1
|
Zhang Y, Tian L, Wang Y, Mo L, Liu Q, Ren Y, Teng F, Yin M, Liu P, He Y. Regio- and Diastereoselective Hydrophosphination and Hydroamidation of gem-Difluorocyclopropenes. J Org Chem 2024; 89:5442-5457. [PMID: 38567881 DOI: 10.1021/acs.joc.3c02890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
In this study, concise, efficient, and modular hydrophosphinylation and hydroamidation of gem-difluorocyclopropenes were disclosed in a mild and transition-metal-free pattern. Through this approach, phosphorus, and nitrogen-containing gem-difluorocyclopropanes were produced in moderate to good yields with excellent regio- and diastereoselectivity. Readily available gem-difluorocyclopropenes and nucleophilic reagents, along with inexpensive inorganic bases, were employed. Multiple synthetic applications, including gram-scale and derivatization reactions and modification of bioactive molecules, were subsequently elaborated.
Collapse
Affiliation(s)
- Yuanshuo Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Limei Tian
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Yali Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Lisha Mo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Qianwen Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Yifan Ren
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Fan Teng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Minhai Yin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Peng Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yimiao He
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| |
Collapse
|
2
|
Lv L, Qian H, Li Z. Catalytic Diversification of gem‐Difluorocyclopropanes: Recent Advances and Challenges. ChemCatChem 2022. [DOI: 10.1002/cctc.202200890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Leiyang Lv
- Renmin University of China Department of Chemistry CHINA
| | | | - Zhiping Li
- Renmin University of China Chemistry CHINA
| |
Collapse
|
3
|
Mykhailiuk PK. Fluorine-Containing Prolines: Synthetic Strategies, Applications, and Opportunities. J Org Chem 2022; 87:6961-7005. [PMID: 35175772 DOI: 10.1021/acs.joc.1c02956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorinated prolines play an important role in peptide studies, protein engineering, medicinal chemistry, drug discovery, and agrochemistry. Since the first synthesis of 4-fluoroprolines by Gottlieb and Witkop in 1965, their popularity started to grow exponentially. For example, during the past two decades, all isomeric trifluoromethyl-substituted prolines have been synthesized. In this Perspective, chemical properties and applications of fluorinated prolines are discussed. Synthetic approaches to all known fluorine-containing prolines are also discussed and analyzed. This analysis unexpectedly revealed an unsolved problem: in strict contrast to fluoro- and trifluoromethyl-substituted prolines, the corresponding analogues with fluoromethyl and difluoromethyl groups are mostly unknown. At the end of the paper, structures of several interesting, yet unknown, fluorinated prolines are disclosed─a good opportunity for chemists to make them.
Collapse
|
4
|
Xu H, Fang XJ, Huang WS, Xu Z, Li L, Ye F, Cao J, Xu LW. Catalytic regio- and stereoselective silicon–carbon bond formations on unsymmetric gem-difluorocyclopropenes by capture of silyl metal species. Org Chem Front 2022. [DOI: 10.1039/d2qo00943a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly regioselective silylation of unsymmetric gem-difluorocyclopropenes was achieved by the capture of in-situ formed silyl metal intermediates, which gave structurally diverse silyldifluorocyclopropanes with good yields and stereoselectivity.
