020228] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Chitosan is obtained from chitin that in turn is recovered from marine crustacean wastes. The recovery methods and their varying types and the advantages of the recovery methods are briefly discussed. The bioactive properties of chitosan, which emphasize the unequivocal deliverables contained by this biopolymer, have been concisely presented. The variations of chitosan and its derivatives and their unique properties are discussed. The antioxidant properties of chitosan have been presented and the need for more work targeted towards harnessing the antioxidant property of chitosan has been emphasized. Some portions of the crustacean waste are being converted to chitosan; the possibility that all of the waste can be used for harnessing this versatile multifaceted product chitosan is projected in this review. The future of chitosan recovery from marine crustacean wastes and the need to improve in this area of research, through the inclusion of nanotechnological inputs have been listed under future perspective.
Collapse
Affiliation(s)
- Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India;
| | - Judy Gopal
- Department of Environmental Health Sciences, Konkuk University, Seoul 05029, Korea; (J.G.); (S.C.)
| | - Sechul Chun
- Department of Environmental Health Sciences, Konkuk University, Seoul 05029, Korea; (J.G.); (S.C.)
| | | | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, Jazan P.O. Box 114, Saudi Arabia;
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
11
|
Rasul RM, Tamilarasi Muniandy M, Zakaria Z, Shah K, Chee CF, Dabbagh A, Rahman NA, Wong TW. A review on chitosan and its development as pulmonary particulate anti-infective and anti-cancer drug carriers. Carbohydr Polym 2020; 250:116800. [PMID: 33049807 PMCID: PMC7434482 DOI: 10.1016/j.carbpol.2020.116800] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/24/2022]
Abstract
Chitosan, as a biodegradable and biocompatible polymer, is characterized by anti-microbial and anti-cancer properties. It lately has received a widespread interest for use as the pulmonary particulate backbone materials of drug carrier for the treatment of infectious disease and cancer. The success of chitosan as pulmonary particulate drug carrier is a critical interplay of their mucoadhesive, permeation enhancement and site/cell-specific attributes. In the case of nanocarriers, various microencapsulation and micro-nano blending systems have been devised to equip them with an appropriate aerodynamic character to enable efficient pulmonary aerosolization and inhalation. The late COVID-19 infection is met with acute respiratory distress syndrome and cancer. Chitosan and its derivatives are found useful in combating HCoV and cancer as a function of their molecular weight, substituent type and its degree of substitution. The interest in chitosan is expected to rise in the next decade from the perspectives of drug delivery in combination with its therapeutic performance.
Collapse
Affiliation(s)
- Ruhisy Mohd Rasul
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300, Puncak Alam, Selangor, Malaysia; Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - M Tamilarasi Muniandy
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300, Puncak Alam, Selangor, Malaysia; Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Zabliza Zakaria
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300, Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia
| | - Kifayatullah Shah
- Department of Pharmaceutics, Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Chin Fei Chee
- Nanotechnology & Catalysis Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ali Dabbagh
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Noorsaadah Abd Rahman
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300, Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia; Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University. China.
| |
Collapse
|
12
|
Chitosan quaternary ammonium salt induced mitochondrial membrane permeability transition pore opening study in a spectroscopic perspective. Int J Biol Macromol 2020; 165:314-320. [DOI: 10.1016/j.ijbiomac.2020.09.146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 12/21/2022]
|
13
|
Javed R, Rais F, Kaleem M, Jamil B, Ahmad MA, Yu T, Qureshi SW, Ao Q. Chitosan capping of CuO nanoparticles: Facile chemical preparation, biological analysis, and applications in dentistry. Int J Biol Macromol 2020; 167:1452-1467. [PMID: 33212106 DOI: 10.1016/j.ijbiomac.2020.11.099] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
This investigation is vital contribution to the healthcare system utilizing techniques of nanobiotechnology. It interestingly applies chitosan capped CuO nanoparticles in the field of medicine and restorative dentistry. The CuO nanoparticles and CuO-Chitosan nanoparticles are prepared by co-precipitation, and their characterization is performed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX). The average crystallite size of these nanoparticles has been found to be in the dimensions of <40 nm and <35 nm, respectively. CuO-Chitosan nanoparticles show significant enhancement in in vitro antibacterial, antioxidant, cytotoxic, and antidiabetic activity as compared to CuO nanoparticles. In addition, the successful amalgamation of CuO nanoparticles and CuO-Chitosan nanoparticles into dentine bonding agents results in providing efficient remedy against secondary caries. CuO-Chitosan nanoparticles reinforced dental adhesive discs cause significant upsurge in reduction of Lactobacillus acidophillus and Streptococcus mutans. Also, the augmentation of mechanical properties, water sorption and solubility plus slow and sustained release profile and slight variation of shear bond strength is attained. Taken together, the chemically synthesized CuO nanoparticles and CuO-Chitosan nanoparticles have proven to be promising candidates having enormous potential to be utilized in drug delivery and nanotheranostics.
