1
|
Politano L. Is Cardiac Transplantation Still a Contraindication in Patients with Muscular Dystrophy-Related End-Stage Dilated Cardiomyopathy? A Systematic Review. Int J Mol Sci 2024; 25:5289. [PMID: 38791328 PMCID: PMC11121328 DOI: 10.3390/ijms25105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Inherited muscular diseases (MDs) are genetic degenerative disorders typically caused by mutations in a single gene that affect striated muscle and result in progressive weakness and wasting in affected individuals. Cardiac muscle can also be involved with some variability that depends on the genetic basis of the MD (Muscular Dystrophy) phenotype. Heart involvement can manifest with two main clinical pictures: left ventricular systolic dysfunction with evolution towards dilated cardiomyopathy and refractory heart failure, or the presence of conduction system defects and serious life-threatening ventricular arrhythmias. The two pictures can coexist. In these cases, heart transplantation (HTx) is considered the most appropriate option in patients who are not responders to the optimized standard therapeutic protocols. However, cardiac transplant is still considered a relative contraindication in patients with inherited muscle disorders and end-stage cardiomyopathies. High operative risk related to muscle impairment and potential graft involvement secondary to the underlying myopathy have been the two main reasons implicated in the generalized reluctance to consider cardiac transplant as a viable option. We report an overview of cardiac involvement in MDs and its possible association with the underlying molecular defect, as well as a systematic review of HTx outcomes in patients with MD-related end-stage dilated cardiomyopathy, published so far in the literature.
Collapse
Affiliation(s)
- Luisa Politano
- Cardiomyology and Medical Genetics, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
2
|
Vetter TA, Parthiban P, Stevens JA, Revelo XS, Kohr MJ, Townsend D. Reduced cardiac antioxidant defenses mediate increased susceptibility to workload-induced myocardial injury in males with genetic cardiomyopathy. J Mol Cell Cardiol 2024; 190:24-34. [PMID: 38527667 PMCID: PMC11060907 DOI: 10.1016/j.yjmcc.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Ongoing cardiomyocyte injury is a major mechanism in the progression of heart failure, particularly in dystrophic hearts. Due to the poor regenerative capacity of the adult heart, cardiomyocyte death results in the permanent loss of functional myocardium. Understanding the factors contributing to myocyte injury is essential for the development of effective heart failure therapies. As a model of persistent cardiac injury, we examined mice lacking β-sarcoglycan (β-SG), a key component of the dystrophin glycoprotein complex (DGC). The loss of the sarcoglycan complex markedly compromises sarcolemmal integrity in this β-SG-/- model. Our studies aim to characterize the mechanisms underlying dramatic sex differences in susceptibility to cardiac injury in β-SG-/- mice. Male β-SG-/- hearts display significantly greater myocardial injury and death following isoproterenol-induced cardiac stress than female β-SG-/- hearts. This protection of females was independent of ovarian hormones. Male β-SG-/- hearts displayed increased susceptibility to exogenous oxidative stress and were significantly protected by angiotensin II type 1 receptor (AT1R) antagonism. Increasing general antioxidative defenses or increasing the levels of S-nitrosylation both provided protection to the hearts of β-SG-/- male mice. Here we demonstrate that increased susceptibility to oxidative damage leads to an AT1R-mediated amplification of workload-induced myocardial injury in male β-SG-/- mice. Improving oxidative defenses, specifically by increasing S-nitrosylation, provided protection to the male β-SG-/- heart from workload-induced injury. These studies describe a unique susceptibility of the male heart to injury and may contribute to the sex differences in other forms of cardiac injury.
Collapse
Affiliation(s)
- Tatyana A Vetter
- Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Preethy Parthiban
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Jackie A Stevens
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Xavier S Revelo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America; Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States of America; Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America.
| |
Collapse
|
3
|
Mendell JR, Pozsgai ER, Lewis S, Griffin DA, Lowes LP, Alfano LN, Lehman KJ, Church K, Reash NF, Iammarino MA, Sabo B, Potter R, Neuhaus S, Li X, Stevenson H, Rodino-Klapac LR. Gene therapy with bidridistrogene xeboparvovec for limb-girdle muscular dystrophy type 2E/R4: phase 1/2 trial results. Nat Med 2024; 30:199-206. [PMID: 38177855 PMCID: PMC10803256 DOI: 10.1038/s41591-023-02730-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/20/2023] [Indexed: 01/06/2024]
Abstract
Limb-girdle muscular dystrophy 2E/R4 is caused by mutations in the β-sarcoglycan (SGCB) gene, leading to SGCB deficiency and consequent muscle loss. We developed a gene therapy approach based on functional replacement of the deficient SCB protein. Here we report interim results from a first-in-human, open-label, nonrandomized, phase 1/2 trial evaluating the safety and efficacy of bidridistrogene xeboparvovec, an adeno-associated virus-based gene therapy containing a codon-optimized, full-length human SGCB transgene. Patients aged 4-15 years with confirmed SGCB mutations at both alleles received one intravenous infusion of either 1.85 × 1013 vector genome copies kg-1 (Cohort 1, n = 3) or 7.41 × 1013 vector gene copies kg-1 (Cohort 2, n = 3). Primary endpoint was safety, and secondary endpoint was change in SGCB expression in skeletal muscle from baseline to Day 60. We report interim Year 2 results (trial ongoing). The most frequent treatment-related adverse events were vomiting (four of six patients) and gamma-glutamyl transferase increase (three of six patients). Serious adverse events resolved with standard therapies. Robust SGCB expression was observed: Day 60 mean (s.d.) percentage of normal expression 36.2% (2.7%) in Cohort 1 and 62.1% (8.7%) in Cohort 2. Post hoc exploratory analysis showed preliminary motor improvements using the North Star Assessment for Limb-girdle Type Muscular Dystrophies maintained through Year 2. The 2-year safety and efficacy of bidridistrogene xeboparvovec support clinical development advancement. Further studies are necessary to confirm the long-term safety and efficacy of this gene therapy. ClinicalTrials.gov registration: NCT03652259 .
Collapse
Affiliation(s)
- Jerry R Mendell
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | | | - Sarah Lewis
- Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | | | - Linda P Lowes
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Lindsay N Alfano
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Kelly J Lehman
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kathleen Church
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Natalie F Reash
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Megan A Iammarino
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Brenna Sabo
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | - Xiaoxi Li
- Sarepta Therapeutics, Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
4
|
Cheung A, Audhya IF, Szabo SM, Friesen M, Weihl CC, Gooch KL. Patterns of Clinical Progression Among Patients With Autosomal Recessive Limb-Girdle Muscular Dystrophy: A Systematic Review. J Clin Neuromuscul Dis 2023; 25:65-80. [PMID: 37962193 DOI: 10.1097/cnd.0000000000000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
OBJECTIVES As the clinical course of autosomal recessive limb-girdle muscular dystrophy (LGMDR) is highly variable, this study characterized the frequency of loss of ambulation (LOA) among patients by subtype (LGMDR1, LGMDR2, LGMDR3-6, LGMDR9, LGMDR12) and progression to cardiac and respiratory involvement among those with and without LOA. METHODS Systematic literature review. RESULTS From 2929 abstracts screened, 418 patients were identified with ambulatory status data (LOA: 265 [63.4%]). Cardiac and/or respiratory function was reported for 142 patients (34.0%; all with LOA). Among these, respiratory involvement was most frequent in LGMDR3-6 (74.1%; mean [SD] age 23.9 [11.0] years) and cardiac in LGMDR9 (73.3%; mean [SD] age 23.7 [17.7] years). Involvement was less common in patients without LOA except in LGMDR9 (71.4% respiratory and 52.4% cardiac). CONCLUSIONS This study described the co-occurrence of LOA, cardiac, and respiratory involvement in LGMDR and provides greater understanding of the clinical progression of LGMDR.
Collapse
Affiliation(s)
| | | | | | | | - Conrad C Weihl
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
5
|
Dalla Barba F, Soardi M, Mouhib L, Risato G, Akyürek EE, Lucon-Xiccato T, Scano M, Benetollo A, Sacchetto R, Richard I, Argenton F, Bertolucci C, Carotti M, Sandonà D. Modeling Sarcoglycanopathy in Danio rerio. Int J Mol Sci 2023; 24:12707. [PMID: 37628888 PMCID: PMC10454440 DOI: 10.3390/ijms241612707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Sarcoglycanopathies, also known as limb girdle muscular dystrophy 3-6, are rare muscular dystrophies characterized, although heterogeneous, by high disability, with patients often wheelchair-bound by late adolescence and frequently developing respiratory and cardiac problems. These diseases are currently incurable, emphasizing the importance of effective treatment strategies and the necessity of animal models for drug screening and therapeutic verification. Using the CRISPR/Cas9 genome editing technique, we generated and characterized δ-sarcoglycan and β-sarcoglycan knockout zebrafish lines, which presented a progressive disease phenotype that worsened from a mild larval stage to distinct myopathic features in adulthood. By subjecting the knockout larvae to a viscous swimming medium, we were able to anticipate disease onset. The δ-SG knockout line was further exploited to demonstrate that a δ-SG missense mutant is a substrate for endoplasmic reticulum-associated degradation (ERAD), indicating premature degradation due to protein folding defects. In conclusion, our study underscores the utility of zebrafish in modeling sarcoglycanopathies through either gene knockout or future knock-in techniques. These novel zebrafish lines will not only enhance our understanding of the disease's pathogenic mechanisms, but will also serve as powerful tools for phenotype-based drug screening, ultimately contributing to the development of a cure for sarcoglycanopathies.