Collapse
Affiliation(s)
- Hao Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Xiao-Jun Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Wei-Sheng Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, P. R. China
| |
Collapse
|
5
|
Yamani K, Pierre H, Archambeau A, Meyer C, Cossy J. Asymmetric Transfer Hydrogenation of
gem
‐Difluorocyclopropenyl Esters: Access to Enantioenriched
gem
‐Difluorocyclopropanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Khalil Yamani
- Molecular, Macromolecular Chemistry, and Materials ESPCI Paris, PSL University CNRS 10 rue Vauquelin 75005 Paris France
| | - Hugo Pierre
- Molecular, Macromolecular Chemistry, and Materials ESPCI Paris, PSL University CNRS 10 rue Vauquelin 75005 Paris France
| | - Alexis Archambeau
- Molecular, Macromolecular Chemistry, and Materials ESPCI Paris, PSL University CNRS 10 rue Vauquelin 75005 Paris France
| | - Christophe Meyer
- Molecular, Macromolecular Chemistry, and Materials ESPCI Paris, PSL University CNRS 10 rue Vauquelin 75005 Paris France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry, and Materials ESPCI Paris, PSL University CNRS 10 rue Vauquelin 75005 Paris France
| |
Collapse
|
6
|
Yamani K, Pierre H, Archambeau A, Meyer C, Cossy J. Asymmetric Transfer Hydrogenation of gem-Difluorocyclopropenyl Esters: Access to Enantioenriched gem-Difluorocyclopropanes. Angew Chem Int Ed Engl 2020; 59:18505-18509. [PMID: 32614985 DOI: 10.1002/anie.202008572] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 12/24/2022]
Abstract
Catalytic enantioselective access to disubstituted functionalized gem-difluorocyclopropanes, which are emerging fluorinated motifs of interest in medicinal chemistry, was achieved through asymmetric transfer hydrogenation of gem-difluorocyclopropenyl esters, catalyzed by a Noyori-Ikariya (p-cymene)-ruthenium(II) complex, with (N-tosyl-1,2-diphenylethylenediamine) as the chiral ligand and isopropanol as the hydrogen donor. The resulting cis-gem-difluorocyclopropyl esters were obtained with moderate to high enantioselectivity (ee=66-99 %), and post-functionalization reactions enable access to valuable building blocks incorporating a cis- or trans-gem-difluorocyclopropyl motif.
Collapse
Affiliation(s)
- Khalil Yamani
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Hugo Pierre
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Alexis Archambeau
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Christophe Meyer
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
7
|
Orr D, Percy JM, Harrison ZA. A computational triage approach to the synthesis of novel difluorocyclopentenes and fluorinated cycloheptadienes using thermal rearrangements. Chem Sci 2016; 7:6369-6380. [PMID: 28451092 PMCID: PMC5355944 DOI: 10.1039/c6sc01289b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/15/2016] [Indexed: 11/21/2022] Open
Abstract
Electronic structure calculations have been used for the effective triage of substituent effects on difluorinated vinylcyclopropane precursors and their ability to undergo vinyl cyclopropane rearrangements (VCPR). Groups which effectively stabilised radicals, specifically heteroarenes, were found to result in the lowest energy barriers. Ten novel precursors were synthesised to test the accuracy of computational predictions; the most reactive species which contained heteroarenes underwent thermal rearrangements at room temperature to afford novel difluorocyclopentenes and fluorinated benzocycloheptadienes through competing VCPR and [3,3]-rearrangement pathways, respectively. More controlled rearrangement of ethyl 3-(1'(2'2'-difluoro-3'-benzo[d][1,3]dioxol-5-yl)cyclopropyl)propenoate (22) allowed these competing pathways to be monitored at the same time and activation energies for both reactions were determined; Ea(VCPR) = (23.4 ± 0.2) kcal mol-1 and Ea([3,3]) = (24.9 ± 0.3) kcal mol-1. Comparing our calculated activation energies with these parameters showed that no single method stood out as the most accurate for predicting barrier heights; (U)M05-2X/6-31+G* methodology remained the best for VCPR but M06-2X/6-31G* was better for the [3,3]-rearrangement. The consistency observed with (U)B3LYP/6-31G* calculations meant that it came closest to a universal method for dealing with these systems. The developed computational design model correctly predicted the observed selectivity of rearrangement pathways for both our system and literature compounds.
