1
|
Żołek T, Dömötör O, Żabiński J. Binding mechanism of pentamidine derivatives with human serum acute phase protein α 1-acid glycoprotein. Int J Biol Macromol 2024; 266:131405. [PMID: 38582487 DOI: 10.1016/j.ijbiomac.2024.131405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Drug binding and interactions with plasma proteins play a crucial role in determining the efficacy of drug delivery, thus significantly impacting the overall pharmacological effect. AGP, the second most abundant plasma protein in blood circulation, has the unique capability to bind drugs and transport various compounds. In our present study, for the first time, we investigated whether AGP, a major component of the acute phase lipocalin in human plasma, can bind with pentamidine derivatives known for their high activity against the fungal pathogen Pneumocystis carinii. This investigation was conducted using integrated spectroscopic techniques and computer-based approaches. According to the results, it was concluded that compounds having heteroatoms (-NCH3) in the aliphatic linker and the addition of a Br atom and a methoxy substituent at the C-2 and C-6 positions on the benzene ring, exhibit strong interactions with the AGP binding site. These compounds are identified as potential candidates for recognition by this protein. MD studies indicated that the tested analogues complexed with AGPs reach an equilibrium state after 60 ns, suggesting the stability of the complexes. This observation was further corroborated by experimental results. Therefore, exploring the interaction mechanism of pentamidine derivatives with plasma proteins holds promise for the development of bis-benzamidine-designed pharmaceutically important drugs.
Collapse
Affiliation(s)
- Teresa Żołek
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| | - Orsolya Dömötör
- Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, 6720 Szeged, Hungary
| | - Jerzy Żabiński
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
2
|
Vijayaraj A, Prabu R, Suresh R, Sangeetha Kumari R, Kaviyarasan V, Narayanan V, Tamizhdurai P, Mangesh V, Ali Alasmary F, Rajaji U, Govindasamy M. DNA binding, Cleavage, Catalytic, Magnetic Active; 2,2–bipyridyl based d-f hetero binuclear Gd(III), Cu(II) Complexes and Their Electrochemical, Fluorescence Studies. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
3
|
Costas-Lago MC, Vila N, Rahman A, Besada P, Rozas I, Brea J, Loza MI, González-Romero E, Terán C. Novel Pyridazin-3(2 H)-one-Based Guanidine Derivatives as Potential DNA Minor Groove Binders with Anticancer Activity. ACS Med Chem Lett 2022; 13:463-469. [PMID: 35300077 PMCID: PMC8919506 DOI: 10.1021/acsmedchemlett.1c00633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
Novel aryl guanidinium analogues containing the pyridazin-3(2H)-one core were proposed as minor groove binders (MGBs) with the support of molecular docking studies. The target dicationic or monocationic compounds, which show the guanidium group at different positions of the pyridazinone moiety, were synthesized using the corresponding silyl-protected pyridazinones as key intermediates. Pyridazinone scaffolds were converted into the adequate bromoalkyl derivatives, which by reaction with N,N'-di-Boc-protected guanidine followed by acid hydrolysis provided the hydrochloride salts 1-14 in good yields. The ability of new pyridazin-3(2H)-one-based guanidines as DNA binders was studied by means of DNA UV-thermal denaturation experiments. Their antiproliferative activity was also explored in three cancer cell lines (NCI-H460, A2780, and MCF-7). Compounds 1-4 with a bis-guanidinium structure display a weak DNA binding affinity and exhibit a reasonable cellular viability inhibition percentage in the three cancer cell lines studied.
Collapse
Affiliation(s)
- María Carmen Costas-Lago
- Departamento de Química Orgánica, Universidade de Vigo, 36310 Vigo, España
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, España
| | - Noemí Vila
- Departamento de Química Orgánica, Universidade de Vigo, 36310 Vigo, España
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, España
| | - Adeyemi Rahman
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Pedro Besada
- Departamento de Química Orgánica, Universidade de Vigo, 36310 Vigo, España
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, España
| | - Isabel Rozas
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - José Brea
- Drug Screening Platform/Biofarma Research Group, CIMUS Research Center. Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica. Universidade de Santiago de Compostela, 15782 Santiago de Compostela, España
| | - María Isabel Loza
- Drug Screening Platform/Biofarma Research Group, CIMUS Research Center. Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica. Universidade de Santiago de Compostela, 15782 Santiago de Compostela, España
| | - Elisa González-Romero
- Departamento de Química Analítica y Alimentaria, Universidade de Vigo, 36310 Vigo, España
| | - Carmen Terán
- Departamento de Química Orgánica, Universidade de Vigo, 36310 Vigo, España
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, España
| |
Collapse
|
4
|
O'Sullivan P, Rozas I. Understanding the guanidine-like cationic moiety for optimal binding into the DNA minor groove. ChemMedChem 2014; 9:2065-73. [PMID: 25087855 DOI: 10.1002/cmdc.201402264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Indexed: 01/01/2023]
Abstract
Based on our previous positive results with bis-guanidine-like diaromatic compounds as DNA minor groove binders, we propose a new family: bis-2-amino-1,4,5,6-tetrahydropyrimidines. According to calculated parameters, these dicationic systems would have a more suitable size and lipophilicity for binding into the minor groove than previous series. Moreover, their DFT-optimised structures and docking into an AT oligomer model show that they would bind in the minor groove with good strength and without energy penalty. Hence, we prepared compounds 4 a-c and evaluated their binding to ssDNA and poly(dA-dT)2 by thermal denaturation experiments. The results showed that 4 a (CO) and 4 d (NH) were the best DNA binders. Compared to the previous series, 4 a-d are better binders than bis-guanidiniums but poorer than bis-2-aminoimidazolinium derivatives. Moreover, circular dichroism experiments using ssDNA and poly(dA-dT)2 confirmed binding into the minor groove. Based on our computational design as well as biophysical studies, we have been able to determine that the optimal interaction of guanidine-like dications in the minor grove occurs with bis-2-aminoimidazolinium systems.
