1
|
Du HF, Zhang YH, Li W, Zhu H, Pang S, Song DB, Liu Z, Pittman CU, Cao F. Antifungal Activity and Mechanism of Diaporthein B against Botryosphaeria dothidea in Prevention of Apple Ring Rot. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20892-20904. [PMID: 39255954 DOI: 10.1021/acs.jafc.4c06101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Apple ring rot, caused by the pathogenic fungus Botryosphaeria dothidea, has inflicted substantial economic losses and caused significant food safety concerns. In this study, a pimarane-type diterpenoid, diaporthein B (DTB), isolated from a marine-derived fungus, exhibited significant antifungal activity against B. dothidea, with an EC50 value of 8.8 μg/mL. Transcriptome, metabolome, and physiological assays revealed that DTB may target mitochondria and disrupt the tricarboxylic acid (TCA) cycle and oxidative phosphorylation processes. This interference led to increased accumulation of reactive oxygen species and subsequent lipid peroxidation, ultimately inhibiting fungal growth. Furthermore, DTB exhibited an inhibitory potency against apple ring rot at a concentration of 31.2 μg/mL, achieving rates ranging from 67.7 to 81.6% across four distinct apple cultivars. These results indicated that DTB could serve as a novel fungicide for controlling apple ring rot in apple cultivation, transportation, and storage.
Collapse
Affiliation(s)
- Hui-Fang Du
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Ya-Hui Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Wan Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Huajie Zhu
- School of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Sen Pang
- Huanghe Science & Technology College, Zhengzhou 450005, China
| | - Da-Bin Song
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Fei Cao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China
| |
Collapse
|
2
|
He J, Zou Q, Deng H, He S, Yan D, Pan K, Zhou Y, Zhao Z, Cui H, Liu Y. Novel 6/7/6 ring system diterpenoids and cytochalasins from the fungus Eutypella scoparia GZU-4-19Y and their anti-inflammatory activity. Fitoterapia 2024; 173:105804. [PMID: 38181894 DOI: 10.1016/j.fitote.2023.105804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Two new compounds eutyditerpenoid A (1) and seco-phenochalasin B (5), together with seven known compounds diaporthein A (2), aspergillon A (3), phenochalasin B (4), cytochalasins Z24 and Z25 (6 and 7), scoparasins A and B (8 and 9) were isolated from marine-derived Eutypella scoparia GZU-4-19Y. Among them, eutyditerpenoid A (1) with a rare 6/7/6 ring system possesing an anhydride moiety was the first example in the pimarane-type diterpenoids. Their structures were determined based on spectroscopic methods and the electronic circular dichroism (ECD) calculations. In the bioassays, all of the isolates were evaluated for their inhibitory activity against NO production induced by lipopolysaccharide in RAW 264.7 cells. Compounds 3 and 7 showed potent NO inhibition activity with IC50 values of 2.1 and 17.1 μM respectively, and the former also significantly suppressed the protein expression of iNOS and COX-2 at the concentration of 2.5 μM.
Collapse
Affiliation(s)
- Jingxin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qinghui Zou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huimei Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shiting He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Die Yan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Kaihui Pan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuwei Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Hui Cui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China.
| | - Yena Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
3
|
Onlamun T, Boonthavee A, Brooks S. Diversity and Advantages of Culturable Endophytic Fungi from Tea ( Camellia sinensis). J Fungi (Basel) 2023; 9:1191. [PMID: 38132791 PMCID: PMC10744531 DOI: 10.3390/jof9121191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Sordariomycetes, Dothideomycetes, and Eurotioycetes are three classes of endophytes that colocalize with tea (Camellia sinensis). Overall, the diversity indexes in this study indicated a greater abundance of fungal endophytes in roots and stems. Taking the production system into account, conventional tea plantations exhibit lower diversity compared to organic tea plantations. Notably, the influence of agrochemicals had the largest impact on the fungal endophyte communities within roots and young leaves. Despite the limited fungal diversity in conventional plantations, three fungal endophytes were isolated from tea in this culture system: Diaporthe sp., YI-005; Diaporthe sp., SI-007; and Eurotium sp., RI-008. These isolated endophytes exhibited high antagonistic activity (93.00-97.00% inhibition of hypha growth) against Stagonosporopsis cucurbitacearum, the causal agent of gummy stem blight disease. On the other hand, endophytic fungi isolated from tea in an organic system-Pleosporales sp., SO-006 and Pleosporales sp., RO-013-established the ability to produce indole-3-acetic acid (IAA; 0.65 ± 0.06 µg/mL) and assist the solubilizing phosphorus (5.17 ± 1.03 µg/mL) from the soil, respectively. This suggested that the level of diversity, whether at the tissue level or within the farming system, did not directly correlate with the discovery of beneficial fungi. More importantly, these beneficial fungi showed the potential to develop into biological agents to control the devastating diseases in the cucurbit family and the potential for use as biofertilizers with a wide range of applications in plants. Therefore, it can be concluded that there are no restrictions limiting the use of fungal endophytes solely to the plant host from which they were originally isolated.
Collapse
Affiliation(s)
- Thanyarat Onlamun
- Department of Agricultural Biotechnology (Plant), Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | | | - Siraprapa Brooks
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| |
Collapse
|
4
|
Wei W, Khan B, Dai Q, Lin J, Kang L, Rajput NA, Yan W, Liu G. Potential of Secondary Metabolites of Diaporthe Species Associated with Terrestrial and Marine Origins. J Fungi (Basel) 2023; 9:jof9040453. [PMID: 37108907 PMCID: PMC10143158 DOI: 10.3390/jof9040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Diaporthe species produce versatile secondary metabolites (SMs), including terpenoids, fatty acids, polyketides, steroids, and alkaloids. These structurally diverse SMs exhibit a wide range of biological activities, including cytotoxic, antifungal, antibacterial, antiviral, antioxidant, anti-inflammatory, and phytotoxic activities, which could be exploited in the medical, agricultural, and other modern industries. This review comprehensively covers the production and biological potencies of isolated natural products from the genus Diaporthe associated with terrestrial and marine origins. A total of 275 SMs have been summarized from terrestrial (153; 55%) and marine (110; 41%) origins during the last twelve years, and 12 (4%) compounds are common to both environments. All secondary metabolites are categorized predominantly on the basis of their bioactivities (cytotoxic, antibacterial, antifungal, and miscellaneous activity). Overall, 134 bioactive compounds were isolated from terrestrial (92; 55%) and marine (42; 34%) origins, but about half the compounds did not report any kind of activity. The antiSMASH results suggested that Diaporthe strains are capable of encoding a wide range of SMs and have tremendous biosynthetic potential for new SMs. This study will be useful for future research on drug discovery from terrestrial and marine natural products.
Collapse
Affiliation(s)
- Wei Wei
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Babar Khan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Qun Dai
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Jie Lin
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Liqin Kang
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Nasir Ahmed Rajput
- Department of Plant Pathology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Wei Yan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiyou Liu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| |
Collapse
|
5
|
Wang P, Wang H, Yang J, Yang L, Cai C, Yuan J, Wu F, Gai C, Mei W, Dai H. New Isocoumarins from the Marine Fungus Phaeosphaeriopsis sp. WP-26. Mar Drugs 2023; 21:md21030150. [PMID: 36976199 PMCID: PMC10054857 DOI: 10.3390/md21030150] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Five new isocoumarins, phaeosphaerins A–E (1–5), were isolated from the fermentation broth of the marine fungus Phaeosphaeriopsis sp. WP-26, along with one known isocoumarin, 6,8-dihydroxy-7-methoxy-3-methylisocoumarin (6), and two known pimarane-type diterpenes, diaportheins A (7) and B (8). Their structures were elucidated via NMR experiments, X-ray diffraction analysis, and comparison of the experimental and computed ECD curves. Compounds 1–7 displayed weak neuroprotective effects against H2O2-induced damage in SH-SY5Y cells. Moreover, compound 8 showed cytotoxicity against BEL-7402, SGC-7901, K562, A549, and HL-60 cell lines.
Collapse
Affiliation(s)
- Pei Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530000, China
| | - Huifang Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Juchun Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Li Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Caihong Cai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jingzhe Yuan
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Fei Wu
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Cuijuan Gai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Correspondence: (W.M.); (H.D.); Tel./Fax: +86-0898-6698-7529 (W.M.); +86-0898-6696-1869 (H.D.)