Collapse
Affiliation(s)
- Francesco Dalla Barba
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Michela Soardi
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Leila Mouhib
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
- Randall Center for Cell and Molecular Biophysics, King’s College London, London WC2R 2LS, UK
| | - Giovanni Risato
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Eylem Emek Akyürek
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Legnaro, 35020 Padova, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Martina Scano
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Alberto Benetollo
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis, Legnaro, 35020 Padova, Italy
| | - Isabelle Richard
- Genethon, F-91002 Evry, France
- INSERM, U951, INTEGRARE Research Unit, F-91002 Evry, France
| | - Francesco Argenton
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Marcello Carotti
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy; (F.D.B.)
| |
Collapse
|
6
|
Groh WJ, Bhakta D, Tomaselli GF, Aleong RG, Teixeira RA, Amato A, Asirvatham SJ, Cha YM, Corrado D, Duboc D, Goldberger ZD, Horie M, Hornyak JE, Jefferies JL, Kääb S, Kalman JM, Kertesz NJ, Lakdawala NK, Lambiase PD, Lubitz SA, McMillan HJ, McNally EM, Milone M, Namboodiri N, Nazarian S, Patton KK, Russo V, Sacher F, Santangeli P, Shen WK, Sobral Filho DC, Stambler BS, Stöllberger C, Wahbi K, Wehrens XHT, Weiner MM, Wheeler MT, Zeppenfeld K. 2022 HRS expert consensus statement on evaluation and management of arrhythmic risk in neuromuscular disorders. Heart Rhythm 2022; 19:e61-e120. [PMID: 35500790 DOI: 10.1016/j.hrthm.2022.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
Abstract
This international multidisciplinary document is intended to guide electrophysiologists, cardiologists, other clinicians, and health care professionals in caring for patients with arrhythmic complications of neuromuscular disorders (NMDs). The document presents an overview of arrhythmias in NMDs followed by detailed sections on specific disorders: Duchenne muscular dystrophy, Becker muscular dystrophy, and limb-girdle muscular dystrophy type 2; myotonic dystrophy type 1 and type 2; Emery-Dreifuss muscular dystrophy and limb-girdle muscular dystrophy type 1B; facioscapulohumeral muscular dystrophy; and mitochondrial myopathies, including Friedreich ataxia and Kearns-Sayre syndrome, with an emphasis on managing arrhythmic cardiac manifestations. End-of-life management of arrhythmias in patients with NMDs is also covered. The document sections were drafted by the writing committee members according to their area of expertise. The recommendations represent the consensus opinion of the expert writing group, graded by class of recommendation and level of evidence utilizing defined criteria. The recommendations were made available for public comment; the document underwent review by the Heart Rhythm Society Scientific and Clinical Documents Committee and external review and endorsement by the partner and collaborating societies. Changes were incorporated based on these reviews. By using a breadth of accumulated available evidence, the document is designed to provide practical and actionable clinical information and recommendations for the diagnosis and management of arrhythmias and thus improve the care of patients with NMDs.
Collapse
Affiliation(s)
- William J Groh
- Ralph H. Johnson VA Medical Center and Medical University of South Carolina, Charleston, South Carolina
| | - Deepak Bhakta
- Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | - Anthony Amato
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Domenico Corrado
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padova, Padova, Italy
| | - Denis Duboc
- Cardiology Department, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Zachary D Goldberger
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Minoru Horie
- Shiga University of Medical Sciences, Otsu, Japan
| | | | | | - Stefan Kääb
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Jonathan M Kalman
- Royal Melbourne Hospital and University of Melbourne, Melbourne, Victoria, Australia
| | | | - Neal K Lakdawala
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pier D Lambiase
- Barts Heart Centre, St Bartholomew's Hospital, University College London, and St Bartholomew's Hospital London, London, United Kingdom
| | | | - Hugh J McMillan
- Montreal Children's Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Frederic Sacher
- Bordeaux University Hospital, LIRYC Institute, Bordeaux, France
| | | | | | | | | | - Claudia Stöllberger
- Second Medical Department with Cardiology and Intensive Care Medicine, Klinik Landstraße, Vienna, Austria
| | - Karim Wahbi
- Cardiology Department, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | | | | | | | | |
Collapse
|
7
|
Audhya IF, Cheung A, Szabo SM, Flint E, Weihl CC, Gooch KL. Progression to Loss of Ambulation Among Patients with Autosomal Recessive Limb-girdle Muscular Dystrophy: A Systematic Review. J Neuromuscul Dis 2022; 9:477-492. [PMID: 35527561 PMCID: PMC9398075 DOI: 10.3233/jnd-210771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background The impact of age at autosomal recessive limb girdle muscular dystrophy (LGMDR) onset on progression to loss of ambulation (LOA) has not been well established, particularly by subtype. Objectives: To describe the characteristics of patients with adult-, late childhood-, and early childhood-onset LGMDR by subtype and characterize the frequency and timing of LOA. Methods: A systematic review was conducted in MEDLINE, Embase and the Cochrane library. Frequency and timing of LOA in patients with LGMDR1, LGMDR2/Miyoshi myopathy (MM), LGMDR3-6, LGMDR9, and LGMDR12 were synthesized from published data. Results: In 195 studies, 695 (43.4%) patients had adult-, 532 (33.2%) had late childhood-, and 376 (23.5%) had early childhood-onset of disease across subtypes among those with a reported age at onset (n = 1,603); distribution of age at onset varied between subtypes. Among patients with LOA (n = 228), adult-onset disease was uncommon in LGMDR3-6 (14%) and frequent in LGMDR2/MM (42%); LGMDR3-6 cases with LOA primarily had early childhood-onset (74%). Mean (standard deviation [SD]) time to LOA varied between subtypes and was shortest for patients with early childhood-onset LGMDR9 (12.0 [4.9] years, n = 19) and LGMDR3-6 (12.3 [10.7], n = 56) and longest for those with late childhood-onset LGMDR2/MM (21.4 [11.5], n = 36). Conclusions: This review illustrated that patients with early childhood-onset disease tend to have faster progression to LOA than those with late childhood- or adult-onset disease, particularly in LGMDR9. These findings provide a greater understanding of progression to LOA by LGMDR subtype, which may help inform clinical trial design and provide a basis for natural history studies.
Collapse
Affiliation(s)
| | | | | | - Emma Flint
- Broadstreet HEOR, Vancouver, BC, V6A 1A4 Canada
| | - Conrad C Weihl
- Washington University School of Medicine, St.Louis, MO, USA
| | | |
Collapse
|
8
|
Marchetti GB, Valenti L, Torrente Y. Clinical Determinants of Disease Progression in Patients With Beta-Sarcoglycan Gene Mutations. Front Neurol 2021; 12:657949. [PMID: 34276533 PMCID: PMC8280524 DOI: 10.3389/fneur.2021.657949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/14/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Limb-girdle muscular dystrophy 2E (LGMD 2E), recently renamed as autosomal recessive limb-girdle muscular dystrophy-4 (LGMDR4), is characterized by the lack of beta-sarcoglycan, normally expressed in skeletal muscles and cardiomyocytes. We hypothesized that progressive respiratory and left ventricular (LV) failure in LGMDR4 could be associated with the age and interrelated phenomena of the disease's natural history. Methods: We conducted a retrospective review of the records of 26 patients with LGMDR4. Our primary objective was to compare the rates of decline among creatine phosphokinase (CPK) values, pulmonary function test (PFT) measures, and echocardiographic estimates and to relate them to patients' age. Results: The rates of decline/year of CPK, PFTs, and LV function estimates are significatively bound to age, with the LV ejection fraction (EF) being the strongest independent variable describing disease progression. Moreover, the rate of decline of CPK, PFTs, and LV differed in patients grouped according to their genetic mutations, demonstrating a possible genotype–phenotype correlation. The parallel trend of decline in CPK, PFT, and EF values demonstrates the presence in LGMDR4 of a simultaneous and progressive deterioration in muscular, respiratory, and cardiac function. Conclusions: This study expands the current knowledge regarding the trend of CPK values and cardiac and respiratory impairment in patients with LGMDR4, to optimize the monitoring of these patients, to improve their quality of life, and to provide clinical indices capable of quantifying the effects of any new gene or drug therapy.