Collapse
Affiliation(s)
- Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China; Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan.
| | - Farwa Rais
- Department of Dental Materials, Army Medical College, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Muhammad Kaleem
- Department of Dental Materials, Army Medical College, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Bushra Jamil
- Department of Medical Lab Sciences, University of Lahore, Islamabad 44000, Pakistan
| | - Muhammad Arslan Ahmad
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China; Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 110044, China
| | - Tianhao Yu
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China; Liaoning Provincial Key Laboratory of Oral Diseases, Department of Cadres Clinic, School and Hospital of Stomatology, China Medical University, Shenyang 110122, China
| | - Saba Waqar Qureshi
- Department of Dental Materials, Army Medical College, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang 110122, China; Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
14
|
Chitosan encapsulated ZnO nanocomposites: Fabrication, characterization, and functionalization of bio-dental approaches. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111184. [DOI: 10.1016/j.msec.2020.111184] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/29/2022]
|
15
|
Maria de Medeiros Dantas J, Sousa da Silva N, Eduardo de Araújo Padilha C, Kelly de Araújo N, Silvino dos Santos E. Enhancing chitosan hydrolysis aiming chitooligosaccharides production by using immobilized chitosanolytic enzymes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
|
17
|
Pankongadisak P, Suwantong O. Enhanced properties of injectable chitosan-based thermogelling hydrogels by silk fibroin and longan seed extract for bone tissue engineering. Int J Biol Macromol 2019; 138:412-424. [DOI: 10.1016/j.ijbiomac.2019.07.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 11/26/2022]
|
18
|
Pokhrel S, Yadav PN. Functionalization of chitosan polymer and their applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1581576] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shanta Pokhrel
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
19
|
Khadjavi A, Stura I, Prato M, Minero VG, Panariti A, Rivolta I, Gulino GR, Bessone F, Giribaldi G, Quaglino E, Cavalli R, Cavallo F, Guiot C. 'In Vitro', 'In Vivo' and 'In Silico' Investigation of the Anticancer Effectiveness of Oxygen-Loaded Chitosan-Shelled Nanodroplets as Potential Drug Vector. Pharm Res 2018; 35:75. [PMID: 29484487 DOI: 10.1007/s11095-018-2371-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 02/13/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE Chitosan-shelled/decafluoropentane-cored oxygen-loaded nanodroplets (OLN) are a new class of nanodevices to effectively deliver anti-cancer drugs to tumoral cells. This study investigated their antitumoral effects 'per se', using a mathematical model validated on experimental data. METHODS OLN were prepared and characterized either in vitro or in vivo. TUBO cells, established from a lobular carcinoma of a BALB-neuT mouse, were investigated following 48 h of incubation in the absence/presence of different concentrations of OLN. OLN internalization, cell viability, necrosis, apoptosis, cell cycle and reactive oxygen species (ROS) production were checked as described in the Method section. In vivo tumor growth was evaluated after subcutaneous transplant in BALB/c mice of TUBO cells either without treatment or after 24 h incubation with 10% v/v OLN. RESULTS OLN showed sizes of about 350 nm and a positive surface charge (45 mV). Dose-dependent TUBO cell death through ROS-triggered apoptosis following OLN internalization was detected. A mathematical model predicting the effects of OLN uptake was validated on both in vitro and in vivo results. CONCLUSIONS Due to their intrinsic toxicity OLN might be considered an adjuvant tool suitable to deliver their therapeutic cargo intracellularly and may be proposed as promising combined delivery system.
Collapse
Affiliation(s)
- Amina Khadjavi
- Dipartimento di Neuroscienze, Università di Torino, Corso Raffaello 30, 10125, Torino, Italy
| | - Ilaria Stura
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Via Santena 5 bis, Torino, 10126, Italy.