Collapse
Affiliation(s)
- Patrick O'Sullivan
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College, University of Dublin, 152-160 Pearse St., Dublin 2 (Ireland)
| | | |
Collapse
|
5
|
Nagle PS, Rodriguez F, Nguyen B, Wilson WD, Rozas I. High DNA affinity of a series of peptide linked diaromatic guanidinium-like derivatives. J Med Chem 2012; 55:4397-406. [PMID: 22497334 DOI: 10.1021/jm300296f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper we report the design and synthesis of a new family of asymmetric peptide linked diaromatic dications as potent DNA minor groove binders. These peptide-linked compounds, with a linear core, displayed a much larger affinity than other guanidinium-like derivatives from the same series with curved cores. As a first screening, the DNA affinity of these structures was evaluated by means of thermal denaturation experiments, finding that the nature of the cation (guanidinium vs 2-aminoimidazolinium) significantly influenced the binding strength. Their binding affinity was assessed by implementing further biophysical measurements such as surface plasmon resonance and circular dichroism. In particular, it was observed that compounds 6, 7, and 8 displayed both a strong binding affinity and significant selectivity for AT oligonucleotides. In addition, the thermodynamics of their binding was evaluated using isothermal titration calorimetry, indicating that the binding is derived from favorable enthalpic and entropic contributions.
Collapse
Affiliation(s)
- Padraic S Nagle
- School of Chemistry, Trinity Biomedical Sciences Institute, University of Dublin, Trinity College, Pearse St., Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
6
|
Sánchez MI, Vázquez O, Martínez-Costas J, Vázquez ME, Mascareñas JL. Straightforward access to bisbenzamidine DNA binders and their use as versatile adaptors for DNA-promoted processes. Chem Sci 2012. [DOI: 10.1039/c2sc00027j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
7
|
Jarak I, Marjanović M, Piantanida I, Kralj M, Karminski-Zamola G. Novel pentamidine derivatives: synthesis, anti-tumor properties and polynucleotide-binding activities. Eur J Med Chem 2011; 46:2807-15. [PMID: 21546133 DOI: 10.1016/j.ejmech.2011.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 11/18/2022]
Abstract
Novel amidino-substituted conformationally restricted derivatives of pentamidine were synthesized and their antiproliferative activity against several human cancer cell lines determined. It was found that introduction of furandicarboxamide core moiety (9, 10) increases antiproliferative activity as well as selectivity against certain tumor cell lines in comparison with amidino-substituted furan-mono-carboxamide (5, 6). Unlike the furan series where iso-propyl substituted amidine (10) exhibits more potent overall antiproliferative activity and selectivity toward certain cell lines, the same was found for unsubstituted amidines in pyridine series. Amongst all tested compounds the compound 10 is the only one that possesses antiproliferative activity against SW 620 cell line (4 μM). Spectroscopic studies of the interactions of prepared diamidines with double-stranded DNA and RNA polynucleotides show that all compounds preferentially bind into the minor groove of DNA, while most of them intercalate into RNA. The structure-dependant biological activity and the lack of DNA/RNA selective binding suggest that the mechanism of action of the here-presented compounds is controlled not only by the interactions with cellular nucleic acids, but also with other more specific protein targets.