Collapse
Affiliation(s)
- Giulia Bruna Marchetti
- Unit of Neurology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Department of Transfusion Medicine and Hematology, Translational Medicine, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico Ca' Granda, Milan, Italy
| | - Yvan Torrente
- Unit of Neurology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione Istituto di Ricerca e Cura a Carattere Scientifico Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| |
Collapse
|
9
|
Muscle Diversity, Heterogeneity, and Gradients: Learning from Sarcoglycanopathies. Int J Mol Sci 2021; 22:ijms22052502. [PMID: 33801487 PMCID: PMC7958856 DOI: 10.3390/ijms22052502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle, the most abundant tissue in the body, is heterogeneous. This heterogeneity forms the basis of muscle diversity, which is reflected in the specialized functions of muscles in different parts of the body. However, these different parts are not always clearly delimitated, and this often gives rise to gradients within the same muscle and even across the body. During the last decade, several studies on muscular disorders both in mice and in humans have observed particular distribution patterns of muscle weakness during disease, indicating that the same mutation can affect muscles differently. Moreover, these phenotypical differences reveal gradients of severity, existing alongside other architectural gradients. These two factors are especially prominent in sarcoglycanopathies. Nevertheless, very little is known about the mechanism(s) driving the phenotypic diversity of the muscles affected by these diseases. Here, we will review the available literature on sarcoglycanopathies, focusing on phenotypic differences among affected muscles and gradients, characterization techniques, molecular signatures, and cell population heterogeneity, highlighting the possibilities opened up by new technologies. This review aims to revive research interest in the diverse disease phenotype affecting different muscles, in order to pave the way for new therapeutic interventions.
Collapse
|
10
|
Alonso-Pérez J, González-Quereda L, Bello L, Guglieri M, Straub V, Gallano P, Semplicini C, Pegoraro E, Zangaro V, Nascimento A, Ortez C, Comi GP, Dam LT, De Visser M, van der Kooi AJ, Garrido C, Santos M, Schara U, Gangfuß A, Løkken N, Storgaard JH, Vissing J, Schoser B, Dekomien G, Udd B, Palmio J, D'Amico A, Politano L, Nigro V, Bruno C, Panicucci C, Sarkozy A, Abdel-Mannan O, Alonso-Jimenez A, Claeys KG, Gomez-Andrés D, Munell F, Costa-Comellas L, Haberlová J, Rohlenová M, Elke DV, De Bleecker JL, Dominguez-González C, Tasca G, Weiss C, Deconinck N, Fernández-Torrón R, López de Munain A, Camacho-Salas A, Melegh B, Hadzsiev K, Leonardis L, Koritnik B, Garibaldi M, de Leon-Hernández JC, Malfatti E, Fraga-Bau A, Richard I, Illa I, Díaz-Manera J. New genotype-phenotype correlations in a large European cohort of patients with sarcoglycanopathy. Brain 2021; 143:2696-2708. [PMID: 32875335 DOI: 10.1093/brain/awaa228] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Sarcoglycanopathies comprise four subtypes of autosomal recessive limb-girdle muscular dystrophies (LGMDR3, LGMDR4, LGMDR5 and LGMDR6) that are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. In 2016, several clinicians involved in the diagnosis, management and care of patients with LGMDR3-6 created a European Sarcoglycanopathy Consortium. The aim of the present study was to determine the clinical and genetic spectrum of a large cohort of patients with sarcoglycanopathy in Europe. This was an observational retrospective study. A total of 33 neuromuscular centres from 13 different European countries collected data of the genetically confirmed patients with sarcoglycanopathy followed-up at their centres. Demographic, genetic and clinical data were collected for this study. Data from 439 patients from 13 different countries were collected. Forty-three patients were not included in the analysis because of insufficient clinical information available. A total of 159 patients had a confirmed diagnosis of LGMDR3, 73 of LGMDR4, 157 of LGMDR5 and seven of LGMDR6. Patients with LGMDR3 had a later onset and slower progression of the disease. Cardiac involvement was most frequent in LGMDR4. Sixty per cent of LGMDR3 patients carried one of the following mutations, either in a homozygous or heterozygous state: c.229C>T, c.739G>A or c.850C>T. Similarly, the most common mutations in LMGDR5 patients were c.525delT or c.848G>A. In LGMDR4 patients the most frequent mutation was c.341C>T. We identified onset of symptoms before 10 years of age and residual protein expression lower than 30% as independent risk factors for losing ambulation before 18 years of age, in LGMDR3, LGMDR4 and LGMDR5 patients. This study reports clinical, genetic and protein data of a large European cohort of patients with sarcoglycanopathy. Improving our knowledge about these extremely rare autosomal recessive forms of LGMD was helped by a collaborative effort of neuromuscular centres across Europe. Our study provides important data on the genotype-phenotype correlation that is relevant for the design of natural history studies and upcoming interventional trials in sarcoglycanopathies.
Collapse
Affiliation(s)
- Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lidia González-Quereda
- U705 CIBERER, Genetics Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Luca Bello
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Pia Gallano
- U705 CIBERER, Genetics Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | | | - Elena Pegoraro
- Department of Neuroscience, University of Padova, Padova, Italy
| | | | - Andrés Nascimento
- Neuromuscular Disorder Unit, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Disorder Unit, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Giacomo Pietro Comi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Leroy Ten Dam
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marianne De Visser
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A J van der Kooi
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Cristina Garrido
- Neuropediatric Department, Centro Hospitalar do Porto, Porto, Portugal
| | - Manuela Santos
- Neuropediatric Department, Centro Hospitalar do Porto, Porto, Portugal
| | - Ulrike Schara
- Neuromuscular Centre for Children and Adolescents, Department of Paediatric Neurology, University Hospital Essen, Essen, Germany
| | - Andrea Gangfuß
- Neuromuscular Centre for Children and Adolescents, Department of Paediatric Neurology, University Hospital Essen, Essen, Germany
| | - Nicoline Løkken
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Jesper Helbo Storgaard
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology Klinikum München Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Bjarne Udd
- Neuromuscular Research Center, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Johanna Palmio
- Neuromuscular Research Center, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | - Luisa Politano
- Cardiomiology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine - University of Campania, Naples, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Omar Abdel-Mannan
- Dubowitz Neuromuscular Centre, MRC Centre for Neuromuscular Diseases, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alicia Alonso-Jimenez
- Neuromuscular Reference Center, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - David Gomez-Andrés
- Paediatric Neuromuscular disorders Unit, Pediatric Neurology, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Francina Munell
- Paediatric Neuromuscular disorders Unit, Pediatric Neurology, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Laura Costa-Comellas
- Paediatric Neuromuscular disorders Unit, Pediatric Neurology, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Jana Haberlová
- Department of Child Neurology, Charles University, 2nd Medical School, University Hospital Motol, Prague, Czech Republic
| | - Marie Rohlenová
- Department of Child Neurology, Charles University, 2nd Medical School, University Hospital Motol, Prague, Czech Republic
| | - De Vos Elke
- Department of Neurology, Ghent University and University Hospital Ghent, Ghent, Belgium
| | - Jan L De Bleecker
- Department of Neurology, Ghent University and University Hospital Ghent, Ghent, Belgium
| | - Cristina Dominguez-González
- Department of Neuroscience, University of Padova, Padova, Italy.,Neuromuscular Unit, Department of Neurology, Hospital Universitario 12 de Octubre, Instituto de Investigación imas12, Madrid, Spain
| | - Giorgio Tasca
- UOC Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Claudia Weiss
- Department of Neuropediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nicolas Deconinck
- Department of Neurology, Queen Fabiola Children's University Hospital (HUDERF), Free University of Brussels, Brussels, Belgium
| | | | - Adolfo López de Munain
- Neurosciences, BioDonostia Health Research Institute, Hospital Donostia, San Sebastián, Spain
| | - Ana Camacho-Salas
- Division of Child Neurology, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Madrid, Spain
| | - Béla Melegh
- Department of Medical Genetics, and Szentagothai Research Center, University of Pécs, School of Medicine, Pécs, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, and Szentagothai Research Center, University of Pécs, School of Medicine, Pécs, Hungary
| | - Lea Leonardis
- Institute of Clinical Neurophysiology, University Medical Centre, Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Blaz Koritnik
- Institute of Clinical Neurophysiology, University Medical Centre, Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Matteo Garibaldi
- Neuromuscular and Rare Disease Center, Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), SAPIENZA Università di Roma, Rome, Italy
| | | | - Edoardo Malfatti
- Department of Neurology, Raymond-Poincaré teaching hospital, centre de référence des maladies neuromusculaires Nord/Est/Ile-de-France, AP-HP, Garches, France
| | | | - Isabelle Richard
- Integrare (UMR_S951), Inserm, Généthon, Univ Evry, Université Paris-Saclay, 91002, Evry, France
| | - Isabel Illa
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Neuroscience, University of Padova, Padova, Italy
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,U705 CIBERER, Genetics Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Spain.,John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| |
Collapse
|
11
|
Fernández-Eulate G, Leturcq F, Laforêt P, Richard I, Stojkovic T. [Sarcoglycanopathies: state of the art and therapeutic perspectives]. Med Sci (Paris) 2021; 36 Hors série n° 2:22-27. [PMID: 33427632 DOI: 10.1051/medsci/2020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sarcoglycanopathies are the third most common cause of autosomal recessive limb girdle muscular dystrophies (LGMD). They are the result of a deficiency in one of the sarcoglycans a, b, g, or d. The usual clinical presentation is that of a symmetrical involvement of the muscles of the pelvic and scapular girdles as well as of the trunk, associated with more or less severe cardio-respiratory impairment and a marked increase of serum CK levels. The first symptoms appear during the first decade, the loss of ambulation occurring often during the second decade. Lesions observed on the muscle biopsy are dystrophic. This is associated with a decrease or an absence of immunostaining of the sarcoglycan corresponding to the mutated gene and, to a lesser degree, of the other three sarcoglycans. Many mutations have been reported in the four incriminated genes and some of them are prevalent in certain populations. To date, there is no curative treatment, which does not prevent the development of many clinical trials, especially in gene therapy.