| | - Mauro Prato
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Via Santena 5 bis, Torino, 10126, Italy
| | - Valerio Giacomo Minero
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Torino, Italy
| | - Alice Panariti
- Dipartimento di Medicina Sperimentale, Università Milano Bicocca, Monza, Italy
| | - Ilaria Rivolta
- Dipartimento di Medicina Sperimentale, Università Milano Bicocca, Monza, Italy
| | | | - Federica Bessone
- Dipartimento di Scienze e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | | | - Elena Quaglino
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Torino, Italy
| | - Roberta Cavalli
- Dipartimento di Scienze e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Federica Cavallo
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Torino, Italy
| | - Caterina Guiot
- Dipartimento di Neuroscienze, Università di Torino, Corso Raffaello 30, 10125, Torino, Italy
| |
Collapse
|
20
|
Yakub G, Ignatova M, Manolova N, Rashkov I, Toshkova R, Georgieva A, Markova N. Chitosan/ferulic acid-coated poly(ε-caprolactone) electrospun materials with antioxidant, antibacterial and antitumor properties. Int J Biol Macromol 2018; 107:689-702. [DOI: 10.1016/j.ijbiomac.2017.08.183] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/19/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022]
|
21
|
Salahuddin N, Elbarbary AA, Salem ML, Elksass S. Antimicrobial and antitumor activities of 1,2,4-triazoles/polypyrrole chitosan core shell nanoparticles. J PHYS ORG CHEM 2017; 30:e3702. [DOI: 10.1002/poc.3702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Nehal Salahuddin
- Department of Chemistry, Faculty of Science; Tanta University; Tanta Egypt
| | - Ahmed A. Elbarbary
- Department of Chemistry, Faculty of Science; Tanta University; Tanta Egypt
| | - Mohamed L. Salem
- Department of Zoology, Faculty of Science; Tanta University; Tanta Egypt
| | - Samar Elksass
- Department of Chemistry, Faculty of Science; Tanta University; Tanta Egypt
| |
Collapse
|
22
|
Višnjar T, Jerman UD, Veranič P, Kreft ME. Chitosan hydrochloride has no detrimental effect on bladder urothelial cancer cells. Toxicol In Vitro 2017; 44:403-413. [PMID: 28807631 DOI: 10.1016/j.tiv.2017.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 07/27/2017] [Accepted: 08/10/2017] [Indexed: 12/24/2022]
Abstract
Bladder cancer is among the most common and aggressive human malignant carcinomas, thus targeting and removal of bladder cancer cells is still a challenge. Although it is well known that chitosan hydrochloride (CH-HCl) causes desquamation of normal urothelial cells, its effect on cancer urothelial cells has not been recognized yet. In this in vitro study, we analyzed the cytotoxicity of 0.05% CH-HCl on three urothelial models: two cancer urothelial models, i.e. invasive and papillary urothelial neoplasms, and a normal urothelial model. The cytotoxicity of CH-HCl was evaluated with viability tests, transepithelial resistance (TER) measurements, and electron microscopy. TER measurements showed that 15-minute treatment with CH-HCl caused no reduction in TER of the cancer models, whereas the TER of the normal urothelial model significantly decreased. Furthermore, after CH-HCl treatment, the viability of cancer cells was reduced by only 5%, whereas the viability of normal cells was reduced by 30%. Ultrastructural analysis revealed necrotic cell death in all cases. We have demonstrated that although CH-HCl increases the mortality of cancer urothelial cells, it increases the mortality of normal urothelial cells even more so. However, shorter 2-minute CH-HCl treatment only temporarily increases the permeability of normal urothelial model, i.e. disrupts tight junctions and reduces TER without comprising cell viability, and enables the complete recovery of the permeability barrier after 24h. Overall, our results suggest that CH-HCl cannot be used as a self-sufficient anticancer agent for urothelial bladder cancer treatment; nevertheless a possibility of its use as an enhancer of cytostatic treatment is discussed.
Collapse
Affiliation(s)
- Tanja Višnjar
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Dragin Jerman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
23
|
de Oliveira Pedro R, Goycoolea FM, Pereira S, Schmitt CC, Neumann MG. Synergistic effect of quercetin and pH-responsive DEAE-chitosan carriers as drug delivery system for breast cancer treatment. Int J Biol Macromol 2017; 106:579-586. [PMID: 28807690 DOI: 10.1016/j.ijbiomac.2017.08.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
Amphiphilic chitosans, which may self-assemble in aqueous solution to form nanoaggregates with different conformations depending to the environmental pH, can be used as drug transport and delivery agents, when the target pH differs from the delivery medium pH. In this study, quercetin, a bioactive flavonoid, was encapsulated in a pH-responsive system based on amphiphilic chitosan. The hydrophilic reagent 2-chloro-N,N-diethylethylamine hydrochloride (DEAE), also known to inhibit the proliferation of cancer cells, was used as a grafting agent. Drug loading experiments (DL ∼5%) showed a quercetin entrapment efficiency of 73 and 78% for the aggregates. The sizes of blank aggregates measured by dynamic light scattering (DLS) varied from 169 to 263nm and increased to ∼410nm when loaded with quercetin. The critical aggregation concentration, zeta potential and morphology of the aggregates were determined. pH had a dominant role in the release process and Fickian diffusion was the controlling factor in drug release according to the Korsmeyer-Peppas mathematical model. In vitro studies indicated that the DEAE-modified chitosan nanoaggregates showed a synergistic effect with quercetin on the control of the viability of MCF-7 cells. Therefore, DEAE-modified chitosan nanoaggregates with pH-sensibility can be used as optimized nanocarriers in cancer therapy.