Collapse
Affiliation(s)
- Ivana Jarak
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, P.O. Box 177, HR-10000 Zagreb, Croatia
| | | | | | | | | |
Collapse
|
8
|
Stolić I, Mišković K, Piantanida I, Lončar MB, Glavaš-Obrovac L, Bajić M. Synthesis, DNA/RNA affinity and antitumour activity of new aromatic diamidines linked by 3,4-ethylenedioxythiophene. Eur J Med Chem 2011; 46:743-55. [PMID: 21227551 DOI: 10.1016/j.ejmech.2010.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/04/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
|
9
|
Nagle PS, Quinn SJ, Kelly JM, O'Donovan DH, Khan AR, Rodriguez F, Nguyen B, Wilson WD, Rozas I. Understanding the DNA binding of novel non-symmetrical guanidinium/2-aminoimidazolinium derivatives. Org Biomol Chem 2010; 8:5558-67. [PMID: 20949223 PMCID: PMC3860747 DOI: 10.1039/c0ob00428f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biophysical studies have been carried out on a family of asymmetric guanidinium-based diaromatic derivatives to assess their potential as DNA minor groove binding agents. To experimentally assess the binding of these compounds to DNA, solution phase biophysical studies have been performed. Thus, surface plasmon resonance, UV-visible spectroscopy and circular and linear dichroism have been utilized to evaluate binding constants, stoichiometry and mode of binding. In addition, the thermodynamics of the binding process have been determined by using isothermal titration calorimetry. These results show significant DNA binding affinity that correlates with the expected 1 : 1 binding ratio usually observed for minor groove binders. Moreover, a simple computational approach has been devised to assess the potential as DNA binders of this family of compounds.
Collapse
Affiliation(s)
- Padraic S. Nagle
- School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Susan J. Quinn
- School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland
| | - John M. Kelly
- School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Daniel H. O'Donovan
- School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Amir R. Khan
- School of Biochemistry and Immunology, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Fernando Rodriguez
- School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland
| | - Binh Nguyen
- Department of Chemistry, Georgia State University, USA
| | | | - Isabel Rozas
- School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland
| |
Collapse
|
10
|
Nagle PS, Rodriguez F, Kahvedzić A, Quinn SJ, Rozas I. Asymmetrical diaromatic guanidinium/2-aminoimidazolinium derivatives: synthesis and DNA affinity. J Med Chem 2009; 52:7113-21. [PMID: 19873979 DOI: 10.1021/jm901017t] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper we report the synthesis of three families of new amidine-based aromatic derivatives as potential DNA minor groove binding agents for the treatment of cancer. The preparation of monoguanidine, mono-2-aminoimidazoline, and asymmetric diphenylguanidine/2-aminoimidazoline derivatives (compounds 1a-c to 8a-c) is presented. The affinity of these substrates and of a family of mono- and bis-isoureas (previously prepared in Rozas' laboratory) for DNA was evaluated by means of DNA thermal denaturation measurements. In particular, compounds 2c, 5c, 6c, 7c, and 8c were found to bind strongly both to natural DNA and to adenine-thymine oligonucleotides, showing a preference for the adenine-thymine base pair sequences.
Collapse
Affiliation(s)
- Padraic S Nagle
- School of Chemistry, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
11
|
Effect of 3,4-ethylenedioxy-extension of thiophene core on the DNA/RNA binding properties and biological activity of bisbenzimidazole amidines. Bioorg Med Chem 2009; 17:2544-54. [PMID: 19231203 DOI: 10.1016/j.bmc.2009.01.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 01/20/2009] [Accepted: 01/22/2009] [Indexed: 11/22/2022]
Abstract
Novel bisbenzimidazoles (4-6), characterized by 3,4-ethylenedioxy-extension of thiophene core, revealed pronounced affinity and strong thermal stabilization effect toward ds-DNA. They interact within ds-DNA grooves as dimmers or even oligomers and agglomerate along ds-RNA. Compounds 4-6 have shown moderate to strong antiproliferative effect toward panel of eight carcinoma cell lines. Compound 5 displayed the best inhibitory potential and in equitoxic concentration (IC(50)=1 x 10(-6)M) induced accumulation of cells in G2/M phase after 48 h of incubation. Fluorescence microscopy showed that 5 entered into live HeLa cells within 30 min, but did not accumulate in nuclei even after 2.5h. Compound 5 inhibited the growth of Trypanosome cruzi epimastigotes (IC(50)=4.3 x 10(-6)M).
Collapse
|
12
|
Spychała J. The usefulness of cyclic diamidines with different core-substituents as antitumor agents. Bioorg Chem 2008; 36:183-9. [PMID: 18571215 DOI: 10.1016/j.bioorg.2008.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 05/06/2008] [Accepted: 05/08/2008] [Indexed: 01/01/2023]
Abstract
A series of related polycationic compounds has been screened for potential antitumor activity by the NCI's in vitro testing (one dose primary anticancer assay and the NCI-60 full panel screening). The GI50 values of triazines 3 and 4 are on average 1.9 microM and 2.4 microM, respectively. Furan 8 deserves mention too (1.9 microM). The biological test results showed that carbazole 10 possessed cytotoxic activity in the nanomolar range, much better than the other compounds tested, only against several cancer cell lines: CCRF-CEM, HL-60(TB), MOLT-4, NCI-H522, COLO 205, SF-268, but the average GI50 value was higher (15 microM). The activity appears closely dependent on the core-shape and length of the bisimidazoline molecules (important for both high cytotoxicity and DNA binding). The mechanism of DNA minor-groove binding of diamidines 1-12, based on the anticancer parameters, is highly probable.