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Correspondence: (W.M.); (H.D.); Tel./Fax: +86-0898-6698-7529 (W.M.); +86-0898-6696-1869 (H.D.)
| |
Collapse
|
6
|
Hsu IT, Herzon SB. Fragment Coupling Approach to Diaporthein B. J Org Chem 2023; 88:2221-2244. [PMID: 36737056 DOI: 10.1021/acs.joc.2c02655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pimarane diterpenes are produced by a diverse array of plants, fungi, and bacteria. Many members of this family possess antimicrobial and antiproliferative activities. The pimarane diterpenes are characterized by a tricyclic carbon scaffold comprising three fused six-membered rings and at least three quaternary centers. Here, we describe two convergent, fragment-based strategies toward the synthesis of diaporthein B (3), one of the most highly oxidized pimarane diterpenes. The first approach provided access to the tricyclic carbon scaffold of the target and featured a highly diastereoselective fragment coupling, a novel carbonylative Stille cross-coupling to directly access an α-hydroxyketone from a vinyl iodide, and a tandem aldol cyclization-deprotection cascade. The second route utilized a diastereoselective 1,4-addition of a silyloxyfuran to an unsaturated ketone, followed by an epoxidation-ring opening sequence, to access a highly oxidized intermediate containing two elaborated cyclohexane rings. The chemistry developed herein may ultimately be useful in an eventual synthesis of this class of natural products.
Collapse
Affiliation(s)
- Ian Tingyung Hsu
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut06520, United States.,Departments of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut06520, United States
| |
Collapse
|
7
|
Enzyme-like polyene cyclizations catalyzed by dynamic, self-assembled, supramolecular fluoro alcohol-amine clusters. Nat Commun 2023; 14:813. [PMID: 36781877 PMCID: PMC9925744 DOI: 10.1038/s41467-023-36157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
Terpene cyclases catalyze one of the most powerful transformations with respect to efficiency and selectivity in natural product (bio)synthesis. In such polyene cyclizations, structurally highly complex carbon scaffolds are built by the controlled ring closure of linear polyenes. Thereby, multiple C,C bonds and stereocenters are simultaneously created with high precision. Structural pre-organization of the substrate carbon chain inside the active center of the enzyme is responsible for the product- and stereoselectivity of this cyclization. Here, we show that in-situ formed fluorinated-alcohol-amine supramolecular clusters serve as artificial cyclases by triggering enzyme-like reactivity and selectivity by controlling substrate conformation in solution. Because of the dynamic nature of these supramolecular assemblies, a broad range of terpenes can be produced diastereoselectively. Mechanistic studies reveal a finely balanced interplay of fluorinated solvent, catalyst, and substrate as key to establishing nature's concept of a shape-selective polyene cyclization in organic synthesis.
Collapse
|
8
|
Ye K, Ai HL. Pimarane Diterpenes from Fungi. Pharmaceuticals (Basel) 2022; 15:ph15101291. [PMID: 36297402 PMCID: PMC9609704 DOI: 10.3390/ph15101291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Pimarane diterpenes are a kind of tricyclic diterpene, generally isolated from plant and fungi. In nature, fungi distribute widely and there are nearly two to three million species. They provide many secondary metabolites, including pimarane diterpenes, with novel skeletons and bioactivities. These natural products from fungi have the potential to be developed into clinical medicines. Herein, the structures and bioactivities of 197 pimarane diterpenes are summarized and the biosynthesis and pharmacological researches of pimarane diterpenes are introduced. This review may be useful improving the understanding of pimarane diterpenes from fungi.
Collapse
|
9
|
Yang SS, Chen YF, Ko HH, Wu HC, Hsieh SY, Wu MD, Cheng MJ, Chang HS. Undescribed alkyne-geranylcyclohexenetriols from the endophyte Diaporthe caulivora 09F0132 and their anti-melanogenic activity. PHYTOCHEMISTRY 2022; 202:113312. [PMID: 35830940 DOI: 10.1016/j.phytochem.2022.113312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
To explore valuable endophytic fungus from Formosan Lauraceous plants as natural medicinal products, the fungus, Diaporthe caulivora isolated from leaves of Neolitsea daibuensis, was investigated. Through a thorough investigation of the ethanolic extract of the solid fermentation of D. caulivora 09F0132, six undescribed alkyne-geranylcyclohexenetriols, caulivotrioloxins A-F, one undescribed trichopyrone, diapopyrone, two undescribed sesquiterpenes, caulibysins A-B, one compound firstly isolated from the natural source, 3-O-desmethyl phomentrioloxin, and eight known compounds have been successfully identified. The absolute configuration of caulibysin A was confirmed by single-crystal X-ray diffraction, and those of (3R,8S)-5,7-dihydroxy-3-(1-hydroxyethyl)phthalide and (3S,8S)-5,7-dihydroxy-3-(1-hydroxyethyl)phthalide were determined by circular dichroism (CD) spectra. Among the isolated compounds, caulivotrioloxin A concentration-dependently decreased the cellular melanin contents and tyrosinase activities in mouse melanoma B16-F10 cells, suggesting the anti-melanogenic potentials. The anti-melanogenic effects of caulivotrioloxin A involved the decrease in the protein expressions of melanogenic enzymes, including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Taken together, these results suggested that the isolates from D. caulivora could be served as natural melanogenesis inhibitors for cosmeceutical applications.
Collapse
Affiliation(s)
- Shuen-Shin Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yih-Fung Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan; Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Horng-Huey Ko
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan; Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ho-Cheng Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Sung-Yuan Hsieh
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 300, Taiwan
| | - Ming-Der Wu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 300, Taiwan
| | - Ming-Jen Cheng
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 300, Taiwan.
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan; Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
10
|
Fungal-derived compounds and mycogenic nanoparticles with antimycobacterial activity: a review. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
AbstractTuberculosis (TB) is a persistent lung infection caused by Mycobacterium tuberculosis. The disease is characterized by high mortality rates of over 1 million per year. Unfortunately, the potency and effectiveness of currently used anti-TB drugs is gradually decreasing due to the constant development of persistence and resistance by M. tuberculosis. The adverse side effects associated with current anti-TB drugs, along with anti-TB drug resistance, present an opportunity to bio-prospect novel potent anti-TB drugs from unique sources. Fundamentally, fungi are a rich source of bioactive secondary metabolites with valuable therapeutic potential. Enhancing the potency and effectiveness of fungal-based anti-TB drug leads by chemical synthesis and/or modification with nanomaterials, may result in the discovery of novel anti-TB drugs. In this review, the antimycobacterial activity of fungal-derived compounds and mycogenic nanoparticles are summarized. Numerous fungal-derived compounds as well as some mycogenic nanoparticles that exhibit strong antimycobacterial activity that is comparable to that of approved drugs, were found. If fully explored, fungi holds the promise to become key drivers in the generation of lead compounds in TB-drug discovery initiatives.
Collapse
|
11
|
Xu Y, Zhong Z, Gao Y, Wang Y, Zhang L, Huang H, Zheng J, Zhang K, Zheng X, Goodin S. The Mangrove-Derived Diterpenoid Diaporthe B Inhibits the Stemness and Increases the Efficacy of Docetaxel in Prostate Cancer PC-3 Cells. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211049688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The absolute configuration of diaporthe B, a pimarane diterpene isolated from the mangrove derived endophytic fungus Eutypella sp #3E, was determined by a single-crystal x-ray diffraction study. The present study aimed to investigate the effects of diaporthe B on docetaxel-resistant prostate cancer PC-3 cells. Results of our studies showed that docetaxel-resistant PC-3 cells had higher sphere-forming efficiency and an increase in adherence to collagen-coated culture plates. The protein levels of cancer stem cell (CSC)-related markers CD44, CD133, and ALDH1A1 were higher in the docetaxel-resistant PC-3 cells than in the parental cells. Treatment with diaporthe B dose-dependently inhibited the growth and induced apoptosis in the resistant cells. Moreover, diaporthe B treatment decreased the sphere-forming efficiency and the adherence to collagen-coated plates in docetaxel-resistant PC-3 cells. Diaporthe B also decreased the protein levels of CSC-related markers CD44, CD133, and ALDH1A1 in the resistant cells. In addition, a combination of diaporthe B and docetaxel had a more potent effect on growth inhibition and apoptosis in the resistant cells than either agent alone. Our studies suggest that diaporthe B inhibits the stemness of prostate cancer cells and may have therapeutic potential for enhancing the efficacy of docetaxel in docetaxel-resistant prostate cancer cells.