Collapse
Affiliation(s)
- Rafael de Oliveira Pedro
- Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, 13560-970, São Carlos, SP, Brazil; Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossgarten 3, Münster, 48149, Germany.
| | - Francisco M Goycoolea
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossgarten 3, Münster, 48149, Germany.
| | - Susana Pereira
- Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms-Universität Münster, Schlossgarten 3, Münster, 48149, Germany.
| | - Carla C Schmitt
- Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, 13560-970, São Carlos, SP, Brazil.
| | - Miguel G Neumann
- Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
24
|
Irradiated chitosan nanoparticle as a water-based antioxidant and reducing agent for a green synthesis of gold nanoplatforms. Radiat Phys Chem Oxf Engl 1993 2015. [DOI: 10.1016/j.radphyschem.2014.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Costa IDSM, Abranches RP, Garcia MTJ, Pierre MBR. Chitosan-based mucoadhesive films containing 5-aminolevulinic acid for buccal cancer's treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 140:266-75. [PMID: 25190225 DOI: 10.1016/j.jphotobiol.2014.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/22/2014] [Accepted: 08/05/2014] [Indexed: 02/04/2023]
Abstract
Photodynamic therapy (PDT) is a relatively new method to treat various kinds of tumors, including those of the oral cavity. The topical 5-ALA-PDT treatment for tumors of the oral mucosa is preferred, since when administered systemically, there is a general photosensitization drawback in the patient. However, 5-ALA is a hydrophilic molecule and its penetration and retention is limited by topical route, including oral mucosa. We propose a topical delivery system of chitosan-based mucoadhesive film, aiming to promote greater retention of 5-ALA in tissue. The chitosan (CHT) films (4% w/w) were prepared using the solvent evaporation/casting technique. They were tested without 5-ALA resulting in permeability to water vapor (W.V.P=2.15-8.54 g mm/(h cm(2)Pa) swelling ∼300.0% (±10.5) at 4 h or 24 h and in vitro residence time >24 h for all tests. CHT films containing 10.0% (w/w) 5-ALA have resulted in average weight of 0.22 g and thickness of 0.608 mm as suitable characteristics for oral application. In the presence of CHT films both in vitro permeation and retention of 5-ALA (1.0% or 10.0%) were increased. However, 10.0% 5-ALA presented highest values of permeation and retention (∼4 and 17 times respectively, compared to propylene glycol vehicle). On the other hand, in vitro mucoadhesion of CHT films was decreased (18.2-fold and 3.1-fold) by 5-ALA addition (1.0% or 10.0% respectively). However, CHT film containing 10.0% of 5-ALA can be a potential delivery system for topical use in the treatment of tumors of the oral cavity using PDT because it favored the retention of 5-ALA in this tissue and has shown convenient mucoadhesion.
Collapse
Affiliation(s)
- Irina dos Santos Miranda Costa
- School of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, 21.941.902 Rio de Janeiro, RJ, Brazil
| | - Renata Pereira Abranches
- School of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, 21.941.902 Rio de Janeiro, RJ, Brazil
| | - Maria Teresa Junqueira Garcia
- School of Pharmacy, University of Uberaba, Av. Nenê Sabino, 1801, Bairro Universitário, 38055-500 Uberaba, MG, Brazil
| | - Maria Bernadete Riemma Pierre
- School of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, 21.941.902 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
26
|
Luo Z, Dong X, Ke Q, Duan Q, Shen L. Downregulation of CD147 by chitooligosaccharide inhibits MMP-2 expression and suppresses the metastatic potential of human gastric cancer. Oncol Lett 2014; 8:361-366. [PMID: 24959277 PMCID: PMC4063597 DOI: 10.3892/ol.2014.2115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/24/2014] [Indexed: 12/16/2022] Open
Abstract
Metastasis is considered to be the major cause of mortality in patients with cancer, and gastric cancer is a highly metastatic cancer. In the present study, the anti-metastatic activity of chitooligosaccharide (COS) in human gastric cancer cells and its underlying mechanism were investigated. It was found that COS significantly inhibited SGC-7901 cell proliferation and metastasis in a dose-dependent manner, as observed by MTT, wound-healing and Transwell assays. Quantitative real-time polymerase chain reaction and western blot analysis indicated that COS could decrease the expression of cluster of differentiation 147 (CD147) and subsequently reduce matrix metalloproteinase-2 (MMP-2) expression. A clear dose-dependent inhibition of MMP-2 activity was also observed in SGC-7901 cells following treatment with COS in gelatin zymography experiments. Furthermore, overexpression of CD147 (when transfected with pEGFP-C1 plasmid) in SGC-7901 cells partially protected against COS-induced inhibition of MMP-2. The results of the present study demonstrated the potential of COS in suppressing gastric cancer metastasis, and that the CD147/MMP-2 pathway may be involved as the key mechanism of its anti-metastatic effect.