Collapse
Affiliation(s)
- David Orr
- WestCHEM Department of Pure and Applied Chemistry , University of Strathclyde , Thomas Graham Building, 295 Cathedral Street , Glasgow , G1 1XL , UK .
| | - Jonathan M Percy
- WestCHEM Department of Pure and Applied Chemistry , University of Strathclyde , Thomas Graham Building, 295 Cathedral Street , Glasgow , G1 1XL , UK .
| | - Zoë A Harrison
- Refractory Respiratory Inflammation DPU , GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage , SG1 2NY , UK
| |
Collapse
|
8
|
Rullière P, Cyr P, Charette AB. Difluorocarbene Addition to Alkenes and Alkynes in Continuous Flow. Org Lett 2016; 18:1988-91. [DOI: 10.1021/acs.orglett.6b00573] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pauline Rullière
- Université de Montréal, Centre in Green Chemistry and Catalysis, Department
of Chemistry, Faculty of Arts and Science, P.O. Box 6128, Station Downtown, Québec, Canada H3C 3J7
| | - Patrick Cyr
- Université de Montréal, Centre in Green Chemistry and Catalysis, Department
of Chemistry, Faculty of Arts and Science, P.O. Box 6128, Station Downtown, Québec, Canada H3C 3J7
| | - André B. Charette
- Université de Montréal, Centre in Green Chemistry and Catalysis, Department
of Chemistry, Faculty of Arts and Science, P.O. Box 6128, Station Downtown, Québec, Canada H3C 3J7
| |
Collapse
|
9
|
Calaza MI, Sayago FJ, Laborda P, Cativiela C. Synthesis of [c]-Fused Bicyclic Proline Analogues. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Orr D, Percy JM, Tuttle T, Kennedy AR, Harrison ZA. Evaluating the Thermal Vinylcyclopropane Rearrangement (VCPR) as a Practical Method for the Synthesis of Difluorinated Cyclopentenes: Experimental and Computational Studies of Rearrangement Stereospecificity. Chemistry 2014; 20:14305-16. [DOI: 10.1002/chem.201403737] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Indexed: 11/12/2022]
|
11
|
Brackmann F, de Meijere A. Natural Occurrence, Syntheses, and Applications of Cyclopropyl-Group-Containing α-Amino Acids. 2. 3,4- and 4,5-Methanoamino Acids. Chem Rev 2007; 107:4538-83. [DOI: 10.1021/cr0784083] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Farina Brackmann
- Institut für Organische und Biomolekulare Chemie der Georg-August-Universität Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany
| | - Armin de Meijere
- Institut für Organische und Biomolekulare Chemie der Georg-August-Universität Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany
| |
Collapse
|
12
|
González R, Collado I, de Uralde BL, Marcos A, Martín-Cabrejas LM, Pedregal C, Blanco-Urgoiti J, Pérez-Castells J, Fernández MA, Andis SL, Johnson BG, Wright RA, Schoepp DD, Monn JA. C3′-cis-Substituted carboxycyclopropyl glycines as metabotropic glutamate 2/3 receptor agonists: Synthesis and SAR studies. Bioorg Med Chem 2005; 13:6556-70. [PMID: 16153851 DOI: 10.1016/j.bmc.2005.07.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 07/06/2005] [Accepted: 07/13/2005] [Indexed: 11/21/2022]
Abstract
The synthesis of a series of C3'-cis-substituted carboxycyclopropyl glycines bearing a wide variety of functional groups is described, and the structure-activity relationship for this series as agonists of group II metabotropic glutamate receptors is reported.
Collapse
|
13
|
Itoh T, Ishida N, Mitsukura K, Hayase S, Ohashi K. Synthesis of optically active gem-difluorocyclopropanes through a chemo-enzymatic reaction strategy. J Fluor Chem 2004. [DOI: 10.1016/j.jfluchem.2004.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Collado I, Pedregal C, Bueno AB, Marcos A, González R, Blanco-Urgoiti J, Pérez-Castells J, Schoepp DD, Wright RA, Johnson BG, Kingston AE, Moher ED, Hoard DW, Griffey KI, Tizzano JP. (2S,1'S,2'R,3'R)-2-(2'-Carboxy-3'-hydroxymethylcyclopropyl) glycine is a highly potent group 2 and 3 metabotropic glutamate receptor agonist with oral activity. J Med Chem 2004; 47:456-66. [PMID: 14711315 DOI: 10.1021/jm030967o] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The asymmetric synthesis and biological activity of (2S,1'S,2'R,3'R)-2-(2'-carboxy-3'-hydroxymethylcyclopropyl) glycine ((+)-3) is described. This novel C-3' substituted carboxy cyclopropyl glycine is a highly potent group 2 and group 3 mGluR agonist that has proven to be orally active in both fear potentiated startle (animal model for anxiety) and PCP-induced motor activation (animal model for psychosis) assays in rats.