Collapse
Affiliation(s)
- Yao Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Zhiwei Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Yiwen Gao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Yuhui Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Huarong Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Junxia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City, People’s Republic of China
| | - Xi Zheng
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Susan Goodin
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
12
|
Charria-Girón E, Espinosa MC, Zapata-Montoya A, Méndez MJ, Caicedo JP, Dávalos AF, Ferro BE, Vasco-Palacios AM, Caicedo NH. Evaluation of the Antibacterial Activity of Crude Extracts Obtained From Cultivation of Native Endophytic Fungi Belonging to a Tropical Montane Rainforest in Colombia. Front Microbiol 2021; 12:716523. [PMID: 34603244 PMCID: PMC8485978 DOI: 10.3389/fmicb.2021.716523] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/09/2021] [Indexed: 01/08/2023] Open
Abstract
Bioactive secondary metabolite production from endophytic fungi has gained a recurring research focus in recent decades as these microorganisms represent an unexplored biological niche for their diverse biotechnological potential. Despite this focus, studies involving tropical endophytes remain scarce, particularly those isolated from medicinal plants of these ecosystems. In addition, the state of the art of the pharmaceutical industry has experienced stagnation in the past 30years, which has pushed pathogenic infections to get one step ahead, resulting in the development of resistance to existing treatments. Here, five fungal endophytes were isolated from the medicinal plant Otoba gracilipes (Myristicaceae), which corresponded to the genera Xylaria and Diaporthe, and screened to demonstrate the promissory potential of these microorganisms for producing bioactive secondary metabolites with broad-spectrum antibacterial activities. Thus, the evaluation of crude organic extracts obtained from the mycelia and exhaust medium allowed the elucidation of Xylaria sp. and Diaporthe endophytica potential toward providing crude extracellular extracts with promising bioactivities against reference strains of Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 25923), according to the determined half-maximum inhibitory concentration (IC50) with values down to 3.91 and 10.50mg/ml against each pathogen, respectively. Follow-up studies provided insights into the polarity nature of bioactive compounds in the crude extracts through bioactivity guided fractionation using a polymeric resin absorbent alternative extraction procedure. In addition, evaluation of the co-culturing methods demonstrated how this strategy can enhance endophytes biosynthetic capacity and improve their antibacterial potential with a 10-fold decrease in the IC50 values against both pathogens compared to the obtained values in the preliminary evaluations of Xylaria sp. and D. endophytica crude extracts. These results support the potential of Colombian native biodiversity to provide new approaches concerning the global emergence of antibiotics resistance and future production of undiscovered compounds different from the currently used antibiotics classes and simultaneously call for the value of preserving native habitats due to their promising ecosystemic applications in the biotechnological and pharmaceutical industries.
Collapse
Affiliation(s)
- Esteban Charria-Girón
- Departamento de Ingeniería Bioquímica, Facultad de Ingeniería, Universidad Icesi, Cali, Colombia
| | - María C Espinosa
- Departamento de Ingeniería Bioquímica, Facultad de Ingeniería, Universidad Icesi, Cali, Colombia
| | - Andrea Zapata-Montoya
- Departamento de Ingeniería Bioquímica, Facultad de Ingeniería, Universidad Icesi, Cali, Colombia
| | - María J Méndez
- Departamento de Ingeniería Bioquímica, Facultad de Ingeniería, Universidad Icesi, Cali, Colombia
| | - Juan P Caicedo
- Departamento de Ingeniería Bioquímica, Facultad de Ingeniería, Universidad Icesi, Cali, Colombia
| | - Andrés F Dávalos
- Departamento de Ciencias Biológicas, Facultad de Ciencias Naturales, Universidad Icesi, Cali, Colombia
| | - Beatriz E Ferro
- Departamento de Salud Pública y Medicina Comunitaria, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Aida M Vasco-Palacios
- Grupo de Microbiología Ambiental - BioMicro, Escuela de Microbiología, Universidad de Antioquia (UdeA), Medellín, Colombia.,Asociación Colombiana de Micología (ASCOLMIC), Medellin, Colombia
| | - Nelson H Caicedo
- Departamento de Ingeniería Bioquímica, Facultad de Ingeniería, Universidad Icesi, Cali, Colombia.,Centro BioInc, Universidad Icesi, Cali, Colombia
| |
Collapse
|
13
|
Shabana S, Lakshmi KR, Satya AK. An Updated Review of Secondary Metabolites from Marine Fungi. Mini Rev Med Chem 2021; 21:602-642. [PMID: 32981503 DOI: 10.2174/1389557520666200925142514] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 11/22/2022]
Abstract
Marine fungi are valuable and richest sources of novel natural products for medicinal and pharmaceutical industries. Nutrient depletion, competition or any other type of metabolic stress which limits marine fungal growth promotes the formation and secretion of secondary metabolites. Generally secondary metabolites can be produced by many different metabolic pathways and include antibiotics, cytotoxic and cyto-stimulatory compounds. Marine fungi produce many different types of secondary metabolites that are of commercial importance. This review paper deals with around 187 novel compounds and 212 other known compounds with anticancer and antibacterial activities with a special focus on the period from 2011-2019. Furthermore, this review highlights the sources of organisms, chemical classes and biological activities (anticancer and antibacterial) of metabolites, that were isolated and structurally elucidated from marine fungi to throw a helping hand for novel drug development.
Collapse
Affiliation(s)
- Syed Shabana
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Guntur, Andhra Pradesh, India
| | - K Rajya Lakshmi
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Guntur, Andhra Pradesh, India
| | - A Krishna Satya
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Guntur, Andhra Pradesh, India
| |
Collapse
|
14
|
Zhang Q, Ma WG, Zhao Q, Zhao YY, Huang ZP, Xu YX, Zhu DF, Li JC, Zhang XM. α-pyrone derivatives from endophytic fungus Diaporthe sp. RJ-41. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2020.104198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Metabolites with Anti-Inflammatory Activity from the Mangrove Endophytic Fungus Diaporthe sp. QYM12. Mar Drugs 2021; 19:md19020056. [PMID: 33498874 PMCID: PMC7912375 DOI: 10.3390/md19020056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/25/2022] Open
Abstract
One new diterpenoid, diaporpenoid A (1), two new sesquiterpenoids, diaporpenoids B–C (2,3) and three new α-pyrone derivatives, diaporpyrones A–C (4–6) were isolated from an MeOH extract obtained from cultures of the mangrove endophytic fungus Diaporthe sp. QYM12. Their structures were elucidated by extensive analysis of spectroscopic data. The absolute configurations were determined by electronic circular dichroism (ECD) calculations and a comparison of the specific rotation. Compound 1 had an unusual 5/10/5-fused tricyclic ring system. Compounds 1 and 4 showed potent anti-inflammatory activities by inhibiting the production of nitric oxide (NO) in lipopolysaccharide (LPS)-induced RAW264.7 cells with IC50 values of 21.5 and 12.5 μM, respectively.