Collapse
Affiliation(s)
- Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiaoxia Dong
- Department of Pharmacology, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qing Ke
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qiwen Duan
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China ; Department of Biochemistry, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
27
|
Preparation of a novel organo-soluble chitosan grafted polycaprolactone copolymer for drug delivery. Int J Biol Macromol 2014; 65:21-7. [DOI: 10.1016/j.ijbiomac.2014.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/15/2013] [Accepted: 01/05/2014] [Indexed: 11/21/2022]
|
28
|
Xu X, Li Y, Wang F, Lv L, Liu J, Li M, Guo A, Jiang J, Shen Y, Guo S. Synthesis, in vitro and in vivo evaluation of new norcantharidin-conjugated hydroxypropyltrimethyl ammonium chloride chitosan derivatives as polymer therapeutics. Int J Pharm 2013; 453:610-9. [DOI: 10.1016/j.ijpharm.2013.05.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/04/2013] [Accepted: 05/25/2013] [Indexed: 01/01/2023]
|
29
|
Cao M, Yu L, Zhang P, Xiong H, Jin Y, Lu Y, Wang LQ. Soft-binding ligand-capped fluorescent CdSe/ZnS quantum dots for the facile labeling of polysaccharide-based self-assemblies. Colloids Surf B Biointerfaces 2013; 109:154-60. [DOI: 10.1016/j.colsurfb.2013.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/31/2022]
|
30
|
Thakore S, Valodkar M, Soni JY, Vyas K, Jadeja RN, Devkar RV, Rathore PS. Synthesis and cytotoxicity evaluation of novel acylated starch nanoparticles. Bioorg Chem 2013; 46:26-30. [DOI: 10.1016/j.bioorg.2012.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/25/2012] [Accepted: 10/04/2012] [Indexed: 11/16/2022]
|
31
|
Salah R, Michaud P, Mati F, Harrat Z, Lounici H, Abdi N, Drouiche N, Mameri N. Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int J Biol Macromol 2013; 52:333-9. [DOI: 10.1016/j.ijbiomac.2012.10.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 11/26/2022]
|
32
|
Shuai HH, Yang CY, Harn HIC, York RL, Liao TC, Chen WS, Yeh JA, Cheng CM. Using surfaces to modulate the morphology and structure of attached cells – a case of cancer cells on chitosan membranes. Chem Sci 2013. [DOI: 10.1039/c3sc50533b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Sobol M, Bartkowiak A, de Haan B, de Vos P. Cytotoxicity study of novel water-soluble chitosan derivatives applied as membrane material of alginate microcapsules. J Biomed Mater Res A 2012. [PMID: 23203606 DOI: 10.1002/jbm.a.34500] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The majority of cell encapsulation systems applied so far are based on polyelectrolyte complexes of alginate and polyvalent metal cations. Although widely used, these systems suffer from the risk of disintegration. This can be partially solved by applying chitosan as additional outer membrane. However, chitosan can be dissolved in water only at a low pH, which limits its use in the field of bioencapsulation. In this study, novel primary and tertiary amine chitosan derivatives have been synthesized, which may be dissolved at pH 7.0, and retain the ability to effectively form additional membrane on the surface of alginate beads. As aqueous solutions tertiary amines dimethylamino-1-propyl-chitosan and dimethylethylamine-chitosan with linear hydrochloride aliphatic chains had the lowest toxicity, whereas dimethylpropylamine-chitosan, diethylaminoethyl-chitosan, and diisopropylaminoethyl-chitosan with branched hydrochloride aliphatic were cytotoxic to the majority of tested cells. When applied as polyelectrolyte complexation agent on the surface of alginate beads, none of the derivates had any negative effect on the metabolic activity of encapsulated beta-cells.
Collapse
Affiliation(s)
- Marcin Sobol
- Center of Bioimmobilisation and Innovative Packaging Materials, West Pomeranian University of Technology, Szczecin 71270, Poland.
| | | | | | | |
Collapse
|
34
|
Xu W, Jiang C, Kong X, Liang Y, Rong M, Liu W. Chitooligosaccharides and N-acetyl-D-glucosamine stimulate peripheral blood mononuclear cell-mediated antitumor immune responses. Mol Med Rep 2012; 6:385-90. [PMID: 22614871 DOI: 10.3892/mmr.2012.918] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/08/2012] [Indexed: 01/28/2023] Open
Abstract
The aim of the present study was to evaluate the anticancer effects of chitooligosaccharides (COS) and N-acetyl-D-glucosamine (NAG), as well as to investigate the possible mechanisms involved. MTT assay and flow cytometry were used to evaluate the effect of various concentrations of COS and NAG on the proliferation and differentiation of peripheral blood mononuclear cells (PBMCs). In addition, sarcoma 180 cells were transplanted into mice to establish a tumor model. COS and NAG were administered by gavage of various doses. The tumor inhibition rate, thymus and spleen indexes, natural killer (NK) cell activity, and interleukin-2 (IL-2) and interferon-γ (IFN-γ) serum levels were detected. Vascular endothelial growth factor (VEGF) expression levels, an important marker of angiogenesis, were also detected. As shown by immunohistochemistry, VEGF mRNA expression was decreased following treatment with COS and NAG, indicating that COS and NAG have an inhibitory effect on the expression of VEGF. The results from this study indicate that COS administered at a dose of 100 mg/kg and NAG at a dose of 300 mg/kg or 500 mg/kg can not only promote the differentiation of PBMCs and the secretion of IL-2 and IFN-γ, but can also inhibit the expression of VEGF mRNA in sarcoma 180 tumors. Our results show that the antitumor and immunoregulatory effects of COS and NAG are dose-dependent. Furthermore, the antitumor effect is achieved by the improvement of immunoregulation indirectly.