Collapse
Affiliation(s)
- Iván Collado
- Lilly, SA, Avda. de la Industria 30, 28108 Alcobendas, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Synthesis of high enantiomeric purity gem-dihalocyclopropane derivatives from biotransformations of nitriles and amides. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.tetasy.2003.11.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Kirihara M, Kawasaki M, Takuwa T, Kakuda H, Wakikawa T, Takeuchi Y, Kirk KL. Efficient synthesis of (R)- and (S)-1-amino-2,2-difluorocyclopropanecarboxylic acid via lipase-catalyzed desymmetrization of prochiral precursors. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0957-4166(03)00350-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Fedoryński M. Syntheses of gem-dihalocyclopropanes and their use in organic synthesis. Chem Rev 2003; 103:1099-132. [PMID: 12683778 DOI: 10.1021/cr0100087] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michał Fedoryński
- Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
| |
Collapse
|
18
|
Collado I, Pedregal C, Mazón A, Espinosa JF, Blanco-Urgoiti J, Schoepp DD, Wright RA, Johnson BG, Kingston AE. (2S,1'S,2'S,3'R)-2-(2'-carboxy-3'-methylcyclopropyl) glycine is a potent and selective metabotropic group 2 receptor agonist with anxiolytic properties. J Med Chem 2002; 45:3619-29. [PMID: 12166935 DOI: 10.1021/jm0110486] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The asymmetric synthesis and biological activity of (2S,1'S,2'S,3'R)-2-(2'-carboxy-3'-methylcyclopropyl) glycine 7 and its epimer at the C3' center 6 are described. Compound 7 is a highly potent and selective agonist for group 2 metabotropric glutamate receptors (mGluRs). It is also systemically 4 orders of magnitude more active in the fear-potentiated startle model of anxiety in rats than the rigid constrained bicyclic system LY354740. Therefore, we have shown that high molecular complexity of conformationally constrained bicyclic systems is not a requirement to achieve highly selective and potent group 2 mGluRs agonists.
Collapse
Affiliation(s)
- Iván Collado
- Lilly, SA. Avda. de la Industria 30, 28108 Alcobendas, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Synthesis of enantiopure monofluorinated phenylcyclopropanes by lipase-catalyzed kinetic resolution. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0957-4166(02)00331-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
|
21
|
A stereoselective preparation of 1-fluorocyclopropane-1-carboxylate derivatives through radical addition of fluoroiodoacetate to alkenes followed by intramolecular substitution reaction. Tetrahedron 2001. [DOI: 10.1016/s0040-4020(01)00726-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Soloshonok VA, Cai C, Hruby VJ, Van Meervelt L, Yamazaki T. Rational design of highly diastereoselective, organic base-catalyzed, room-temperature Michael addition reactions. J Org Chem 2000; 65:6688-96. [PMID: 11052120 DOI: 10.1021/jo0008791] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Via the rational design of a single-preferred transition state, stabilized by electron donor-acceptor-type attractive interactions, structural and geometric requirements for the corresponding starting compounds have been determined. The Ni(II) complex of the Schiff base of glycine with o-[N-alpha-picolylamino]acetophenone, as a nucleophilic glycine equivalent, and N-(trans-enoyl)oxazolidin-2-ones, as derivatives of an alpha,beta-unsaturated carboxylic acid, were found to be the substrates of choice featuring geometric/conformational homogeneity and high reactivity. The corresponding Michael addition reactions were found to proceed at room temperature in the presence of catalytic amounts of DBU to afford quantitatively the addition products with virtually complete diastereoselectivity. Acidic decomposition of the products followed by treatment of the reaction mixture with NH4OH gave rise to the diastereomerically pure 3-substituted pyroglutamic acids.