Collapse
|
16
|
Li WJ, McKenzie EHC, Liu JK(J, Bhat DJ, Dai DQ, Camporesi E, Tian Q, Maharachchikumbura SSN, Luo ZL, Shang QJ, Zhang JF, Tangthirasunun N, Karunarathna SC, Xu JC, Hyde KD. Taxonomy and phylogeny of hyaline-spored coelomycetes. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00440-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Anti-inflammatory activities of isopimara-8(9),15-diene diterpenoids and mode of action of kaempulchraols B–D from Kaempferia pulchra rhizomes. J Nat Med 2020; 74:487-494. [DOI: 10.1007/s11418-020-01389-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
|
18
|
Nwet Win N, Hardianti B, Kasahara S, Ngwe H, Hayakawa Y, Morita H. Anti-inflammatory activities of isopimara-8(14),-15-diene diterpenoids and mode of action of kaempulchraols P and Q from Kaempferia pulchra rhizomes. Bioorg Med Chem Lett 2019; 30:126841. [PMID: 31836445 DOI: 10.1016/j.bmcl.2019.126841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/06/2019] [Accepted: 11/15/2019] [Indexed: 01/24/2023]
Abstract
Inflammation is an extensively recognized link to many pathological diseases. It is a host response for protection from infections and tissue damage. Infections trigger acute inflammation; however, persistent infection will contribute to chronic inflammation and higher disease susceptibility. Deregulated inflammatory responses can cause excessive or long-lasting tissue damage, manifested as cancer, immune disorders, diabetes, etc. NF-κB is a central mediator of pro-inflammatory gene induction and functions in both innate and adaptive immune cells; therefore, the anti-inflammatory regulation of NF-κB is needed. Natural products reportedly play an important role in controlling the inflammatory response pathways. However, the anti-inflammatory activities of isopimara-8-(14),15-diene diterpenoids have not yet been fully elucidated. To elucidate the anti-inflammatory activities of the isopimara-8(14),15-diene diterpenoids, we investigated 21 isopimara-8(14),15-diene diterpenoids previously isolated from Kaempferia pulchra rhizomes. Eleven compounds exhibited NO inhibitory activity against lipopolysaccharide (LPS)-induced RAW264.7 cells, with IC50 values ranging from 30 to 100 μM. Furthermore, the most potent kaempulchraols P and Q, with IC50 values of 39.88 and 36.05 μM, respectively, inhibited the NF-κB-mediated transactivation of a luciferase reporter gene, IL-6 production, and COX-2 expression, with an effective dose of 25 μM. These findings provide new insights into the anti-inflammatory activities of the isopimara-8(14),15-diene diterpenoids.
Collapse
Affiliation(s)
- Nwet Nwet Win
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Besse Hardianti
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan; Sekolah Tinggi Ilmu Farmasi Makassar, Perintis Kemerdekaan Street KM13.7, Makassar 90242, Indonesia
| | - Shiori Kasahara
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Hla Ngwe
- Department of Chemistry, University of Yangon, Yangon 11041, Myanmar
| | - Yoshihiro Hayakawa
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan.
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
19
|
Chang F, Wang S, Li C, Lu Y, Vanson Liu S, Chen C, Wu Y, Cheng Y. Natural Products from
Diaporthe arecae
with Anti‐Angiogenic Activity. Isr J Chem 2019. [DOI: 10.1002/ijch.201800158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fang‐Rong Chang
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Marine Biotechnology and ResourcesNational Sun Yat-sen University Kaohsiung 804 Taiwan
- National Research Institute of Chinese Medicine Taipei 112 Taiwan
| | - Shih‐Wei Wang
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medicine, Mackay Medical College New Taipei city 252 Taiwan
| | - Chi‐Ying Li
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
| | - Yen‐Yi Lu
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
| | - Shang‐Yin Vanson Liu
- Department of Marine Biotechnology and ResourcesNational Sun Yat-sen University Kaohsiung 804 Taiwan
| | - Ching‐Yeu Chen
- Department of Physical TherapyTzu-Hui Institute of Technology Pingtung 926 Taiwan
| | - Yang‐Chang Wu
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
- Research Center for Natural Products & Drug DevelopmentKaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Kaohsiung 807 Taiwan
| | - Yuan‐Bin Cheng
- Graduate Institute of Natural Products College of PharmacyKaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Kaohsiung 807 Taiwan
| |
Collapse
|
20
|
Reveglia P, Cimmino A, Masi M, Nocera P, Berova N, Ellestad G, Evidente A. Pimarane diterpenes: Natural source, stereochemical configuration, and biological activity. Chirality 2018; 30:1115-1134. [DOI: 10.1002/chir.23009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Pierluigi Reveglia
- Dipartimento di Scienze Chimiche Università di Napoli Federico II; Complesso Universitario Monte S. Angelo; Naples Italy
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche Università di Napoli Federico II; Complesso Universitario Monte S. Angelo; Naples Italy
| | - Marco Masi
- Dipartimento di Scienze Chimiche Università di Napoli Federico II; Complesso Universitario Monte S. Angelo; Naples Italy
| | - Paola Nocera
- Dipartimento di Scienze Chimiche Università di Napoli Federico II; Complesso Universitario Monte S. Angelo; Naples Italy
| | - Nina Berova
- Department of Chemistry; Columbia University; New York NY USA
| | - George Ellestad
- Department of Chemistry; Columbia University; New York NY USA
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche Università di Napoli Federico II; Complesso Universitario Monte S. Angelo; Naples Italy
| |
Collapse
|
21
|
Carvalho CRD, Ferreira-D'Silva A, Wedge DE, Cantrell CL, Rosa LH. Antifungal activities of cytochalasins produced by Diaporthe miriciae, an endophytic fungus associated with tropical medicinal plants. Can J Microbiol 2018; 64:835-843. [PMID: 29874477 DOI: 10.1139/cjm-2018-0131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we evaluated the antifungal potential of cytochalasins produced by Diaporthe taxa against phytopathogenic fungi. Using molecular methods, seven endophytic fungal strains from the medicinal plants Copaifera pubiflora and Melocactus ernestii were identified as Diaporthe miriciae, while two isolates were identified to the genus level (Diaporthe sp.). All crude extracts of Diaporthe species produced via solid-state fermentation were evaluated by 1H NMR analyses. Crude extracts of the isolates D. miriciae UFMGCB 6350, 7719, 7646, 7653, 7701, 7772, and 7770 and Diaporthe sp. UFMGCB 7696 and 7720 were demonstrated to produce highly functionalized compounds. The extracts of D. miriciae UFMGCB 7719 and 6350 were selected as representative Diaporthe samples and subjected to bioassay-directed fractionation to isolate cytochalasins H and J. Cytochalasins H and J were evaluated for activities against the fungal plant pathogens Colletotrichum fragariae, Colletotrichum gloeosporioides, Colletotrichum acutatum, Botrytis cinerea, Fusarium oxysporum, Phomopsis obscurans, and Phomopsis viticola using microdilution broth assays. Cytochalasins H and J exhibited the most potent activities against the Phomopsis species tested. Our results showed that Diaporthe species were potential producers of different cytochalasins, which exhibit potential for controlling fungal diseases in planta and (or) maintaining antagonism.