Collapse
Affiliation(s)
- Wenhua Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Ignatova M, Yossifova L, Gardeva E, Manolova N, Toshkova R, Rashkov I, Alexandrov M. Antiproliferative activity of nanofibers containing quaternized chitosan and/or doxorubicin against MCF-7 human breast carcinoma cell line by apoptosis. J BIOACT COMPAT POL 2011. [DOI: 10.1177/0883911511424655] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The antiproliferative activity of electrospun mats of poly(L-lactide- co-D,L-lactide) (coPLA) containing quaternized chitosan (QCh) and/or doxorubicin hydrochloride (DOX) was evaluated against the Michigan Cancer Foundation-7(MCF-7) human breast carcinoma cell line. QCh- and DOX-containing nanofibrous mats possess good antiproliferative activity and decrease considerably the viability of the MCF-7 cells for the different periods of cell incubation as confirmed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Fluorescent microscopy analyses and scanning electron microscopy observations revealed that apoptosis was one of the major mechanisms of MCF-7 cell death induced by the QCh- and DOX-containing mats.
Collapse
Affiliation(s)
- Milena Ignatova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lilia Yossifova
- Institute of Experimental Morphology, Pathology, and Anthropology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Elena Gardeva
- Institute of Experimental Morphology, Pathology, and Anthropology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nevena Manolova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Reneta Toshkova
- Institute of Experimental Morphology, Pathology, and Anthropology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iliya Rashkov
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marin Alexandrov
- Institute of Experimental Morphology, Pathology, and Anthropology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
36
|
Susan M, Baldea I, Senila S, Macovei V, Dreve S, Ion RM, Cosgarea R. Photodamaging effects of porphyrins and chitosan on primary human keratinocytes and carcinoma cell cultures. Int J Dermatol 2011; 50:280-6. [PMID: 21342160 DOI: 10.1111/j.1365-4632.2010.04700.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) is a non-surgical method for treating non-melanoma skin cancer and precancerous lesions which involves the activation of a photosensitizer by visible light to produce activated oxygen species within target cells, resulting in the destruction of the latter. The present study evaluates the effect of PDT on primary normal and basal cell carcinoma cultures in vitro. METHODS Primary human keratinocytes and carcinoma cell cultures were exposed to various concentrations of 5,10,15,20-tetra-(para-methoxyphenyl) porphyrin (TMP) and its zinc compound (Zn-TMP) for 24 hours, with or without chitosan, and then irradiated using a PDT lamp (630 nm, 6 J/cm(2)). The effects of PDT were assessed using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) assay and an immunocytochemical method with Annexin V-FITC for detecting apoptosis. RESULTS Both tested substances, TMP and Zn-TMP, had a phototoxic effect on primary human carcinoma cell cultures in concentrations of 1-100 μg/ml, which positively correlated with the concentration of the photosensitizer. There was no phototoxic effect on primary keratinocytes, probably because of the preferential accumulation of photosensitizing substances in tumoral cells. Administration of chitosan in association with photosensitizing substances increased cell viability compared with photosensitizers alone, exerting a cytoprotective effect. CONCLUSIONS The study demonstrates that the photodynamic activity of TMP and its metalloporphyrin derivative is limited to primary human carcinoma cells and suggests that these porphyrins could be efficiently used in PDT in vivo.
Collapse
Affiliation(s)
- Mirela Susan
- Department of Dermatology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | | | | | | | | | | |
Collapse
|
37
|
Said-Galiev EE, Gamzazade AI, Grigor’ev TE, Khokhlov AR, Bakuleva NP, Lyutova IG, Shtykova EV, Dembo KA, Volkov VV. Synthesis of Ag and Cu-chitosan metal-polymer nanocomposites in supercritical carbon dioxide medium and study of their structure and antimicrobial activity. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s1995078011030153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
LI YONG, QIAN ZHONGJI, KIM MOONMOO, KIM SEKWON. CYTOTOXIC ACTIVITIES OF PHLORETHOL AND FUCOPHLORETHOL DERIVATIVES ISOLATED FROM LAMINARIACEAE ECKLONIA CAVA. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00387.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Lee SH, Ryu B, Je JY, Kim SK. Diethylaminoethyl chitosan induces apoptosis in HeLa cells via activation of caspase-3 and p53 expression. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.12.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Ignatova MG, Manolova NE, Toshkova RA, Rashkov IB, Gardeva EG, Yossifova LS, Alexandrov MT. Electrospun nanofibrous mats containing quaternized chitosan and polylactide with in vitro antitumor activity against HeLa cells. Biomacromolecules 2010; 11:1633-45. [PMID: 20469930 DOI: 10.1021/bm100285n] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanofibrous materials containing the antitumor drug doxorubicin hydrochloride (DOX) were easily prepared using a one-step method by electrospinning of DOX/poly(L-lactide-co-D,L-lactide) (coPLA) and DOX/quaternized chitosan (QCh)/coPLA solutions. The pristine and DOX-containing mats were characterized by ATR-FTIR and X-ray photoelectron spectroscopy (XPS). The release rate of DOX from the prepared fibers increased with the increase in DOX content. The DOX release process was diffusion-controlled. MTT cell viability studies revealed that incorporation of DOX and QCh in the nanofibrous mats led to a significant reduction in the HeLa cells viability. It was found, that the antitumor efficacy of the DOX-containing mats at 6 h was higher than that of the free DOX. SEM, TEM, and fluorescence microscopic observations confirmed that the antitumor effect of QCh-based and DOX-containing fibrous mats was mainly due to induction of apoptosis in the HeLa cells.