Collapse
Affiliation(s)
- V A Soloshonok
- Department of Chemistry, University of Arizona, Tucson 85721, USA
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Chapter 1. Metabotropic glutamate receptor modulators: Recent advances and therapeutic potential. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2000. [DOI: 10.1016/s0065-7743(00)35002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
25
|
Synthesis of 2-fluoro analog of 6-aminonorbornane-2,6-dicarboxylic acid: A conformationally rigid glutamic acid derivative. Tetrahedron 1999. [DOI: 10.1016/s0040-4020(99)00785-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Schoepp DD, Jane DE, Monn JA. Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 1999; 38:1431-76. [PMID: 10530808 DOI: 10.1016/s0028-3908(99)00092-1] [Citation(s) in RCA: 831] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Metabotropic (G-protein-coupled) glutamate (mGlu) receptors have now emerged as a recognized, but still relatively new area of excitatory amino acid research. Current understanding of the roles and involvement of mGlu receptor subtypes in physiological/pathophysiological functions of the central nervous system has been recently propelled by the emergence of various structurally novel, potent, and mGlu receptor selective pharmacological agents. This article reviews the evolution of pharmacological agents that have been reported to target mGlu receptors, with a focus on the known receptor subtype selectivities of current agents.
Collapse
Affiliation(s)
- D D Schoepp
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | |
Collapse
|
27
|
Ishida M, Shinozaki H. Inhibition of uptake and release of a novel mGluR agonist (L-F2CCG-I) by anion transport blockers in the rat spinal cord. Neuropharmacology 1999; 38:1531-41. [PMID: 10530815 DOI: 10.1016/s0028-3908(99)00091-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new metabotropic glutamate receptor (mGluR) agonist, (2S,1'S,2'S)-2-(2-carboxy-3,3-difluorocyclopropyl)glycine (L-F2CCG-I), induces a priming effect on (RS)-alpha-aminopimelate in the isolated spinal cord of newborn rats. Similar to (RS)-alpha-aminopimelate, L-glutamate (30-100 microM) neither affected spinal reflexes nor the resting membrane potentials of motoneurones, but preferentially potentiated the depression of monosynaptic excitation caused by L-F2CCG-I (0.4 microM). Following L-F2CCG-I treatment (1-2 microM), L-glutamate decreased the monosynaptic spinal reflexes in a concentration dependent manner, indicating a priming' effect of L-F2CCG-I. Thus L-glutamate is completely compatible with (RS)-alpha-aminopimelate in revealing the priming effect. An anion transport blocker, 4,4'-dinitrostilbene-2,2'-disulphonic acid (DNDS) (100 microM), markedly inhibited both the response to (RS)-alpha-aminopimelate and the induction of the L-F2CCG-I priming effect. The data suggest that L-F2CCG-I is Cl- -dependently incorporated into certain stores, and that (RS)-alpha-aminopimelate or L-glutamate must stimulate the release of L-F2CCG-I from the storage site. There were pharmacological similarities between the quisqualate and L-F2CCG-I priming effect. The physiological significance of the quisqualate or L-F2CCG-I priming is not yet established. L-F2CCG-I would be expected to be a useful pharmacological probe for elucidating the mechanism of the priming.
Collapse
Affiliation(s)
- M Ishida
- Department of Pharmacology, The Tokyo Metropolitan Institute of Medical Science, Japan
| | | |
Collapse
|
28
|
Synthesis of optically active bisdifluorocyclopropanes through a chemo-enzymatic reaction strategy. Tetrahedron Lett 1999. [DOI: 10.1016/s0040-4039(99)01088-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
|
30
|
Kirihara M, Takuwa T, Kawasaki M, Kakuda H, Hirokami SI, Takahata H. Synthesis of (+)-(R)-1-Amino-2,2-difluorocyclopropane-1-carboxylic Acid through Lipase-Catalyzed Asymmetric Acetylation. CHEM LETT 1999. [DOI: 10.1246/cl.1999.405] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|