Collapse
Affiliation(s)
- Gorka Fernández-Eulate
- Centre de Référence des maladies neuromusculaires Nord/Est/Île-de-France, APHP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - France Leturcq
- Laboratoire de biochimie génétique. APHP, Hôpital Cochin, Paris, France
| | - Pascal Laforêt
- Centre de Référence des maladies neuromusculaires Nord/Est/Île-de-France. APHP, CHU Raymond Poincaré, Garches. Université Paris-Saclay, France
| | - Isabelle Richard
- Généthon, 91000, Évry, France - Université Paris-Saclay, Université d'Evry, Inserm, Généthon, unité de recherche Integrare UMR_S951, 91000, Évry, France
| | - Tanya Stojkovic
- Centre de Référence des maladies neuromusculaires Nord/Est/Île-de-France, APHP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
| |
Collapse
|
12
|
Angelini C, Pegoraro V. Assessing diagnosis and managing respiratory and cardiac complications of sarcoglycanopathy. Expert Opin Orphan Drugs 2021. [DOI: 10.1080/21678707.2020.1865916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Corrado Angelini
- Center for Neuromuscular Diseases, IRCCS San Camillo Hospital, Venice, Italy
| | - Valentina Pegoraro
- Center for Neuromuscular Diseases, IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
13
|
Angelini C. LGMD. Identification, description and classification. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:207-217. [PMID: 33458576 PMCID: PMC7783424 DOI: 10.36185/2532-1900-024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 11/05/2022]
Abstract
The term ‘limb girdle muscular dystrophy’ (LGMD) was first used in the seminal paper by Walton and Nattrass in 1954, were they identified LGMD as a separate clinical entity In LGMD description it is pointed out that the category of LGMD most likely comprises a heterogeneous group of disorders. After that the clinical entity was discussed but the LMGD nosography reached a permanent classification during two ENMC workshops held in 1995 and 2017, in the last one an operating definition of LGMD was agreed. This last classification included dystrophies with proximal or distal-proximal presentation with evidence at biopsy of fibre degeneration and splitting, high CK, MRI imaging consistent with degenerative changes, fibro-fatty infiltration present in individuals that reached independent walking ability. To be considered in this group at least two unrelated families should be identified. A review is done of the first genetic characterisation of a number of LGMDs during the late twentieth century and a historical summary is given regarding how these conditions were clinically described and identified, the progresses done from identification of genetic loci, to protein and gene discoveries are reported. The LGMD described on which such historical progresses were done are the recessive calpainopathy (LGMD 2A/R1), dysferlinopathy (LGMD 2B/R2), sarcoglycanopathy (LGMD 2C-2F/R3-R6) types and the dominant type due to TPNO3 variants named transportinopathy (LGMD 1F/D2). Because of new diagnostic techniques such as exome and genome sequencing, it is likely that many other subtypes of LGMD might be identified in the future, however the lesson from the past discoveries can be useful for scientists and clinicians.
Collapse
|
14
|
Pashun RA, Azari BM, Achar A, Gruber D, Epstein LM, Geraci AP, Saba SG. Intramyocardial Fat in Family With Limb-Girdle Muscular Dystrophy Type 2E Cardiomyopathy and Sudden Cardiac Death. Circ Cardiovasc Imaging 2020; 13:e010104. [PMID: 32635746 DOI: 10.1161/circimaging.119.010104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Raymond A Pashun
- Departments of Cardiology (R.A.P., B.M.A., D.G., L.M.E., S.G.S.), North Shore University Hospital, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Bani M Azari
- Departments of Cardiology (R.A.P., B.M.A., D.G., L.M.E., S.G.S.), North Shore University Hospital, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Abhishek Achar
- Neurology (A.A., A.P.G.), North Shore University Hospital, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Dorota Gruber
- Departments of Cardiology (R.A.P., B.M.A., D.G., L.M.E., S.G.S.), North Shore University Hospital, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY.,Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, NY (D.G.)
| | - Laurence M Epstein
- Departments of Cardiology (R.A.P., B.M.A., D.G., L.M.E., S.G.S.), North Shore University Hospital, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Anthony P Geraci
- Neurology (A.A., A.P.G.), North Shore University Hospital, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
| | - Shahryar G Saba
- Departments of Cardiology (R.A.P., B.M.A., D.G., L.M.E., S.G.S.), North Shore University Hospital, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY.,Radiology (S.G.S.), North Shore University Hospital, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY.,Multimodality Cardiovascular Imaging Laboratory, North Shore University Hospital, Northwell Health, Manhasset, NY (S.G.S.)
| |
Collapse
|
15
|
Limpitikul W, Ong CS, Tomaselli GF. Neuromuscular Disease: Cardiac Manifestations and Sudden Death Risk. Card Electrophysiol Clin 2017; 9:731-747. [PMID: 29173414 DOI: 10.1016/j.ccep.2017.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cardiovascular complications of neuromuscular diseases disproportionately affect the cardiac conduction system. Cardiomyopathy and cardiac arrhythmias produce significant morbidity and mortality. Patients with neuromuscular diseases should be carefully and frequently evaluated for the presence of bradycardia, heart block, and tachyarrhythmias. Preemptive treatment with permanent pacemakers or implanted defibrillators is appropriate in patients with conduction system disease or who are at risk for ventricular arrhythmias.
Collapse
Affiliation(s)
- Worawan Limpitikul
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chin Siang Ong
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gordon F Tomaselli
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Silvestri NJ, Ismail H, Zimetbaum P, Raynor EM. Cardiac involvement in the muscular dystrophies. Muscle Nerve 2017; 57:707-715. [DOI: 10.1002/mus.26014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Nicholas J. Silvestri
- Department of Neurology; University at Buffalo Jacobs School of Medicine and Biomedical Sciences; 1010 Main St Buffalo New York 14202 USA
| | - Haisam Ismail
- Department of Cardiology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| | - Peter Zimetbaum
- Department of Cardiology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| | - Elizabeth M. Raynor
- Department of Neurology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| |
Collapse
|
17
|
Angelini C, Fanin M. Limb girdle muscular dystrophies: clinical-genetical diagnostic update and prospects for therapy. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1367283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Corrado Angelini
- Department of Neurodegenerative Disorders, Neuromuscular Center, San Camillo Hospital IRCCS, Venice, Italy
| | - Marina Fanin
- Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
18
|
|
19
|
Pozsgai ER, Griffin DA, Heller KN, Mendell JR, Rodino-Klapac LR. Systemic AAV-Mediated β-Sarcoglycan Delivery Targeting Cardiac and Skeletal Muscle Ameliorates Histological and Functional Deficits in LGMD2E Mice. Mol Ther 2017; 25:855-869. [PMID: 28284983 DOI: 10.1016/j.ymthe.2017.02.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 01/22/2023] Open
Abstract
Limb-girdle muscular dystrophy type 2E (LGMD2E), resulting from mutations in β-sarcoglycan (SGCB), is a progressive dystrophy with deteriorating muscle function, respiratory failure, and cardiomyopathy in 50% or more of LGMD2E patients. SGCB knockout mice share many of the phenotypic deficiencies of LGMD2E patients. To investigate systemic SGCB gene transfer to treat skeletal and cardiac muscle deficits, we designed a self-complementary AAVrh74 vector containing a codon-optimized human SGCB transgene driven by a muscle-specific promoter. We delivered scAAV.MHCK7.hSGCB through the tail vein of SGCB-/- mice to provide a rationale for a clinical trial that would lead to clinically meaningful results. This led to 98.1% transgene expression across all muscles that was accompanied by improvements in histopathology. Serum creatine kinase (CK) levels were reduced following treatment by 85.5%. Diaphragm force production increased by 94.4%, kyphoscoliosis of the spine was significantly reduced by 48.1%, overall ambulation increased by 57%, and vertical rearing increased dramatically by 132% following treatment. Importantly, no adverse effects were seen in muscle of wild-type mice injected systemically with scAAV.hSGCB. In this well-defined model of LGMD2E, we have demonstrated the efficacy and safety of systemic scAAV.hSGCB delivery, and these findings have established a path for clinically beneficial AAV-mediated gene therapy for LGMD2E.