Collapse
Affiliation(s)
- Milena G Ignatova
- Laboratory of Bioactive Polymers, Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St. bl. 103A, BG-1113 Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
41
|
Cafaggi S, Russo E, Stefani R, Parodi B, Caviglioli G, Sillo G, Bisio A, Aiello C, Viale M. Preparation, characterisation and preliminary antitumour activity evaluation of a novel nanoparticulate system based on a cisplatin-hyaluronate complex and N-trimethyl chitosan. Invest New Drugs 2009; 29:443-55. [DOI: 10.1007/s10637-009-9373-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/09/2009] [Indexed: 02/05/2023]
|
42
|
Quan H, Zhu F, Han X, Xu Z, Zhao Y, Miao Z. Mechanism of anti-angiogenic activities of chitooligosaccharides may be through inhibiting heparanase activity. Med Hypotheses 2009; 73:205-6. [DOI: 10.1016/j.mehy.2009.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 02/25/2009] [Accepted: 02/28/2009] [Indexed: 11/15/2022]
|
43
|
Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem Toxicol 2009; 47:1864-71. [PMID: 19427889 DOI: 10.1016/j.fct.2009.04.044] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 04/21/2009] [Accepted: 04/28/2009] [Indexed: 11/23/2022]
Abstract
Chitooligosaccharides (COS) are hydrolyzed products of chitosan and have been proven to exhibit various biological functions. The objectives of this study were to evaluate the anti-tumor growth, anti-metastatic potency and related pathways of COS extracted from fungi. In in vitro studies, we found that COS significantly inhibited human hepatocellular carcinoma (HepG2) cell proliferation, reduced the percentage of S-phase and decreased DNA synthesis rate in COS-treated HepG2 cells. Expressions of cell cycle-related genes were analyzed and the results indicated that p21 was up-regulated, while PCNA, cyclin A and cdk-2 were down-regulated. Moreover, we also found that the activity of metastatic related protein (MMP-9) could be inhibited by COS in Lewis lung carcinoma (LLC) cells. In in vivo studies, we found that COS inhibited the tumor growth of HepG2 xenografts in severe combined immune deficient (SCID) mice. In a LLC-bearing mouse tumor growth and lung metastasis model, COS inhibited tumor growth and the number of lung colonies in LLC-bearing mice as well as the lung metastasis, and it prolonged the survival time of the LLC-mice. These results suggest a potential anti-tumor growth and anti-metastatic potency of COS in cancer chemoprevention.
Collapse
|
44
|
Keong LC, Halim AS. In vitro models in biocompatibility assessment for biomedical-grade chitosan derivatives in wound management. Int J Mol Sci 2009; 10:1300-1313. [PMID: 19399250 PMCID: PMC2672031 DOI: 10.3390/ijms10031300] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/12/2009] [Accepted: 03/16/2009] [Indexed: 11/17/2022] Open
Abstract
One of the ultimate goals of wound healing research is to find effective healing techniques that utilize the regeneration of similar tissues. This involves the modification of various wound dressing biomaterials for proper wound management. The biopolymer chitosan (beta-1,4-D-glucosamine) has natural biocompatibility and biodegradability that render it suitable for wound management. By definition, a biocompatible biomaterial does not have toxic or injurious effects on biological systems. Chemical and physical modifications of chitosan influence its biocompatibility and biodegradability to an uncertain degree. Hence, the modified biomedical-grade of chitosan derivatives should be pre-examined in vitro in order to produce high-quality, biocompatible dressings. In vitro toxicity examinations are more favorable than those performed in vivo, as the results are more reproducible and predictive. In this paper, basic in vitro tools were used to evaluate cellular and molecular responses with regard to the biocompatibility of biomedical-grade chitosan. Three paramount experimental parameters of biocompatibility in vitro namely cytocompatibility, genotoxicity and skin pro-inflammatory cytokine expression, were generally reviewed for biomedical-grade chitosan as wound dressing.