Collapse
Affiliation(s)
- Jarosław Spychała
- Department of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland.
| |
Collapse
|
13
|
Spychala J. A Convenient Way to Methylated 2-Imidazolines. Syntheses of Fluorene and Triazine Cyclic Diamidines. MONATSHEFTE FUR CHEMIE 2006. [DOI: 10.1007/s00706-006-0516-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Soeiro MNC, De Souza EM, Stephens CE, Boykin DW. Aromatic diamidines as antiparasitic agents. Expert Opin Investig Drugs 2006; 14:957-72. [PMID: 16050790 DOI: 10.1517/13543784.14.8.957] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Parasitic infections are widespread in developing countries and frequently associated with immunocompromised patients in developed countries. Consequently, such infections are responsible for a significant amount of human mortality, morbidity and economic hardship. A growing consensus has identified the urgent need for the development of new antiparasitic compounds, mostly due to the large number of drug-resistant parasites and the fact that currently available drugs are expensive, highly toxic, require long treatment regimens and frequently exhibit significantly reduced activity towards certain parasite strains and evolutive stages. In this context, the activity of aromatic diamidines has been explored against a widespread range of micro-organisms, and the authors' present aim is to review the current status of chemotherapy with these compounds against human parasitic infections.
Collapse
Affiliation(s)
- M N C Soeiro
- Lab. Biologia Celular, DUBC, Instituto Oswaldo Cruz, FIOCRUZ, Avenida Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, RJ, Brazil.
| | | | | | | |
Collapse
|
15
|
Turlington M, Mackay H, Rutledge C, Taherbhai Z, Nguyen B, Wilson D, Lee M. SYNTHESIS AND BIOPHYSICAL TESTING OF A NOVEL PYRROLE-CONTAINING POLYAMIDE-BENZAMIDINE HYBRID. HETEROCYCL COMMUN 2006. [DOI: 10.1515/hc.2006.12.2.89] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
16
|
Kraicheva I, Finocchiaro P, Failla S. SYNTHESIS AND NMR SPECTROSCOPIC STUDY OF NEW 5-METHYLFURYL-CONTAINING SCHIFF BASES AND RELATED BIS(AMINOPHOSPHONATES). PHOSPHORUS SULFUR 2004. [DOI: 10.1080/10426500490485093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- I. Kraicheva
- a Bulgarian Academy of Sciences , Sofia, Bulgaria
| | | | - S. Failla
- b Università di Catania , Catania, Italy
| |
Collapse
|
17
|
New amidino-benzimidazolyl thiophenes: Synthesis and photochemical synthesis. HETEROATOM CHEMISTRY 2003. [DOI: 10.1002/hc.10126] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Lansiaux A, Dassonneville L, Facompré M, Kumar A, Stephens CE, Bajic M, Tanious F, Wilson WD, Boykin DW, Bailly C. Distribution of furamidine analogues in tumor cells: influence of the number of positive charges. J Med Chem 2002; 45:1994-2002. [PMID: 11985467 DOI: 10.1021/jm010539n] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence microscopy has been used to study the cellular distribution properties of a series of DNA binding cationic compounds related to the potent antiparasitic drug furamidine (DB75). The compounds tested bear a diphenylfuran or a phenylfuranbenzimidazole unfused aromatic core substituted with one or two amidine or imidazoline groups. The synthesis of five new compounds is reported. The B16 melanoma cell line was used to compare the capacities of mono-, bis-, and tetracations to enter the cell and nuclei. The high-resolution fluorescence pictures show that in the furamidine series, the compounds with two or four positive charges selectively accumulate in the cell nuclei whereas, in most cases, those bearing only one positive charge show reduced cell uptake capacities. One of the monocationic compounds, DB607, distributes in the cytoplasm, possibly in mitochondria, with no distinct nuclear accumulation. In sharp contrast, furamidine and benzimidazole analogues, including the drug DB293 that forms DNA minor groove dimers, efficiently accumulate in the cell nuclei and the intranuclear distribution of these DNA minor groove binders is significantly different from that seen with the DNA intercalating drug propidium iodide. The results suggest that the presence of two amidine terminal groups plays a role in facilitating nuclear accumulation into cells, probably as a result of nucleic acid binding. The determination of DNA melting temperature increases on addition of these compounds supports the importance of DNA binding in nuclear uptake.