Collapse
Affiliation(s)
- Eric R Pozsgai
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Danielle A Griffin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kristin N Heller
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Jerry R Mendell
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Louise R Rodino-Klapac
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Marsolier J, Laforet P, Pegoraro E, Vissing J, Richard I. 1st International Workshop on Clinical trial readiness for sarcoglycanopathies 15-16 November 2016, Evry, France. Neuromuscul Disord 2017; 27:683-692. [PMID: 28521973 DOI: 10.1016/j.nmd.2017.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Justine Marsolier
- Généthon, INSERM, U951, INTEGRARE Research Unit, Evry F-91002, France
| | | | | | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Isabelle Richard
- Généthon, INSERM, U951, INTEGRARE Research Unit, Evry F-91002, France.
| | | |
Collapse
|
21
|
|
22
|
Waite AJ, Carlisle FA, Chan YM, Blake DJ. Myoclonus dystonia and muscular dystrophy: ɛ-sarcoglycan is part of the dystrophin-associated protein complex in brain. Mov Disord 2016; 31:1694-1703. [PMID: 27535350 PMCID: PMC5129563 DOI: 10.1002/mds.26738] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/24/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022] Open
Abstract
Background Myoclonus‐dystonia is a neurogenic movement disorder caused by mutations in the gene encoding ɛ‐sarcoglycan. By contrast, mutations in the α‐, β‐, γ‐, and δ‐sarcoglycan genes cause limb girdle muscular dystrophies. The sarcoglycans are part of the dystrophin‐associated protein complex in muscle that is disrupted in several types of muscular dystrophy. Intriguingly, patients with myoclonus‐dystonia have no muscle pathology; conversely, limb‐girdle muscular dystrophy patients have not been reported to have dystonia‐associated features. To gain further insight into the molecular mechanisms underlying these differences, we searched for evidence of a sarcoglycan complex in the brain. Methods Immunoaffinity chromatography and mass spectrometry were used to purify ubiquitous and brain‐specific ɛ‐sarcoglycan directly from tissue. Cell models were used to determine the effect of mutations on the trafficking and assembly of the brain sarcoglycan complex. Results Ubiquitous and brain‐specific ɛ‐sarcoglycan isoforms copurify with β‐, δ‐, and ζ‐sarcoglycan, β‐dystroglycan, and dystrophin Dp71 from brain. Incorporation of a muscular dystrophy‐associated β‐sarcoglycan mutant into the brain sarcoglycan complex impairs the formation of the βδ‐sarcoglycan core but fails to abrogate the association and membrane trafficking of ɛ‐ and ζ‐sarcoglycan. Conclusions ɛ‐Sarcoglycan is part of the dystrophin‐associated protein complex in brain. Partial preservation of ɛ‐ and ζ‐sarcoglycan in brain may explain the absence of myoclonus dystonia‐like features in muscular dystrophy patients. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Adrian J. Waite
- Division of Psychological Medicine and Clinical NeurosciencesMRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff UniversityCardiffUnited Kingdom
| | - Francesca A. Carlisle
- Division of Psychological Medicine and Clinical NeurosciencesMRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff UniversityCardiffUnited Kingdom
| | - Yiumo Michael Chan
- McColl‐Lockwood Laboratory for Muscular Dystrophy ResearchCarolinas Medical CenterCharlotteNorth CarolinaUSA
| | - Derek J. Blake
- Division of Psychological Medicine and Clinical NeurosciencesMRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff UniversityCardiffUnited Kingdom
| |
Collapse
|
23
|
Fayssoil A, Ogna A, Chaffaut C, Chevret S, Guimarães-Costa R, Leturcq F, Wahbi K, Prigent H, Lofaso F, Nardi O, Clair B, Behin A, Stojkovic T, Laforet P, Orlikowski D, Annane D. Natural History of Cardiac and Respiratory Involvement, Prognosis and Predictive Factors for Long-Term Survival in Adult Patients with Limb Girdle Muscular Dystrophies Type 2C and 2D. PLoS One 2016; 11:e0153095. [PMID: 27120200 PMCID: PMC4847860 DOI: 10.1371/journal.pone.0153095] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/23/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Type 2C and 2D limb girdle muscular dystrophies (LGMD) are a group of autosomal recessive limb girdle muscular dystrophies manifested by proximal myopathy, impaired respiratory muscle function and cardiomyopathy. The correlation and the prognostic impact of respiratory and heart impairment are poorly described. We aimed to describe the long-term cardiac and respiratory follow-up of these patients and to determine predictive factors of cardio-respiratory events and mortality in LGMD 2C and 2D. METHODS We reviewed the charts of 34 LGMD patients, followed from 2005 to 2015, to obtain echocardiographic, respiratory function and sleep recording data. We considered respiratory events (acute respiratory failure, pulmonary sepsis, atelectasis or pneumothorax), cardiac events (acute heart failure, significant cardiac arrhythmia or conduction block, ischemic stroke) and mortality as outcomes of interest for the present analysis. RESULTS A total of 21 patients had type 2C LGMD and 13 patients had type 2D. Median age was 30 years [IQR 24-38]. At baseline, median pulmonary vital capacity (VC) was 31% of predicted value [20-40]. Median maximal inspiratory pressure (MIP) was 31 cmH2O [IQR 20.25-39.75]. Median maximal expiratory pressure (MEP) was 30 cm H2O [20-36]. Median left ventricular ejection fraction (LVEF) was 55% [45-64] with 38% of patients with LVEF <50%. Over a median follow-up of 6 years, we observed 38% respiratory events, 14% cardiac events and 20% mortality. Among baseline characteristics, LVEF and left ventricular end diastolic diameter (LVEDD) were associated with mortality, whilst respiratory parameters (VC, MIP, MEP) and the need for home mechanical ventilation (HMV) were associated with respiratory events. CONCLUSION In our cohort of severely respiratory impaired type 2C and 2D LGMD, respiratory morbidity was high. Cardiac dysfunction was frequent in particular in LGMD 2C and had an impact on long-term mortality. TRIAL REGISTRATION ClinicalTrials.gov NCT02501083.