Collapse
Affiliation(s)
- C R de Carvalho
- a Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, P.O. Box 486, CEP 31270-901, Brazil
| | - A Ferreira-D'Silva
- a Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, P.O. Box 486, CEP 31270-901, Brazil
| | - D E Wedge
- b Natural Products Utilization Research Unit, United States Department of Agriculture, Agricultural Research Service, University, MS 38677, USA
| | - C L Cantrell
- b Natural Products Utilization Research Unit, United States Department of Agriculture, Agricultural Research Service, University, MS 38677, USA
| | - L H Rosa
- a Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, P.O. Box 486, CEP 31270-901, Brazil
| |
Collapse
|
22
|
Dothiorelone derivatives from an endophyte Diaporthe pseudomangiferaea inhibit the activation of human lung fibroblasts MRC-5 cells. Fitoterapia 2018; 127:7-14. [DOI: 10.1016/j.fitote.2018.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 01/09/2023]
|
23
|
Hu M, Yang XQ, Wan CP, Wang BY, Yin HY, Shi LJ, Wu YM, Yang YB, Zhou H, Ding ZT. Potential antihyperlipidemic polyketones from endophytic Diaporthe sp. JC-J7 in Dendrobium nobile. RSC Adv 2018; 8:41810-41817. [PMID: 35558782 PMCID: PMC9091869 DOI: 10.1039/c8ra08822e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/30/2018] [Indexed: 11/21/2022] Open
Abstract
Eleven new polyketones named diaporthsins A–K (1–11) were isolated from the fermentation of Diaporthe sp. JC-J7. The chemical structures of compounds (1–11) were elucidated by spectroscopic methods including HRESIMS, 2DNMR, NMR and chemical methods. Compound 11 features an unusual acyclic polyketone–phenolic polyketone hybrid structure that integrates the characteristics of different fungal metabolites (cytosporone and multiplolide). Compound 3 was the only C12-polyketone obtained in this research. These new polyketones showed inhibitory activity on triglycerides (TG) in steatosis hepatocyte L-02 cells. Among them, compound 5 and (4E)-6,7,9-trihydroxydec-4-enoic acid displayed inhibitory activities on TG in steatotic L-02 cells with inhibition ratios of 26% and 21% at concentration of 5 μg mL−1; also, inhibition ratios of 8-O-acetylmultiplolide A and phomopsisporone A at concentration of 5 μg mL−1 were calculated to be about 24% and 16%, respectively, which were equivalent to the antihyperlipidemic activity of lovastatin. The preliminary structure–activity relationship indicated that acetyl at C-8 can increase the antihyperlipidemic activity of multiplolide A and the glycol ester and hydroxyl at C-6 can also increase the corresponding activity of diaporthsin B. Eleven new polyketones were isolated from Diaporthe sp. JC-J7, and some compounds indicated antihyperlipidemic activity.![]()
Collapse
|
24
|
Antibacterial and Antioxidant Metabolites of Diaporthe spp. Isolated from Flowers of Melodorum fruticosum. Curr Microbiol 2017; 75:476-483. [PMID: 29159689 DOI: 10.1007/s00284-017-1405-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/16/2017] [Indexed: 01/17/2023]
Abstract
Fifty-two strains of endophytic fungi were isolated from flowers of the medicinal plant Melodorum fruticosum. Seven genera were identified including Alternaria, Aspergillus, Colletotrichum, Diaporthe, Fusarium, Greeneria and Nigrospora. All strains were cultured for 30 days and further macerated in ethyl acetate solvent for 3 days. The obtained fungal extracts were examined for antibacterial activity using agar disc diffusion against nine pathogenic bacteria: Staphylococcus aureus, Bacillus subtilis, B. cereus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, Shigella flexneri, Vibrio cholerae and V. parahaemolyticus. Forty-three fungal extracts exhibited antibacterial activity against at least one tested pathogen. The antioxidant properties of all extracts were also investigated by DPPH scavenging assay. Sixteen extracts displayed high antioxidant capacity (IC50 ranging from 10 to 50 µg/mL) when compared to the gallic acid and trolox standards (IC50 of 12.46 and 2.55 µg/mL, respectively). The crude extracts of Diaporthe sp. MFLUCC16-0682 and Diaporthe sp. MFLUCC16-0693 exhibited notable antibacterial and antioxidant activities. Analysis of chemical composition using gas chromatography-mass spectrometry suggested that the observed antibacterial activity of the two Diaporthe spp. was possibly due to the presence of abienol, 4-methoxy stilbene, phenethyl cinnamate and 2Z,6Z-farnesal, while their potential antioxidant activity could be attributed to phenolic compounds, such as benzene acetaldehyde, benzyl benzoate, salicylaldehyde, benzoin and benzyl cinnamate. The results suggest that the genus Diaporthe is a potential source of metabolites that can be used in a variety of applications.
Collapse
|
25
|
Boonsombat J, Mahidol C, Chawengrum P, Reuk-Ngam N, Chimnoi N, Techasakul S, Ruchirawat S, Thongnest S. Roscotanes and roscoranes: Oxygenated abietane and pimarane diterpenoids from Kaempferia roscoeana. PHYTOCHEMISTRY 2017; 143:36-44. [PMID: 28759790 DOI: 10.1016/j.phytochem.2017.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/17/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Eight previously undescribed ditepenoids, including four oxygenated abietanes (roscotanes A-D) and four oxygenated pimaranes (roscoranes A-D), along with twelve known diterpenoids were isolated from the whole plants of Kaempferia roscoeana. Their structures were elucidated by extensive spectroscopic analysis, and the structure of roscotane A was further confirmed by single crystal X-ray diffraction analysis. Most isolated compounds were evaluated for their antimicrobial and antimalarial activities.
Collapse
Affiliation(s)
- Jutatip Boonsombat
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Bangkok 10210, Thailand
| | - Chulabhorn Mahidol
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Bangkok 10210, Thailand; Chulabhorn Graduate Institute, Chemical Biology Program, Kamphaeng Phet 6 Road, Bangkok 10210, Thailand
| | - Pornsuda Chawengrum
- Chulabhorn Graduate Institute, Chemical Biology Program, Kamphaeng Phet 6 Road, Bangkok 10210, Thailand
| | - Nanthawan Reuk-Ngam
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Bangkok 10210, Thailand
| | - Nitirat Chimnoi
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Bangkok 10210, Thailand
| | - Supanna Techasakul
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Bangkok 10210, Thailand; Chulabhorn Graduate Institute, Chemical Biology Program, Kamphaeng Phet 6 Road, Bangkok 10210, Thailand; Chulabhorn Graduate Institute, Center for Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Thailand
| | - Sanit Thongnest
- Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Bangkok 10210, Thailand.
| |
Collapse
|
26
|
|
27
|
Li X, Li XD, Li XM, Xu GM, Liu Y, Wang BG. Wentinoids A–F, six new isopimarane diterpenoids from Aspergillus wentii SD-310, a deep-sea sediment derived fungus. RSC Adv 2017. [DOI: 10.1039/c6ra27209f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Wentinoids A–F (1–6), presented as the first examples of isopimarane analogues from the fungus Aspergillus wentii, were isolated and identified.
Collapse
Affiliation(s)
- Xin Li
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
| | - Xiao-Dong Li
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
| | - Xiao-Ming Li
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
| | - Gang-Ming Xu
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
| | - Yang Liu
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
| | - Bin-Gui Wang
- Laboratory of Marine Biology and Biotechnology
- Qingdao National Laboratory for Marine Science and Technology
- Key Laboratory of Experimental Marine Biology
- Institute of Oceanology
- Chinese Academy of Sciences
| |
Collapse
|
28
|
Barros de Alencar MVO, de Castro E Sousa JM, Rolim HML, de Medeiros MDGF, Cerqueira GS, de Castro Almeida FR, Citó AMDGL, Ferreira PMP, Lopes JAD, de Carvalho Melo-Cavalcante AA, Islam MT. Diterpenes as lead molecules against neglected tropical diseases. Phytother Res 2016; 31:175-201. [PMID: 27896890 DOI: 10.1002/ptr.5749] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 01/19/2023]
Abstract
Nowadays, neglected tropical diseases (NTDs) are reported to be present everywhere. Poor and developing areas in the world have received great attention to NTDs. Drug resistance, safety profile, and various challenges stimulate the search for alternative medications. Plant-based drugs are viewed with great interest, as they are believed to be devoid of side effects. Diterpenes, a family of essential oils, have showed attractive biological effects. A systematic review of the literature was carried out to summarize available evidences of diterpenes against NTDs. For this, databases were searched using specific search terms. Among the 2338 collected reports, a total of 181 articles were included in this review. Of them, 148 dealt with investigations using single organisms, and 33 used multiple organisms. No mechanisms of action were reported in the case of 164 reports. A total of 93.92% were related to nonclinical studies, and 4.42% and 1.66% dealt with preclinical and clinical studies, respectively. The review displays that many diterpenes are effective upon Chagas disease, chikungunya, echinococcosis, dengue, leishmaniasis, leprosy, lymphatic filariasis, malaria, schistosomiasis, and tuberculosis. Indeed, diterpenes are amazing drug candidates against NTDs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - João Marcelo de Castro E Sousa
- Department of Biological Sciences, Federal University of Piauí, Picos, (Piauí), 64.607-670, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Hercília Maria Lins Rolim
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Pharmacy, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Maria das Graças Freire de Medeiros
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Pharmacy, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Gilberto Santos Cerqueira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Postgraduate Program in Biotechnology, Biotechnology and Biodiversity Center for Research (BIOTEC), Federal University of Piauí (LAFFEX), Parnaíba, Piauí, 64.218-470, Brazil
| | - Fernanda Regina de Castro Almeida
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Antônia Maria das Graças Lopes Citó
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Chemistry, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | | | - Ana Amélia de Carvalho Melo-Cavalcante
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Md Torequl Islam
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
- Department of Pharmacy, Southern University Bangladesh, Mehedibag, Chittagong, 4000, Bangladesh
| |
Collapse
|
29
|
Liu H, Zhang L, Chen Y, Li S, Tan G, Sun Z, Pan Q, Ye W, Li H, Zhang W. Cytotoxic pimarane-type diterpenes from the marine sediment-derived fungus Eutypella sp. FS46. Nat Prod Res 2016; 31:404-410. [DOI: 10.1080/14786419.2016.1169418] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Ling Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Guohui Tan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Zhanghua Sun
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qingling Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Wei Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haohua Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
30
|
Xia X, Qi J, Liu Y, Jia A, Zhang Y, Liu C, Gao C, She Z. Bioactive isopimarane diterpenes from the fungus, Epicoccum sp. HS-1, associated with Apostichopus japonicus. Mar Drugs 2015; 13:1124-32. [PMID: 25738327 PMCID: PMC4377976 DOI: 10.3390/md13031124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/08/2015] [Accepted: 02/13/2015] [Indexed: 11/24/2022] Open
Abstract
One new isopimarane diterpene (1), together with two known compounds, 11-deoxydiaporthein A (2) and iso-pimara-8(14),15-diene (3) were isolated from the culture of Epicoccum sp., which was associated with Apostichopus japonicus. Their structures were determined by the analysis of 1D and 2D NMR, as well as mass spectroscopic data. The absolute configuration of Compound 1 was deduced by a single-crystal X-ray diffraction experiment using CuKα radiation. In the bioactivity assay, both Compounds 1 and 2 exhibited α-glucosidase inhibitory activity with IC50 values of 4.6 ± 0.1 and 11.9 ± 0.4 μM, respectively. This was the first report on isopimarane diterpenes with α-glucosidase inhibitory activity.