Collapse
Affiliation(s)
- Amélie Lansiaux
- INSERM U-524 et Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret, IRCL, Place de Verdun, 59045 Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nguyen B, Tardy C, Bailly C, Colson P, Houssier C, Kumar A, Boykin DW, Wilson WD. Influence of compound structure on affinity, sequence selectivity, and mode of binding to DNA for unfused aromatic dications related to furamidine. Biopolymers 2002; 63:281-97. [PMID: 11877739 DOI: 10.1002/bip.10073] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the course of a program aimed at developing sequence-specific gene-regulatory small organic molecules, we have investigated the DNA interactions of a new series of nine diphenylfuran dications related to the antiparasitic drug furamidine (DB75). Two types of structural modifications were tested: the terminal amidine groups of DB75 were shifted from the para to the meta position, and the amidines were replaced with imidazoline or dimethyl-imidazoline groups, to test the importance of both the position and nature of positively charged groups on DNA interactions. The interactions of these compounds with DNA and oligonucleotides were studied by a combination of biochemical and biophysical techniques. Absorption and CD measurements suggested that the drugs bind differently to AT and GC sequences in DNA. The para-para dications, like DB75, bind into the minor groove of poly(dAT)(2) and intercalate between the base pairs of poly(dGC)(2), as revealed by electric linear dichroism experiments. In contrast, the meta-meta compounds exhibit a high tendency to intercalate into DNA whatever the target sequence. The lack of sequence selectivity of the meta-meta compounds containing amidines or dimethyl-imidazoline groups was also evident from DNase I footprinting and surface plasmon resonance (SPR) experiments. Accurate binding measurements using the BIAcore SPR method revealed that all nine compounds bind with similar affinity to an immobilized GC sequence DNA hairpin but exhibit very distinct affinities for the corresponding AT hairpin oligonucleotide. The minor groove-binding para-para compounds have a high specificity for AT sequences. The biophysical data clearly indicate that shifting the cationic substituents from the para to the meta position results in a loss of specificity and change in binding mode. The strong AT selectivity of the para-para compounds was independently confirmed by DNase I footprinting experiments performed with a range of DNA restrictions fragments. In terms of AT selectivity, the compounds rank in the order para-para > para-meta > meta-meta. The para dications bind preferentially to sequences containing four contiguous AT base pairs. Additional footprinting experiments with substrates containing the 16 possible [A.T](4) blocks indicated that the presence of a TpA step within an [A.T] (4) block generally reduces the extent of binding. The diverse methods, from footprinting to SPR to dichroism, provide a consistent model for the interactions of the diphenylfuran dications with DNA of different sequences. Altogether, the results attest unequivocally that the binding mode for unfused aromatic cations can change completely depending on substituent position and DNA sequence. These data provide a rationale to explain the relationships between sequence selectivity and mode of binding to DNA for unfused aromatic dications related to furamidine.
Collapse
Affiliation(s)
- Binh Nguyen
- Laboratory for Chemical and Biological Sciences, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bilik P, Tanious F, Kumar A, Wilson WD, Boykin DW, Colson P, Houssier C, Facompré M, Tardy C, Bailly C. Novel dications with unfused aromatic systems: trithiophene and trifuran derivatives of furimidazoline. Chembiochem 2001; 2:559-69. [PMID: 11828489 DOI: 10.1002/1439-7633(20010803)2:7/8<559::aid-cbic559>3.0.co;2-u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We report the synthesis, interaction with DNA, topoisomerase II inhibition, and cytotoxicity of two novel unfused aromatic dications derived from the antimicrobial agent furimidazoline. The central diphenylfuran core of furimidazoline has been replaced with a trithiophene (DB358) or a trifuran (DB669) unit and the terminal imidazoline groups were preserved. The strength and mode of binding of the drugs to nucleic acids were investigated by complementary spectroscopic techniques including spectrophotometric, surface plasmon resonance, circular and linear dichroism measurements. The trifuran derivative forms intercalation complexes with double-stranded DNA, whereas the mode of binding of the trithiophene derivative varies depending on the drug/DNA ratio, as independently confirmed by NMR spectroscopic studies performed with (A-T)7 and (G-C)7 oligomers. Two-dimensional NMR data provided a molecular model for the binding of DB358 within the minor groove of the AATT sequence of the decanucleotide d(GCGAATTCGC)(2). DNase I footprinting experiments confirmed the sequence-dependent binding of DB358 to DNA. The trithiophene derivative interacts preferentially with AT-rich sequences at low concentrations, but can accomodate GC sites at higher concentrations. DNA relaxation assays revealed that DB358 stimulated DNA cleavage by topoisomerase II, in contrast to DB669. The substitution of N-alkylamidines for the imidazoline terminal groups abolished the capacity of the drug to poison topoisomerase II. At the cellular level, flow cytometry analysis indicated that DB358, which is about six times more cytotoxic than the trifuran analogue, induced a significant accumulation of HL-60 human leukemia cells in the G2/M phase. The incorporation of thiophene heterocycles appears as a convenient procedure to limit the strict AT selectivity of dications containing an extended unfused aromatic system and to design cytotoxic DNA intercalating agents acting as poisons for human topoisomerase II.