Collapse
Affiliation(s)
- Abdallah Fayssoil
- Service de Réanimation médicale et unité de ventilation à domicile, centre de référence neuromusculaire GNHM, CHU Raymond Poincaré, APHP, Université de Versailles Saint Quentin en Yvelines, Garches, France
- Centre d’Investigation clinique et Innovation technologique CIC 14.29, INSERM, Garches, France
- Institut de Myologie, CHU Pitié Salpetrière, Centre de référence neuro musculaire Paris Est, Université Pierre et Marie Curie Paris VI, Paris, France
| | - Adam Ogna
- Service de Réanimation médicale et unité de ventilation à domicile, centre de référence neuromusculaire GNHM, CHU Raymond Poincaré, APHP, Université de Versailles Saint Quentin en Yvelines, Garches, France
- Centre d’Investigation clinique et Innovation technologique CIC 14.29, INSERM, Garches, France
| | - Cendrine Chaffaut
- SBIM, CHU Saint Louis, APHP, Université Paris Diderot, Paris, France
| | - Sylvie Chevret
- SBIM, CHU Saint Louis, APHP, Université Paris Diderot, Paris, France
| | - Raquel Guimarães-Costa
- Institut de Myologie, CHU Pitié Salpetrière, Centre de référence neuro musculaire Paris Est, Université Pierre et Marie Curie Paris VI, Paris, France
| | - France Leturcq
- Laboratoire de biochimie et génétique moléculaire, hôpital Cochin, AP-HP, université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Karim Wahbi
- Service de cardiologie, Hôpital Cochin, APHP, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Helene Prigent
- Service de Physiologie - Exploration fonctionnelles, CHU Raymond Poincaré, APHP, Université de Versailles saint Quentin en Yvelines, Garches, France
| | - Frederic Lofaso
- Service de Physiologie - Exploration fonctionnelles, CHU Raymond Poincaré, APHP, Université de Versailles saint Quentin en Yvelines, Garches, France
| | - Olivier Nardi
- Service de Réanimation médicale et unité de ventilation à domicile, centre de référence neuromusculaire GNHM, CHU Raymond Poincaré, APHP, Université de Versailles Saint Quentin en Yvelines, Garches, France
| | - Bernard Clair
- Service de Réanimation médicale et unité de ventilation à domicile, centre de référence neuromusculaire GNHM, CHU Raymond Poincaré, APHP, Université de Versailles Saint Quentin en Yvelines, Garches, France
| | - Anthony Behin
- Institut de Myologie, CHU Pitié Salpetrière, Centre de référence neuro musculaire Paris Est, Université Pierre et Marie Curie Paris VI, Paris, France
| | - Tanya Stojkovic
- Institut de Myologie, CHU Pitié Salpetrière, Centre de référence neuro musculaire Paris Est, Université Pierre et Marie Curie Paris VI, Paris, France
| | - Pascal Laforet
- Institut de Myologie, CHU Pitié Salpetrière, Centre de référence neuro musculaire Paris Est, Université Pierre et Marie Curie Paris VI, Paris, France
| | - David Orlikowski
- Service de Réanimation médicale et unité de ventilation à domicile, centre de référence neuromusculaire GNHM, CHU Raymond Poincaré, APHP, Université de Versailles Saint Quentin en Yvelines, Garches, France
- Centre d’Investigation clinique et Innovation technologique CIC 14.29, INSERM, Garches, France
| | - Djillali Annane
- Service de Réanimation médicale et unité de ventilation à domicile, centre de référence neuromusculaire GNHM, CHU Raymond Poincaré, APHP, Université de Versailles Saint Quentin en Yvelines, Garches, France
| |
Collapse
|
24
|
Giugliano T, Fanin M, Savarese M, Piluso G, Angelini C, Nigro V. Identification of an intragenic deletion in the SGCB gene through a re-evaluation of negative next generation sequencing results. Neuromuscul Disord 2016; 26:367-9. [PMID: 27108072 PMCID: PMC4879147 DOI: 10.1016/j.nmd.2016.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/02/2016] [Accepted: 02/19/2016] [Indexed: 11/19/2022]
Abstract
504 myopathic patients have been screened by an NGS approach. A patient with a strong suspicion of sarcoglycanopathy, due to WB and immunohistochemical studies, was investigated. The absence of reads on the sixth exon of the β-sarcoglycan gene was identified by a careful re-evaluation of the NGS data. Subsequent array CGH analysis identified a novel 3.3 kb intragenic deletion in the SGCB gene. A strong collaboration between clinicians and molecular geneticists is crucial for a careful interpretation of NGS results.
A large mutation screening of 504 patients with muscular dystrophy or myopathy has been performed by next generation sequencing (NGS). Among this cohort of patients, we report a case with a severe form of muscular dystrophy with a proximal weakness in the limb-girdle muscles. Her biopsy revealed typical dystrophic features and immunohistochemistry for α- and γ-sarcoglycans showed an absent reaction, addressing the clinical diagnosis toward a sarcoglycanopathy. Considering that no causative point mutation was detected in any of the four sarcoglycan genes, we re-evaluated the NGS data by careful quantitative analysis of the specific reads mapping on the four sarcoglycan genes. A complete absence of reads from the sixth exon of the β-sarcoglycan gene was found. Subsequent array comparative genomic hybridization (CGH) analysis confirmed the result with the identification of a novel 3.3 kb intragenic deletion in the SGCB gene. This case illustrates the importance of a multidisciplinary approach involving clinicians and molecular geneticists and the need for a careful re-evaluation of NGS data.
Collapse
Affiliation(s)
- Teresa Giugliano
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Napoli, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Marina Fanin
- Dipartimento di Neuroscienze, Università di Padova, Padova, Italy
| | - Marco Savarese
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Napoli, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Giulio Piluso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Napoli, Italy
| | | | - Vincenzo Nigro
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Napoli, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.
| |
Collapse
|
25
|
Finsterer J, Stöllberger C. Heart Disease in Disorders of Muscle, Neuromuscular Transmission, and the Nerves. Korean Circ J 2016; 46:117-34. [PMID: 27014341 PMCID: PMC4805555 DOI: 10.4070/kcj.2016.46.2.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/30/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022] Open
Abstract
Little is known regarding cardiac involvement (CI) by neuromuscular disorders (NMDs). The purpose of this review is to summarise and discuss the major findings concerning the types, frequency, and severity of cardiac disorders in NMDs as well as their diagnosis, treatment, and overall outcome. CI in NMDs is characterized by pathologic involvement of the myocardium or cardiac conduction system. Less commonly, additional critical anatomic structures, such as the valves, coronary arteries, endocardium, pericardium, and even the aortic root may be involved. Involvement of the myocardium manifests most frequently as hypertrophic or dilated cardiomyopathy and less frequently as restrictive cardiomyopathy, non-compaction, arrhythmogenic right-ventricular dysplasia, or Takotsubo-syndrome. Cardiac conduction defects and supraventricular and ventricular arrhythmias are common cardiac manifestations of NMDs. Arrhythmias may evolve into life-threatening ventricular tachycardias, asystole, or even sudden cardiac death. CI is common and carries great prognostic significance on the outcome of dystrophinopathies, laminopathies, desminopathies, nemaline myopathy, myotonias, metabolic myopathies, Danon disease, and Barth-syndrome. The diagnosis and treatment of CI in NMDs follows established guidelines for the management of cardiac disease, but cardiotoxic medications should be avoided. CI in NMDs is relatively common and requires complete work-up following the establishment of a neurological diagnosis. Appropriate cardiac treatment significantly improves the overall long-term outcome of NMDs.
Collapse
Affiliation(s)
| | - Claudia Stöllberger
- 2 Medical Department with Cardiology and Intensive Care Medicine, Krankenanstalt Rudolfstiftung, Vienna, Austria
| |
Collapse
|
26
|
A Haplotype of Two Novel Polymorphisms in δ-Sarcoglycan Gene Increases Risk of Dilated Cardiomyopathy in Mongoloid Population. PLoS One 2015; 10:e0145602. [PMID: 26720722 PMCID: PMC4697846 DOI: 10.1371/journal.pone.0145602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 12/07/2015] [Indexed: 11/21/2022] Open
Abstract
The role of genetic abnormality of δ-sarcoglycan (δ-SG) gene in dilated (DCM) and hypertrophied (HCM) cardiomyopathy patients is still unfolding. In this study we first defined the promoter region and then searched for polymorphisms/mutations among the promoter, 5'-untranslated region, and the encoding exons in δ-SG gene in 104 Chinese patients with DCM, 145 with HCM, and 790 normal controls. Two novel polymorphisms were found, an 11 base-pair (bp) deletion (c.-100~-110; -) in the promoter region and a missense polymorphism of A848G resulting in p.Q283R in the highly conserved C-terminus. The prevalence of homozygous genotype -/- of c.-100~-110 was slightly higher in DCM (14.42%) and HCM patients (14.48%), as compared with normal controls (11.01%). The prevalence of genotype of 848A/G was significantly higher in DCM (6.73%; OR = 9.43; p = 0.0002), but not in HCM patients (1.38%; OR = 1.37; p = 0.62), as compared with controls (0.76%). Haplotype -_G consisting c.-100~-110 and A848G was associated with increased risk of DCM (OR = 17.27; 95%CI = 3.19–93.56; p = 0.001) but not associated with HCM (OR = 1.90; 95%CI = 0.38–9.55; p = 0.44). Co-occurrence of the genotypes -/- of c.-100~-110 and 848A/G was found in 5 patients with DCM (4.81%; OR = 39.85; p = 0.0001), none of HCM patients, and only 1 of the controls (0.13%). Both polymorphisms were also found in the Japanese population, but not in the Africans and Caucasians. C.-100~-110 resulted in a decrease of δ-SG promoter activity to 64±3% of the control level (p<0.01). Both co-immunoprecipitation and in vitro protein pull-down assays demonstrated that δ-SG-283R interacts normally to β- and γ-SG, but significantly decreased localization of β/δ/γ-SG on the plasma membrane. In conclusion, haplotype -_G composed of c.-100~-110 and A848G confers higher susceptibility to DCM in the Mongoloid population.