Collapse
Affiliation(s)
- Xuekui Xia
- Key Laboratory for Applied Microbiology of Shandong Province, Biotechnology Center of Shandong Academy of Sciences, Jinan 250014, China; E-Mails: (X.X.); (J.Q.); (A.J.); (Y.Z.)
| | - Jun Qi
- Key Laboratory for Applied Microbiology of Shandong Province, Biotechnology Center of Shandong Academy of Sciences, Jinan 250014, China; E-Mails: (X.X.); (J.Q.); (A.J.); (Y.Z.)
| | - Yayue Liu
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China; E-Mail:
| | - Airong Jia
- Key Laboratory for Applied Microbiology of Shandong Province, Biotechnology Center of Shandong Academy of Sciences, Jinan 250014, China; E-Mails: (X.X.); (J.Q.); (A.J.); (Y.Z.)
| | - Yonggang Zhang
- Key Laboratory for Applied Microbiology of Shandong Province, Biotechnology Center of Shandong Academy of Sciences, Jinan 250014, China; E-Mails: (X.X.); (J.Q.); (A.J.); (Y.Z.)
| | - Changheng Liu
- Key Laboratory for Applied Microbiology of Shandong Province, Biotechnology Center of Shandong Academy of Sciences, Jinan 250014, China; E-Mails: (X.X.); (J.Q.); (A.J.); (Y.Z.)
- Authors to whom correspondence should be addressed; E-Mails: (C.L.); (C.G.); (Z.S.); Tel.: +86-531-8260-5335 (C.L.); +86-531-8970-1987 (C.G.); +86-020-8403-4096 (Z.S.)
| | - Cuiling Gao
- Shandong Provincial Key Laboratory of Test Technology for Material Chemical Safety, Jinan 250014, China
- Authors to whom correspondence should be addressed; E-Mails: (C.L.); (C.G.); (Z.S.); Tel.: +86-531-8260-5335 (C.L.); +86-531-8970-1987 (C.G.); +86-020-8403-4096 (Z.S.)
| | - Zhigang She
- School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (C.L.); (C.G.); (Z.S.); Tel.: +86-531-8260-5335 (C.L.); +86-531-8970-1987 (C.G.); +86-020-8403-4096 (Z.S.)
| |
Collapse
|
31
|
Gomes R, Glienke C, Videira S, Lombard L, Groenewald J, Crous P. Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. PERSOONIA 2013; 31:1-41. [PMID: 24761033 PMCID: PMC3904044 DOI: 10.3767/003158513x666844] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/24/2013] [Indexed: 11/25/2022]
Abstract
Diaporthe (Phomopsis) species have often been reported as plant pathogens, non-pathogenic endophytes or saprobes, commonly isolated from a wide range of hosts. The primary aim of the present study was to resolve the taxonomy and phylogeny of a large collection of Diaporthe species occurring on diverse hosts, either as pathogens, saprobes, or as harmless endophytes. In the present study we investigated 243 isolates using multilocus DNA sequence data. Analyses of the rDNA internal transcribed spacer (ITS1, 5.8S, ITS2) region, and partial translation elongation factor 1-alpha (TEF1), beta-tubulin (TUB), histone H3 (HIS) and calmodulin (CAL) genes resolved 95 clades. Fifteen new species are described, namely Diaporthe arengae, D. brasiliensis, D. endophytica, D. hongkongensis, D. inconspicua, D. infecunda, D. mayteni, D. neoarctii, D. oxe, D. paranensis, D. pseudomangiferae, D. pseudophoenicicola, D. raonikayaporum, D. schini and D. terebinthifolii. A further 14 new combinations are introduced in Diaporthe, and D. anacardii is epitypified. Although species of Diaporthe have in the past chiefly been distinguished based on host association, results of this study confirm several taxa to have wide host ranges, suggesting that they move freely among hosts, frequently co-colonising diseased or dead tissue. In contrast, some plant pathogenic and endophytic taxa appear to be strictly host specific. Given this diverse ecological behaviour among members of Diaporthe, future species descriptions lacking molecular data (at least ITS and HIS or TUB) should be strongly discouraged.
Collapse
Affiliation(s)
- R.R. Gomes
- Department of Genetics, Universidade Federal do Paraná, Centro Politécnico, Box 19071, 81531-990, Curitiba, Brazil
| | - C. Glienke
- Department of Genetics, Universidade Federal do Paraná, Centro Politécnico, Box 19071, 81531-990, Curitiba, Brazil
| | - S.I.R. Videira
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - L. Lombard
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - J.Z. Groenewald
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - P.W. Crous
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
32
|
Mousa WK, Raizada MN. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 2013; 4:65. [PMID: 23543048 PMCID: PMC3608919 DOI: 10.3389/fmicb.2013.00065] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/06/2013] [Indexed: 02/03/2023] Open
Abstract
Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens.
Collapse
Affiliation(s)
- Walaa Kamel Mousa
- Department of Plant Agriculture, University of Guelph Guelph, ON, Canada ; Department of Pharmacognosy, Mansoura University Mansoura, Egypt
| | | |
Collapse
|
33
|
3-hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Curr Microbiol 2012; 65:622-32. [PMID: 22886401 DOI: 10.1007/s00284-012-0206-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Endophytic fungi are considered a rich source of active compounds resulting from their secondary metabolism. Fungi from marine environment grow in a habitat with unique conditions that can contribute to the activation of metabolic pathways of synthesis of different unknown molecules. The production of these compounds may support the adaptation and survival of the fungi in the marine ecosystem. Mangroves are ecosystems situated between land and sea. They are frequently found in tropical and subtropical areas and enclose approximately 18.1 million hectares of the planet. The great biodiversity found in these ecosystems shows the importance of researching them, including studies regarding new compounds derived from the endophytic fungi that inhabit these ecosystems. 3-hydroxypropionic acid (3-HPA) has been isolated from the mangrove endophytic fungus Diaporthe phaseolorum, which was obtained from branches of Laguncularia racemosa. The structure of this compound was elucidated by spectroscopic methods, mainly 1D and 2D NMR. In bioassays, 3-HPA showed antimicrobial activities against both Staphylococcus aureus and Salmonella typhi. The structure of this antibiotic was modified by the chemical reaction of Fischer-Speier esterification to evaluate the biologic activity of its chemical analog. The esterified product, 3-hydroxypropanoic ethyl ester, did not exhibit antibiotic activity, suggesting that the free carboxylic acid group is important to the pharmacological activity. The antibiotic-producing strain was identified with internal transcribed spacer sequence data. To the best of our knowledge, this is the first report of antibacterial activity by 3-HPA against the growth of medically important pathogens.