Collapse
Affiliation(s)
- P Bilik
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bielawski K, Bielawska A, Wołczyński S. Aromatic extended bisamidines: synthesis, inhibition of topoisomerases, and anticancer cytotoxicity in vitro. Arch Pharm (Weinheim) 2001; 334:235-40. [PMID: 11512274 DOI: 10.1002/1521-4184(200107)334:7<235::aid-ardp235>3.0.co;2-#] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A series of four aromatic extended bisamidines (12-15) differing in the nature of their terminal basic side chains were synthesized and evaluated for cytotoxic activity in MCF-7 cultured breast cancer cells. The concentrations of 12, 13, 14, and 15 needed to inhibit [3H]thymidine incorporation into DNA by 50% (IC50) were found to be 63 microM, 85 microM, 77 microM, and 97 microM, respectively. To test whether cytotoxic properties were related to DNA-binding and topoisomerase action, the bisamidines 12-15 were evaluated in a cell-free system. Data from the ethidium displacement assay showed that bisamidines 12-15 have significant affinity for DNA and show moderate specificity for AT base pairs. In the topoisomerase II assay, the relaxation of DNA was inhibited with all four drugs and the extent of inhibition was directly proportional to the drug concentration. This suggests that DNA binding may be implicated in the cytotoxicity of these bisamidines, possibly by inhibiting interactions between topoisomerase II and their DNA targets.
Collapse
Affiliation(s)
- K Bielawski
- Department of Medicinal Chemistry and Drug Technology, Medical Academy of Białystok, Mickiewicza 2, 15-230 Białystok, Poland.
| | | | | |
Collapse
|
22
|
Bielawski K, Wołczyński S, Bielawska A. DNA-binding activity and cytotoxicity of the extended diphenylfuran bisamidines in breast cancer MCF-7 cells. Biol Pharm Bull 2001; 24:704-6. [PMID: 11411564 DOI: 10.1248/bpb.24.704] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The DNA binding properties of three novel extended diphenylfuran bisamidines (1-3) possessing different dicationic terminal side chains were studied. The ultrafiltration assay showed that bisamidines 1-3 have significant affinity for DNA. The DNA-binding data for bisamidines 1-3 using homopolymers poly(dA-dT)- poly(dA-dT) and poly(dG-dC)- poly(dG-dC), indicated that these compounds show moderate specificity for AT base pairs. We studied the cytotoxicity effects of bisamidines 1-3, Hoechst 33258 and DAPI (4',6-diamidino-2-phenylindole) in cultured breast cancer MCF-7 cells. The bisamidines 1-3 showed comparable antitumour activity to Hoechst 33258, but were substantially more cytotoxic compared to DAPI. These data show that in broad terms the cytotoxic potency of bisamidines 1-3 in cultured breast cancer MCF-7 cells decreases with the size of the alkyl group substituent (cyclopropyl>isopropyl>cyclopentyl), in accord with their increases in DNA affinity, as shown by the binding constant values.
Collapse
Affiliation(s)
- K Bielawski
- Department of Medicinal Chemistry and Drug Technology, Medical Academy of Białystok, Poland.
| | | | | |
Collapse
|
23
|
Mann J, Baron A, Opoku-Boahen Y, Johansson E, Parkinson G, Kelland LR, Neidle S. A new class of symmetric bisbenzimidazole-based DNA minor groove-binding agents showing antitumor activity. J Med Chem 2001; 44:138-44. [PMID: 11170623 DOI: 10.1021/jm000297b] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The synthesis and evaluation of the novel head-to-head bisbenzimidazole compound 2,2-bis[4'-(3' '-dimethylamino-1' '-propyloxy)phenyl]-5,5-bi-1H-benzimidazole is described. An X-ray crystallographic study of a complex with the DNA dodecanucleotide sequence d(CGCGAATTCGCG) shows the compound bound in the A/T minor groove region of a B-DNA duplex and that the head-to-head bisbenzimidazole motif hydrogen-bonds to the edges of all four consecutive A:T base pairs. The compound showed potent growth inhibition with a mean IC(50) across an ovarian carcinoma cell line panel of 0.31 microM, with no significant cross-resistance in two acquired cisplatin-resistant cell lines and a low level of cross-resistance in the P-glycoprotein overexpressing acquired doxorubicin-resistant cell line. Studies with the hollow fiber assay and in vivo tumor xenografts showed some evidence of antitumor activity.