Collapse
Affiliation(s)
| | - Ahmad Sukari Halim
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +609-7663141; Fax: +6 09-7653370
| |
Collapse
|
45
|
Másson M, Holappa J, Hjálmarsdóttir M, Rúnarsson ÖV, Nevalainen T, Järvinen T. Antimicrobial activity of piperazine derivatives of chitosan. Carbohydr Polym 2008. [DOI: 10.1016/j.carbpol.2008.04.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
|
47
|
Cafaggi S, Russo E, Stefani R, Leardi R, Caviglioli G, Parodi B, Bignardi G, De Totero D, Aiello C, Viale M. Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin–alginate complex. J Control Release 2007; 121:110-23. [DOI: 10.1016/j.jconrel.2007.05.037] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 05/07/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
|
48
|
Wang Z, Zheng L, Yang S, Niu R, Chu E, Lin X. N-Acetylchitooligosaccharide is a potent angiogenic inhibitor both in vivo and in vitro. Biochem Biophys Res Commun 2007; 357:26-31. [PMID: 17400187 DOI: 10.1016/j.bbrc.2007.03.094] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/08/2007] [Indexed: 12/29/2022]
Abstract
N-acetylchitooligosaccharide (N-acetyl-COs) was prepared by N-acetylation of chitooligosaccharide (COs). In vitro study using human umbilical vein endothelial cells (HUVECs) revealed that both N-acetyl-COs and COs inhibited the proliferation of HUVECs by inducing apoptosis. Treatment of HUVECs by N-acetyl-COs resulted in a significant reduction of density of the migration cells and repressed tubulogenesis process. The antiangiogenic effects of the oligosaccharides were further evaluated using in vivo zebrafish angiogenesis model, and the results showed that both oligosaccharides inhibited the growth of subintestinal vessels (SIV) of zebrafish embryos in a dose-dependent manner, as observed by endogenous alkaline phosphatase (EAP) staining assay. In contrast, no cytotoxicity was found when treating the NIH3T3 and several other cancer cells with the oligosaccharides. Our results also confirmed the antiangiogenic activity of N-acetyl-COs was significantly stronger than the parent oligosaccharide, COs.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | | | | | |
Collapse
|
49
|
Je JY, Cho YS, Kim SK. Cytotoxic activities of water-soluble chitosan derivatives with different degree of deacetylation. Bioorg Med Chem Lett 2006; 16:2122-6. [PMID: 16460934 DOI: 10.1016/j.bmcl.2006.01.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 12/30/2005] [Accepted: 01/17/2006] [Indexed: 11/16/2022]
Abstract
Chitosans with different degree of deacetylation (DD) (90% and 50% deacetylated chitosan) were prepared by N-deacetylation followed by grafted onto chitosan to form water-soluble aminoethyl-chitosan (AE-chitosan), and dimetylaminoethyl-chitosan (DMAE-chitosan), diethylaminoethyl-chitosan (DEAE-chitosan). In the present study, cytotoxic activities of the chitosan derivatives were evaluated using three tumor cell lines and two normal cell lines, and structure-activity relationship was suggested. The cytotoxic activity was dependent on their DD and substituted group.
Collapse
Affiliation(s)
- Jae-Young Je
- Department of Chemistry, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | |
Collapse
|
50
|
Peng Y, Han B, Liu W, Xu X. Preparation and antimicrobial activity of hydroxypropyl chitosan. Carbohydr Res 2005; 340:1846-51. [PMID: 15979054 DOI: 10.1016/j.carres.2005.05.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 05/22/2005] [Accepted: 05/26/2005] [Indexed: 11/24/2022]
Abstract
Water-soluble hydroxypropyl chitosan (HPCS) derivatives with different degrees of substitution (DS) and weight-average molecular weight (Mw) were synthesized from chitosan and propylene epoxide under basic conditions. Their structure was characterized by IR spectroscopy, NMR spectroscopy, and elemental analysis, which showed that both the OH groups at C-6 and C-3 and the NH2 group of chitosan were alkylated. The DS value of HPCS ranged from 1.5 to 3.1 and the Mw was between 2.1x10(4) and 9.2x10(4). In vitro antimicrobial activities of the HPCS derivatives were evaluated by the Kirby-Bauer disc diffusion method and the macrotube dilution broth method. The HPCS derivatives exhibited no inhibitory effect on two bacterial strains (Escherichia coli and Staphylococcus aureus); however, some inhibitory effect was found against four of the six pathogenic fruit fungi investigated. Some derivatives (HPCS1, HPCS2, HPCS3, HPCS3-1, and HPCS4) were effective against C. diplodiella and F. oxysporum. HPCS3-1 is the most effective one with MIC values of 5.0, 0.31, 0.31, and 0.16mg/mL against A. mali, C. diplodiella, F. oxysporum, and P. piricola, respectively. Antifungal effects were also observed for HPCS2 and HPCS3-1 against A. mali, as well as HPCS3 and HPCS3-1 against P. piricola. The results suggest that relatively lower DS and higher Mw value enhances the antifungal activity of HPCS derivatives.
Collapse
Affiliation(s)
- Yanfei Peng
- Department of Marine Biological Engineering, Ocean University of China, Qingdao 266003, China.
| | | | | | | |
Collapse
|