Collapse
|
34
|
Xia X, Zhang J, Zhang Y, Wei F, Liu X, Jia A, Liu C, Li W, She Z, Lin Y. Pimarane diterpenes from the fungus Epicoccum sp. HS-1 associated with Apostichopus japonicus. Bioorg Med Chem Lett 2012; 22:3017-9. [DOI: 10.1016/j.bmcl.2012.01.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/10/2012] [Accepted: 01/17/2012] [Indexed: 11/28/2022]
|
35
|
Sun L, Li D, Tao M, Chen Y, Dan F, Zhang W. Scopararanes C-G: new oxygenated pimarane diterpenes from the marine sediment-derived fungus Eutypella scoparia FS26. Mar Drugs 2012; 10:539-550. [PMID: 22611352 PMCID: PMC3347013 DOI: 10.3390/md10030539] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 01/09/2023] Open
Abstract
Five new oxygenated pimarane diterpenes, named scopararanes C–G (1–5) were isolated from the culture of a marine sediment-derived fungus Eutypella scoparia FS26 obtained from the South China Sea. The structures of these compounds were established on the basis of extensive spectroscopic analysis. The absolute configurations of compounds 1–5, were determined by CD spectroscopic analysis and comparison with literature data. All isolated compounds (1–5) were evaluated for their cytotoxic activities against MCF-7, NCI-H460, and SF-268 tumor cell lines by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) method.
Collapse
Affiliation(s)
- Li Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Provincial Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base), South China, Guangdong Institute of Microbiology, Guangzhou 510070, China; (L.S.); (D.L.); (M.T.); (Y.C.)
- College of Chemistry and Life Science, China Three Gorges University, Yichang 443002, China;
| | - Dongli Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Provincial Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base), South China, Guangdong Institute of Microbiology, Guangzhou 510070, China; (L.S.); (D.L.); (M.T.); (Y.C.)
| | - Meihua Tao
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Provincial Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base), South China, Guangdong Institute of Microbiology, Guangzhou 510070, China; (L.S.); (D.L.); (M.T.); (Y.C.)
| | - Yuchan Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Provincial Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base), South China, Guangdong Institute of Microbiology, Guangzhou 510070, China; (L.S.); (D.L.); (M.T.); (Y.C.)
| | - Feijun Dan
- College of Chemistry and Life Science, China Three Gorges University, Yichang 443002, China;
| | - Weimin Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Provincial Open Laboratory of Applied Microbiology, State Key Laboratory of Applied Microbiology (Ministry-Guangdong Province Jointly Breeding Base), South China, Guangdong Institute of Microbiology, Guangzhou 510070, China; (L.S.); (D.L.); (M.T.); (Y.C.)
- Author to whom correspondence should be addressed; ; Tel.: +86-20-37656321; Fax: +86-20-87688612
| |
Collapse
|
36
|
Genetic transformation of Diaporthe phaseolorum, an endophytic fungus found in mangrove forests, mediated by Agrobacterium tumefaciens. Curr Genet 2011; 58:21-33. [DOI: 10.1007/s00294-011-0362-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 02/01/2023]
|
37
|
|
38
|
|
39
|
Isaka M, Palasarn S, Prathumpai W, Laksanacharoen P. Pimarane Diterpenes from the Endophytic Fungus Eutypella sp. BCC 13199. Chem Pharm Bull (Tokyo) 2011; 59:1157-9. [DOI: 10.1248/cpb.59.1157] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masahiko Isaka
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand
| | - Somporn Palasarn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand
| | - Wai Prathumpai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand
| | | |
Collapse
|
40
|
Thomas TRA, Kavlekar DP, LokaBharathi PA. Marine drugs from sponge-microbe association--a review. Mar Drugs 2010; 8:1417-68. [PMID: 20479984 PMCID: PMC2866492 DOI: 10.3390/md8041417] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/13/2010] [Accepted: 04/19/2010] [Indexed: 12/31/2022] Open
Abstract
The subject of this review is the biodiversity of marine sponges and associated microbes which have been reported to produce therapeutically important compounds, along with the contextual information on their geographic distribution. Class Demospongiae and the orders Halichondrida, Poecilosclerida and Dictyoceratida are the richest sources of these compounds. Among the microbial associates, members of the bacterial phylum Actinobacteria and fungal division Ascomycota have been identified to be the dominant producers of therapeutics. Though the number of bacterial associates outnumber the fungal associates, the documented potential of fungi to produce clinically active compounds is currently more important than that of bacteria. Interestingly, production of a few identical compounds by entirely different host-microbial associations has been detected in both terrestrial and marine environments. In the Demospongiae, microbial association is highly specific and so to the production of compounds. Besides, persistent production of bioactive compounds has also been encountered in highly specific host-symbiont associations. Though spatial and temporal variations are known to have a marked effect on the quality and quantity of bioactive compounds, only a few studies have covered these dimensions. The need to augment production of these compounds through tissue culture and mariculture has also been stressed. The reviewed database of these compounds is available at www.niobioinformatics.in/drug.php.
Collapse
Affiliation(s)
- Tresa Remya A. Thomas
- Biological Oceanography, National Institute of Oceanography, Dona Paula, Goa, Pin-403004, India; E-Mails:
(T.R.A.T.);
(D.P.K.)
| | - Devanand P. Kavlekar
- Biological Oceanography, National Institute of Oceanography, Dona Paula, Goa, Pin-403004, India; E-Mails:
(T.R.A.T.);
(D.P.K.)
| | - Ponnapakkam A. LokaBharathi
- Biological Oceanography, National Institute of Oceanography, Dona Paula, Goa, Pin-403004, India; E-Mails:
(T.R.A.T.);
(D.P.K.)
| |
Collapse
|
41
|
Porto TS, Furtado NA, Heleno VC, Martins CH, Da Costa FB, Severiano ME, Silva AN, Veneziani RC, Ambrósio SR. Antimicrobial ent-pimarane diterpenes from Viguiera arenaria against Gram-positive bacteria. Fitoterapia 2009; 80:432-6. [DOI: 10.1016/j.fitote.2009.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/27/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
|
42
|
Isaka M, Palasarn S, Lapanun S, Chanthaket R, Boonyuen N, Lumyong S. Gamma-lactones and ent-eudesmane sesquiterpenes from the endophytic fungus Eutypella sp. BCC 13199. JOURNAL OF NATURAL PRODUCTS 2009; 72:1720-1722. [PMID: 19739600 DOI: 10.1021/np900316x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Two new gamma-lactones, eutypellins A (1) and B (2), and two ent-eudesmane sesquiterpenes, ent-4(15)-eudesmen-11-ol-1-one (3) and ent-4(15)-eudesmen-1alpha,11-diol (4), together with three known pimarane diterpenes, diaporthein B, scopararane A, and libertellenone C, were isolated from the endophytic fungus Eutypella sp. BCC 13199. The structures of these compounds were elucidated by interpretation of spectroscopic data. The absolute configuration of 4 was confirmed by application of the modified Mosher's method. Eutypellin A (1) and sesquiterpene 3 exhibited weak cytotoxic activities.