Collapse
Affiliation(s)
- J Mann
- Chemistry Department, Reading University, Whiteknights, Reading RG6 6AD, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Simpson IJ, Lee M, Kumar A, Boykin DW, Neidle S. DNA minor groove interactions and the biological activity of 2,5-bis. Bioorg Med Chem Lett 2000; 10:2593-7. [PMID: 11128631 DOI: 10.1016/s0960-894x(00)00511-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
2,5-Bis-[4-(N-cyclobutyl-amidino)phenyl] furan and 2,5-bis-[4-(N-cyclohexyl-amidino)phenyl] furan have activity against Pneumocystis carinii and also show cytotoxicity against several tumour cell lines. These activities are correlated with DNA-binding abilities; the crystal structures of complexes with the DNA sequence d(CGCGAATTCGCG) is reported here. Interactions with, and effects on, the DNA minor groove, are found to be factors in the biological properties of these compounds.
Collapse
Affiliation(s)
- I J Simpson
- CRC Biomolecular Structure Unit, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | | | | | | | | |
Collapse
|
25
|
Mazur S, Tanious FA, Ding D, Kumar A, Boykin DW, Simpson IJ, Neidle S, Wilson WD. A thermodynamic and structural analysis of DNA minor-groove complex formation. J Mol Biol 2000; 300:321-37. [PMID: 10873468 DOI: 10.1006/jmbi.2000.3869] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As part of an effort to develop a better understanding of the structural and thermodynamic principles of DNA minor groove recognition, we have investigated complexes of three diphenylfuran dications with the d(CGCGAATTCGCG)(2) duplex. The parent compound, furamidine (DB75), has two amidine substituents while DB244 has cyclopentyl amidine substituents and DB226 has 3-pentyl amidines. The structure for the DB244-DNA complex is reported here and is compared to the structure of the DB75 complex. Crystals were not obtained with DB226 but information from the DB75 and DB244 structures as well as previous NMR results on DB226 indicate that all three compounds bind in the minor groove at the AATT site of the duplex. DB244 and DB75 penetrate to the floor of the groove and form hydrogen bonds with T8 on one strand and T20 on the opposite strand while DB226 forms a complex with fewer interactions. Binding studies by surface plasmon resonance (SPR) yield -delta G degrees values in the order DB244>DB75>DB226 that are relatively constant with temperature. The equilibrium binding constants for DB244 are 10-20 times greater than that for DB226. Isothermal titration calorimetric (ITC) experiments indicate that, in contrast to delta G degrees, delta H degrees varies considerably with temperature to yield large negative delta Cp degrees values. The thermodynamic results, analyzed in terms of structures of the DNA complexes, provide an explanation of why DB244 binds more strongly to DNA than DB75, while DB266 binds more weakly. All three compounds have a major contribution to binding from hydrophobic interactions but the hydrophobic term is most favorable for DB244. DB244 also has strong contributions from molecular interactions in its DNA complex and all of these factors combine to give it the largest-delta G degrees for binding. Although the factors that influence the energetics of minor groove interactions are varied and complex, results from the literature coupled with those on the furan derivatives indicate that there are some common characteristics for minor groove recognition by unfused heterocyclic cations that can be used in molecular design.
Collapse
Affiliation(s)
- S Mazur
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang L, Bailly C, Kumar A, Ding D, Bajic M, Boykin DW, Wilson WD. Specific molecular recognition of mixed nucleic acid sequences: an aromatic dication that binds in the DNA minor groove as a dimer. Proc Natl Acad Sci U S A 2000; 97:12-6. [PMID: 10618362 PMCID: PMC26607 DOI: 10.1073/pnas.97.1.12] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phenylamidine cationic groups linked by a furan ring (furamidine) and related compounds bind as monomers to AT sequences of DNA. An unsymmetric derivative (DB293) with one of the phenyl rings of furamidine replaced with a benzimidazole has been found by quantitative footprinting analyses to bind to GC-containing sites on DNA more strongly than to pure AT sequences. NMR structural analysis and surface plasmon resonance binding results clearly demonstrate that DB293 binds in the minor groove at specific GC-containing sequences of DNA in a highly cooperative manner as a stacked dimer. Neither the symmetric bisphenyl nor bisbenzimidazole analogs of DB293 bind significantly to the GC containing sequences. DB293 provides a paradigm for design of compounds for specific recognition of mixed DNA sequences and extends the boundaries for small molecule-DNA recognition.