Collapse
|
27
|
Pozsgai ER, Griffin DA, Heller KN, Mendell JR, Rodino-Klapac LR. β-Sarcoglycan gene transfer decreases fibrosis and restores force in LGMD2E mice. Gene Ther 2015. [PMID: 26214262 DOI: 10.1038/gt.2015.80] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Limb-girdle muscular dystrophy type 2E (LGMD2E) results from mutations in the β-sarcoglycan (SGCB) gene causing loss of functional protein and concomitant loss of dystrophin-associated proteins. The disease phenotype is characterized by muscle weakness and wasting, and dystrophic features including muscle fiber necrosis, inflammation and fibrosis. The Sgcb-null mouse recapitulates the clinical phenotype with significant endomysial fibrosis providing a relevant model to test whether gene replacement will be efficacious. We directly addressed this question using a codon optimized human β-sarcoglycan gene (hSGCB) driven by a muscle-specific tMCK promoter (scAAVrh74.tMCK.hSGCB). Following isolated limb delivery (5 × 10(11) vector genome (vg)), 91.2% of muscle fibers in the lower limb expressed β-sarcoglycan, restoring assembly of the sarcoglycan complex and protecting the membrane from Evans blue dye leakage. Histological outcomes were significantly improved including decreased central nucleation, normalization of muscle fiber size, decreased macrophages and inflammatory mononuclear cells, and an average of a 43% reduction in collagen deposition in treated muscle compared with untreated muscle at end point. These measures correlated with improvement of tetanic force and resistance to eccentric contraction. In 6-month-old mice, as indicated by collagen staining, scAAVrh74.tMCK.hSGCB treatment reduced fibrosis by 42%. This study demonstrates the potential for gene replacement to reverse debilitating fibrosis, typical of muscular dystrophy, thereby providing compelling evidence for movement to clinical gene replacement for LGMD2E.
Collapse
Affiliation(s)
- E R Pozsgai
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA.,Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - D A Griffin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - K N Heller
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - J R Mendell
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA.,Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA.,Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH, USA
| | - L R Rodino-Klapac
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA.,Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA.,Department of Pediatrics and Neurology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
28
|
Semplicini C, Vissing J, Dahlqvist JR, Stojkovic T, Bello L, Witting N, Duno M, Leturcq F, Bertolin C, D'Ambrosio P, Eymard B, Angelini C, Politano L, Laforêt P, Pegoraro E. Clinical and genetic spectrum in limb-girdle muscular dystrophy type 2E. Neurology 2015; 84:1772-81. [PMID: 25862795 DOI: 10.1212/wnl.0000000000001519] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/20/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the clinical spectrum of limb-girdle muscular dystrophy 2E (LGMD2E) and to investigate whether genetic or biochemical features can predict the phenotype of the disease. METHODS All LGMD2E patients followed in participating centers were included. A specific clinical protocol was created, including quantitative evaluation of motor, respiratory, and cardiac function. Phenotype was defined as severe or mild if the age at loss of ambulation occurred before or after 18 years. Molecular analysis of SGCB gene and biochemical features of muscle biopsies were reviewed. RESULTS Thirty-two patients were included (16 male, 16 female; age 7-67 years; 15 severe, 12 mild, and 5 unknown). Neurologic examination showed proximal muscle weakness in all patients, but distal involvement was also observed in patients with severe disease early in the disease course. Cardiac involvement was observed in 20 patients (63%) even before overt muscle involvement. Six patients had restrictive respiratory insufficiency requiring assisted ventilation (19%). Seventeen different mutations were identified, and 3 were recurrent. The c.377_384dup (13 alleles) was associated with the severe form, the c.-22_10dup (10) with the milder form, and the c.341C>T (9) with both. The entire sarcoglycan complex was undetectable by muscle immunohistochemistry or Western blot in 9/10 severe cases and reduced in 7/7 mild cases. The residual amount of sarcoglycan in muscle resulted a predictor of age at loss of ambulation. CONCLUSIONS This study expands the spectrum of phenotype in β-sarcoglycanopathy and provides strong evidence that severity of clinical involvement may be predicted by SGCB gene mutation and sarcoglycan protein expression.
Collapse
Affiliation(s)
- Claudio Semplicini
- From the Neuromuscular Center (C.S., L.B., C.B., E.P.), Department of Neurosciences, University of Padova, Italy; the Neuromuscular Clinic and Research Unit (J.V., J.R.D., N.W.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Paris-Est Neuromuscular Center (T.S., B.E., P.L.), Institut of Myology, Pitié-Salpêtrière Hospital, Paris, France; the Department of Clinical Genetics (M.D.), University of Copenhagen, Rigshospitalet, Denmark; Laboratoire de Biochimie et Génétique Moléculaire (F.L.), Groupe Hospitalier Cochin, Paris, France; Cardiomyology and Medical Genetics (P.D., L.P.), Department of Experimental Medicine, Second University of Naples; and the IRCCS San Camillo (C.A.), Venezia, Italy
| | - John Vissing
- From the Neuromuscular Center (C.S., L.B., C.B., E.P.), Department of Neurosciences, University of Padova, Italy; the Neuromuscular Clinic and Research Unit (J.V., J.R.D., N.W.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Paris-Est Neuromuscular Center (T.S., B.E., P.L.), Institut of Myology, Pitié-Salpêtrière Hospital, Paris, France; the Department of Clinical Genetics (M.D.), University of Copenhagen, Rigshospitalet, Denmark; Laboratoire de Biochimie et Génétique Moléculaire (F.L.), Groupe Hospitalier Cochin, Paris, France; Cardiomyology and Medical Genetics (P.D., L.P.), Department of Experimental Medicine, Second University of Naples; and the IRCCS San Camillo (C.A.), Venezia, Italy
| | - Julia R Dahlqvist
- From the Neuromuscular Center (C.S., L.B., C.B., E.P.), Department of Neurosciences, University of Padova, Italy; the Neuromuscular Clinic and Research Unit (J.V., J.R.D., N.W.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Paris-Est Neuromuscular Center (T.S., B.E., P.L.), Institut of Myology, Pitié-Salpêtrière Hospital, Paris, France; the Department of Clinical Genetics (M.D.), University of Copenhagen, Rigshospitalet, Denmark; Laboratoire de Biochimie et Génétique Moléculaire (F.L.), Groupe Hospitalier Cochin, Paris, France; Cardiomyology and Medical Genetics (P.D., L.P.), Department of Experimental Medicine, Second University of Naples; and the IRCCS San Camillo (C.A.), Venezia, Italy
| | - Tanya Stojkovic
- From the Neuromuscular Center (C.S., L.B., C.B., E.P.), Department of Neurosciences, University of Padova, Italy; the Neuromuscular Clinic and Research Unit (J.V., J.R.D., N.W.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Paris-Est Neuromuscular Center (T.S., B.E., P.L.), Institut of Myology, Pitié-Salpêtrière Hospital, Paris, France; the Department of Clinical Genetics (M.D.), University of Copenhagen, Rigshospitalet, Denmark; Laboratoire de Biochimie et Génétique Moléculaire (F.L.), Groupe Hospitalier Cochin, Paris, France; Cardiomyology and Medical Genetics (P.D., L.P.), Department of Experimental Medicine, Second University of Naples; and the IRCCS San Camillo (C.A.), Venezia, Italy
| | - Luca Bello
- From the Neuromuscular Center (C.S., L.B., C.B., E.P.), Department of Neurosciences, University of Padova, Italy; the Neuromuscular Clinic and Research Unit (J.V., J.R.D., N.W.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Paris-Est Neuromuscular Center (T.S., B.E., P.L.), Institut of Myology, Pitié-Salpêtrière Hospital, Paris, France; the Department of Clinical Genetics (M.D.), University of Copenhagen, Rigshospitalet, Denmark; Laboratoire de Biochimie et Génétique Moléculaire (F.L.), Groupe Hospitalier Cochin, Paris, France; Cardiomyology and Medical Genetics (P.D., L.P.), Department of Experimental Medicine, Second University of Naples; and the IRCCS San Camillo (C.A.), Venezia, Italy
| | - Nanna Witting