Collapse
Affiliation(s)
- Masahiko Isaka
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand
| | | | | | | | | | | |
Collapse
|
43
|
Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2009; 26:170-244. [PMID: 19177222 DOI: 10.1039/b805113p] [Citation(s) in RCA: 410] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review covers the literature published in 2007 for marine natural products, with 948 citations(627 for the period January to December 2007) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, cnidarians,bryozoans, molluscs, tunicates, echinoderms and true mangrove plants. The emphasis is on new compounds (961 for 2007), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.1 Introduction, 2 Reviews, 3 Marine microorganisms and phytoplankton, 4 Green algae, 5 Brown algae, 6 Red algae, 7 Sponges, 8 Cnidarians, 9 Bryozoans, 10 Molluscs, 11 Tunicates (ascidians),12 Echinoderms, 13 Miscellaneous, 14 Conclusion, 15 References.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
44
|
Yoshida S, Kito K, Ooi T, Kanoh K, Shizuri Y, Kusumi T. Four Pimarane Diterpenes from Marine Fungus: Chloroform Incorporated in Crystal Lattice for Absolute Configuration Analysis by X-ray. CHEM LETT 2007. [DOI: 10.1246/cl.2007.1386] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Gale GA, Kirtikara K, Pittayakhajonwut P, Sivichai S, Thebtaranonth Y, Thongpanchang C, Vichai V. In search of cyclooxygenase inhibitors, anti-Mycobacterium tuberculosis and anti-malarial drugs from Thai flora and microbes. Pharmacol Ther 2007; 115:307-51. [PMID: 17692387 DOI: 10.1016/j.pharmthera.2007.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Accepted: 03/12/2007] [Indexed: 02/02/2023]
Abstract
Malaria continues to be a major infectious disease of the developing world and the problem is compounded not only by the emergence of drug resistant strains but also from a lack of a vaccine. The situation for tuberculosis (TB) infection is equally problematic. Once considered a "treatable" disease for which eradication was predicted, TB has re-emerged as highly lethal, multi-drug resistant strains after the outbreak of AIDS. Worldwide, the disease causes millions of deaths annually. Similarly, treatments for chronic inflammatory diseases such as arthritis have been impeded due to the potentially lethal side effects of the new and widely prescribed non-steroidal anti-inflammatory compounds. Thais have utilized bioresources from plants and some microorganisms for medicine for thousands of years. Because of the need for new drugs to fight malaria and TB, with radically different chemical structures and mode of actions other than existing drugs, efforts have been directed towards searching for new drugs from bioresources. This is also true for anti-inflammatories. Although Thailand is considered species-rich, only a small number of potential bioresources has been investigated. This article briefly describes the pathogenesis of 2 infectious diseases, malaria and TB, and modern medicines employed in chemotherapy. Diversities of Thai flora and fungi and their chemical constituents with antagonistic properties against these 2 diseases are described in detail. Similarly, anti-inflammatory compounds, mostly cyclooxygenase (COX) inhibitors, are also described herein to demonstrate the potential of Thai bioresources to provide a wide array of compounds for treatment of diseases of a different nature.
Collapse
Affiliation(s)
- George A Gale
- King Mongkut's University of Technology Thonburi, School of Bioresources and Technology, Conservation Ecology Program, 83 Moo 8, Thakham, Bangkhuntien, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|
46
|
Supothina S, Isaka M, Wongsa P. Optimization of culture conditions for production of the anti-tubercular alkaloid hirsutellone A by Trichoderma gelatinosum BCC 7579. Lett Appl Microbiol 2007; 44:531-7. [PMID: 17451521 DOI: 10.1111/j.1472-765x.2006.02098.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS This work aimed to optimize the culture conditions for production of a novel and potent anti-tubercular alkaloid, hirsutellone A, by the saprophytic soil fungus Trichoderma gelatinosum BCC 7579. METHODS AND RESULTS The fungus was initially cultured in shake flasks at 25 degrees C in the potato dextrose broth (PDB) supplemented with various carbon and nitrogen sources and mineral salts to select suitable medium for mycelial growth and hirsutellone A production. Cultivation conditions were further optimized by adjusting initial pH and changing temperature levels to maximize the production of hirsutellone A. The optimal condition that increased the production of hirsutellone A from 19.04 mg l(-1), obtained from basal condition, to 610.55 mg l(-1) and reduced the cultivation time from 40 to 6 days was to cultivate in a shaker at 200 rev min(-1) at 25 degrees C in PDB plus 20 g l(-1) soluble starch, 10 g l(-1) peptone and 2.5% (v/v) salt solution with initial pH of 7. Production of hirsutellone A in larger-scale using a 5-l batch fermenter was also completed yielding 958 mg l(-1) of hirsutellone A within 6 days. CONCLUSIONS The suitable culture conditions for hirsutellone A production by T. gelatinosum BCC 7579 was the cultivation in 5-l fermenter at 25 degrees C in PDB plus 20 g l(-1) soluble starch, 10 g l(-1) peptone and 2.5% (v/v) salt solution with an initial pH of 7. SIGNIFICANCE AND IMPACT OF THE STUDY The production of hirsutellone A in a fermenter to obtain a high yield and reduce an incubation period will become very useful in anti-tubercular drug development process in the future.
Collapse
Affiliation(s)
- S Supothina
- National Center for Genetic Engineering and Biotechnology BIOTEC, National Science and Technology Development Agency, Klong Luang, Pathumthani, Thailand
| | | | | |
Collapse
|
47
|
Abstract
This review covers natural products (secondary metabolites) with reported growth inhibitory activity towards Mycobacterium tuberculosis or related organisms. Such compounds have been isolated from a variety of sources including terrestrial and marine plants and animals, and microorganisms, with the express intent of identifying novel scaffolds for the development of new antituberculosis agents. The literature from January 2003 to December 2005 (inclusive) is reviewed and 146 references to 353 compounds are cited. The compounds are presented in order of chemical type, namely lipids/fatty acids and simple aromatics, phenolics and quinones, peptides, alkaloids, terpenes (monoterpenoids, diterpenes, sesquiterpenes and triterpenes), steroids and miscellaneous structures.
Collapse
Affiliation(s)
- Brent R Copp
- Department of Chemistry, University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
48
|
Pongcharoen W, Rukachaisirikul V, Phongpaichit S, Rungjindamai N, Sakayaroj J. Pimarane diterpene and cytochalasin derivatives from the endophytic fungus Eutypella scoparia PSU-D44. JOURNAL OF NATURAL PRODUCTS 2006; 69:856-8. [PMID: 16724861 DOI: 10.1021/np0600649] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Two pimarane diterpenes, named scopararanes A (1) and B (2), and two cytochalasins, named scoparasins A (3) and B (4), along with 4,8-dihydroxy-6-methoxy-4,5-dimethyl-3-methyleneisochroman-1-one (5) and diaportheins A (6) and B (7) were isolated from a culture broth of the endophytic fungus Eutypella scoparia PSU-D44. Their antimicrobial activities against Staphylococcus aureus ATCC 25923 and Microsporum gypseum SH-MU-4 were examined.
Collapse
Affiliation(s)
- Wipapan Pongcharoen
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand
| | | | | | | | | |
Collapse
|
49
|
Chomcheon P, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Isarangkul D, Kittakoop P. 3-Nitropropionic acid (3-NPA), a potent antimycobacterial agent from endophytic fungi: is 3-NPA in some plants produced by endophytes? JOURNAL OF NATURAL PRODUCTS 2005; 68:1103-5. [PMID: 16038559 DOI: 10.1021/np050036a] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
3-Nitropropionic acid (3-NPA, 1) was found in extracts of several strains of endophytic fungi. 3-NPA (1) exhibited potent antimycobacterial activity with the minimum inhibition concentration of 3.3 microM, but was inactive against NCI-H187, BC, KB, and Vero cell lines. Endophytes were found to produce high levels of 3-NPA (1), and therefore 3-NPA (1) accumulated in certain plants may be produced by the associated endophytes. 3-NPA (1) may be used as a chemotaxonomic marker for endophytic fungi. The structure of 3-hydroxypropionic acid, a nematicidal agent, should be revised to 3-NPA (1).
Collapse
Affiliation(s)
- Porntep Chomcheon
- Program of Biotechnology and Department of Chemistry, Faculty of Science, Chulalongkorn University, Thailand
| | | | | | | | | | | |
Collapse
|
50
|
Peraza-Sánchez SR, Chan-Che EO, Ruiz-Sánchez E. Screening of Yucatecan plant extracts to control Colletotrichum gloeosporioides and isolation of a New Pimarene from Acacia pennatula. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:2429-2432. [PMID: 15796574 DOI: 10.1021/jf040422i] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Screening of seven Yucatecan plant extracts to look for fungicidal activity for the control of Colletotrichum gloeosporioides was carried out. Bioassay-directed purification of the root extract of one of the most active plants, Acacia pennatula, resulted in the isolation of the new compound 15,16-dihydroxypimar-8(14)-en-3-one (1), which in the in vitro bioassay "agar dilution" was shown to have growth, sporulation, and germination inhibition activity. Nuclear magnetic resonance spectroscopic techniques were used to elucidate its structure.
Collapse
Affiliation(s)
- Sergio R Peraza-Sánchez
- Centro de Investigación Científica de Yucatán (CICY), 43 #130 Chuburná, 97200 Mérida, Yucatán, Mexico.
| | | | | |
Collapse
|