Collapse
Affiliation(s)
- L Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Wilson WD, Tanious FA, Ding D, Kumar A, Boykin DW, Colson P, Houssier C, Bailly C. Nucleic Acid Interactions of Unfused Aromatic Cations: Evaluation of Proposed Minor-Groove, Major-Groove, and Intercalation Binding Modes. J Am Chem Soc 1998. [DOI: 10.1021/ja981212n] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- W. David Wilson
- Contribution from the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303; INSERM U-124 et Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret, IRCL, Place de Verdun, 59045 Lille, France; and Laboratoire de Chimie Macromoléculaire et Chimie Physique, Université de Liège, Liège 4000, Belgium
| | - Farial A. Tanious
- Contribution from the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303; INSERM U-124 et Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret, IRCL, Place de Verdun, 59045 Lille, France; and Laboratoire de Chimie Macromoléculaire et Chimie Physique, Université de Liège, Liège 4000, Belgium
| | - Daoyuan Ding
- Contribution from the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303; INSERM U-124 et Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret, IRCL, Place de Verdun, 59045 Lille, France; and Laboratoire de Chimie Macromoléculaire et Chimie Physique, Université de Liège, Liège 4000, Belgium
| | - Arvind Kumar
- Contribution from the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303; INSERM U-124 et Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret, IRCL, Place de Verdun, 59045 Lille, France; and Laboratoire de Chimie Macromoléculaire et Chimie Physique, Université de Liège, Liège 4000, Belgium
| | - David W. Boykin
- Contribution from the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303; INSERM U-124 et Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret, IRCL, Place de Verdun, 59045 Lille, France; and Laboratoire de Chimie Macromoléculaire et Chimie Physique, Université de Liège, Liège 4000, Belgium
| | - Pierre Colson
- Contribution from the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303; INSERM U-124 et Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret, IRCL, Place de Verdun, 59045 Lille, France; and Laboratoire de Chimie Macromoléculaire et Chimie Physique, Université de Liège, Liège 4000, Belgium
| | - Claude Houssier
- Contribution from the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303; INSERM U-124 et Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret, IRCL, Place de Verdun, 59045 Lille, France; and Laboratoire de Chimie Macromoléculaire et Chimie Physique, Université de Liège, Liège 4000, Belgium
| | - Christian Bailly
- Contribution from the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303; INSERM U-124 et Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret, IRCL, Place de Verdun, 59045 Lille, France; and Laboratoire de Chimie Macromoléculaire et Chimie Physique, Université de Liège, Liège 4000, Belgium
| |
Collapse
|
28
|
Guerri A, Simpson IJ, Neidle S. Visualisation of extensive water ribbons and networks in a DNA minor-groove drug complex. Nucleic Acids Res 1998; 26:2873-8. [PMID: 9611230 PMCID: PMC147633 DOI: 10.1093/nar/26.12.2873] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The crystal structure is reported of a complex between an ethyl derivative of the minor-groove drug furamidine and the dodecanucleotide duplex d(CGCGAATTCGCG)2, which has been refined to 1.85 A resolution and an R factor of 16.6% for data collected at -173 degreesC. An exceptionally large number (220) of water molecules have been located. The majority of these occur in the first coordination shell of solvation. There are extensive networks of connected waters, both in the major and minor grooves. In particular, there are 21 water molecules associated with the minor-groove drug, via hydrogen bonds from the four charged nitrogen atoms. One cluster of four waters is situated in the groove itself; the majority are on the outer edge of the groove, and serve to bridge between the outward-directed drug nitrogen atoms and backbone phosphate oxygen atoms. These bridges are both intra- and inter-strand, with the net effect that the outer edge of the drug molecule is covered by ribbons of water molecules.
Collapse
Affiliation(s)
- A Guerri
- The CRC Biomolecular Structure Unit, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK
| | | | | |
Collapse
|
29
|
Boykin DW, Kumar A, Xiao G, Wilson WD, Bender BC, McCurdy DR, Hall JE, Tidwell RR. 2,5-bis[4-(N-alkylamidino)phenyl]furans as anti-Pneumocystis carinii agents. J Med Chem 1998; 41:124-9. [PMID: 9438029 DOI: 10.1021/jm970570i] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The syntheses of 12 new 2,5-bis[4-(N-alkylamidino)phenyl]furans are reported. The interaction of these dicationic furans with poly(dA-dT) and with the duplex oligomer d(CGCGAATTCGCG)2 was determined by Tm measurements, and the effectiveness of these compounds against the immunosuppressed rat model of Pneumocystis carinii was evaluated. At the screening dose of 10 mumol/kg, 9 of the 14 N-alkylamidino furans described here are more active than the parent compound 1. Substitution of an alkyl group of the amidino nitrogen, except for in 9, 13, and 15, resulted in higher affinity for DNA than the parent compound as judged by the larger delta Tm values and suggests enhanced van der Waals interactions in the bis-amidine-DNA complex. Five of the compounds, 3, 5, 7, 10, and 12, yield cyst counts of less than 0.1% of control when administered at a dosage of 10 mumol/kg. Five compounds, 1, 6, 8, 10, and 12, show significant activity at a dosage of approximately 1 mumol/kg; 12 is the most active derivative, and it is approximately 100 times more effective than pentamidine in this animal model.
Collapse
Affiliation(s)
- D W Boykin
- Department of Chemistry, Georgia State University, Atlanta 30303-3083, USA
| | | | | | | | | | | | | | | |
Collapse
|