- From the Neuromuscular Center (C.S., L.B., C.B., E.P.), Department of Neurosciences, University of Padova, Italy; the Neuromuscular Clinic and Research Unit (J.V., J.R.D., N.W.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Paris-Est Neuromuscular Center (T.S., B.E., P.L.), Institut of Myology, Pitié-Salpêtrière Hospital, Paris, France; the Department of Clinical Genetics (M.D.), University of Copenhagen, Rigshospitalet, Denmark; Laboratoire de Biochimie et Génétique Moléculaire (F.L.), Groupe Hospitalier Cochin, Paris, France; Cardiomyology and Medical Genetics (P.D., L.P.), Department of Experimental Medicine, Second University of Naples; and the IRCCS San Camillo (C.A.), Venezia, Italy
| | - Morten Duno
- From the Neuromuscular Center (C.S., L.B., C.B., E.P.), Department of Neurosciences, University of Padova, Italy; the Neuromuscular Clinic and Research Unit (J.V., J.R.D., N.W.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Paris-Est Neuromuscular Center (T.S., B.E., P.L.), Institut of Myology, Pitié-Salpêtrière Hospital, Paris, France; the Department of Clinical Genetics (M.D.), University of Copenhagen, Rigshospitalet, Denmark; Laboratoire de Biochimie et Génétique Moléculaire (F.L.), Groupe Hospitalier Cochin, Paris, France; Cardiomyology and Medical Genetics (P.D., L.P.), Department of Experimental Medicine, Second University of Naples; and the IRCCS San Camillo (C.A.), Venezia, Italy
| | - France Leturcq
- From the Neuromuscular Center (C.S., L.B., C.B., E.P.), Department of Neurosciences, University of Padova, Italy; the Neuromuscular Clinic and Research Unit (J.V., J.R.D., N.W.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Paris-Est Neuromuscular Center (T.S., B.E., P.L.), Institut of Myology, Pitié-Salpêtrière Hospital, Paris, France; the Department of Clinical Genetics (M.D.), University of Copenhagen, Rigshospitalet, Denmark; Laboratoire de Biochimie et Génétique Moléculaire (F.L.), Groupe Hospitalier Cochin, Paris, France; Cardiomyology and Medical Genetics (P.D., L.P.), Department of Experimental Medicine, Second University of Naples; and the IRCCS San Camillo (C.A.), Venezia, Italy
| | - Cinzia Bertolin
- From the Neuromuscular Center (C.S., L.B., C.B., E.P.), Department of Neurosciences, University of Padova, Italy; the Neuromuscular Clinic and Research Unit (J.V., J.R.D., N.W.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Paris-Est Neuromuscular Center (T.S., B.E., P.L.), Institut of Myology, Pitié-Salpêtrière Hospital, Paris, France; the Department of Clinical Genetics (M.D.), University of Copenhagen, Rigshospitalet, Denmark; Laboratoire de Biochimie et Génétique Moléculaire (F.L.), Groupe Hospitalier Cochin, Paris, France; Cardiomyology and Medical Genetics (P.D., L.P.), Department of Experimental Medicine, Second University of Naples; and the IRCCS San Camillo (C.A.), Venezia, Italy
| | - Paola D'Ambrosio
- From the Neuromuscular Center (C.S., L.B., C.B., E.P.), Department of Neurosciences, University of Padova, Italy; the Neuromuscular Clinic and Research Unit (J.V., J.R.D., N.W.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Paris-Est Neuromuscular Center (T.S., B.E., P.L.), Institut of Myology, Pitié-Salpêtrière Hospital, Paris, France; the Department of Clinical Genetics (M.D.), University of Copenhagen, Rigshospitalet, Denmark; Laboratoire de Biochimie et Génétique Moléculaire (F.L.), Groupe Hospitalier Cochin, Paris, France; Cardiomyology and Medical Genetics (P.D., L.P.), Department of Experimental Medicine, Second University of Naples; and the IRCCS San Camillo (C.A.), Venezia, Italy
| | - Bruno Eymard
- From the Neuromuscular Center (C.S., L.B., C.B., E.P.), Department of Neurosciences, University of Padova, Italy; the Neuromuscular Clinic and Research Unit (J.V., J.R.D., N.W.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Paris-Est Neuromuscular Center (T.S., B.E., P.L.), Institut of Myology, Pitié-Salpêtrière Hospital, Paris, France; the Department of Clinical Genetics (M.D.), University of Copenhagen, Rigshospitalet, Denmark; Laboratoire de Biochimie et Génétique Moléculaire (F.L.), Groupe Hospitalier Cochin, Paris, France; Cardiomyology and Medical Genetics (P.D., L.P.), Department of Experimental Medicine, Second University of Naples; and the IRCCS San Camillo (C.A.), Venezia, Italy
| | - Corrado Angelini
- From the Neuromuscular Center (C.S., L.B., C.B., E.P.), Department of Neurosciences, University of Padova, Italy; the Neuromuscular Clinic and Research Unit (J.V., J.R.D., N.W.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Paris-Est Neuromuscular Center (T.S., B.E., P.L.), Institut of Myology, Pitié-Salpêtrière Hospital, Paris, France; the Department of Clinical Genetics (M.D.), University of Copenhagen, Rigshospitalet, Denmark; Laboratoire de Biochimie et Génétique Moléculaire (F.L.), Groupe Hospitalier Cochin, Paris, France; Cardiomyology and Medical Genetics (P.D., L.P.), Department of Experimental Medicine, Second University of Naples; and the IRCCS San Camillo (C.A.), Venezia, Italy
| | - Luisa Politano
- From the Neuromuscular Center (C.S., L.B., C.B., E.P.), Department of Neurosciences, University of Padova, Italy; the Neuromuscular Clinic and Research Unit (J.V., J.R.D., N.W.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Paris-Est Neuromuscular Center (T.S., B.E., P.L.), Institut of Myology, Pitié-Salpêtrière Hospital, Paris, France; the Department of Clinical Genetics (M.D.), University of Copenhagen, Rigshospitalet, Denmark; Laboratoire de Biochimie et Génétique Moléculaire (F.L.), Groupe Hospitalier Cochin, Paris, France; Cardiomyology and Medical Genetics (P.D., L.P.), Department of Experimental Medicine, Second University of Naples; and the IRCCS San Camillo (C.A.), Venezia, Italy
| | - Pascal Laforêt
- From the Neuromuscular Center (C.S., L.B., C.B., E.P.), Department of Neurosciences, University of Padova, Italy; the Neuromuscular Clinic and Research Unit (J.V., J.R.D., N.W.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Paris-Est Neuromuscular Center (T.S., B.E., P.L.), Institut of Myology, Pitié-Salpêtrière Hospital, Paris, France; the Department of Clinical Genetics (M.D.), University of Copenhagen, Rigshospitalet, Denmark; Laboratoire de Biochimie et Génétique Moléculaire (F.L.), Groupe Hospitalier Cochin, Paris, France; Cardiomyology and Medical Genetics (P.D., L.P.), Department of Experimental Medicine, Second University of Naples; and the IRCCS San Camillo (C.A.), Venezia, Italy.
| | - Elena Pegoraro
- From the Neuromuscular Center (C.S., L.B., C.B., E.P.), Department of Neurosciences, University of Padova, Italy; the Neuromuscular Clinic and Research Unit (J.V., J.R.D., N.W.), Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Paris-Est Neuromuscular Center (T.S., B.E., P.L.), Institut of Myology, Pitié-Salpêtrière Hospital, Paris, France; the Department of Clinical Genetics (M.D.), University of Copenhagen, Rigshospitalet, Denmark; Laboratoire de Biochimie et Génétique Moléculaire (F.L.), Groupe Hospitalier Cochin, Paris, France; Cardiomyology and Medical Genetics (P.D., L.P.), Department of Experimental Medicine, Second University of Naples; and the IRCCS San Camillo (C.A.), Venezia, Italy.
| |
Collapse
|
29
|
Abstract
A collection of more than 30 genetic muscle diseases that share certain key features, limb-girdle muscular dystrophies are characterized by progressive weakness and muscle atrophy of the hips, shoulders, and proximal extremity muscles with postnatal onset. This article discusses clinical, laboratory, and histologic features of the 6 most prevalent limb-girdle dystrophies. In this large group of disorders, certain distinctive features often can guide clinicians to a correct diagnosis.
Collapse
|
30
|
Petri H, Sveen ML, Thune JJ, Vissing C, Dahlqvist JR, Witting N, Bundgaard H, Køber L, Vissing J. Progression of cardiac involvement in patients with limb-girdle type 2 and Becker muscular dystrophies: A 9-year follow-up study. Int J Cardiol 2015; 182:403-11. [DOI: 10.1016/j.ijcard.2014.12.090] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/02/2014] [Accepted: 12/25/2014] [Indexed: 01/22/2023]
|
31
|
Cotta A, Carvalho E, da-Cunha-Júnior AL, Paim JF, Navarro MM, Valicek J, Menezes MM, Nunes SV, Xavier Neto R, Takata RI, Vargas AP. Common recessive limb girdle muscular dystrophies differential diagnosis: why and how? ARQUIVOS DE NEURO-PSIQUIATRIA 2015; 72:721-34. [PMID: 25252238 DOI: 10.1590/0004-282x20140110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/26/2014] [Indexed: 01/27/2023]
Abstract
Limb girdle muscular dystrophies are heterogeneous autosomal hereditary neuromuscular disorders. They produce dystrophic changes on muscle biopsy and they are associated with mutations in several genes involved in muscular structure and function. Detailed clinical, laboratorial, imaging, diagnostic flowchart, photographs, tables, and illustrated diagrams are presented for the differential diagnosis of common autosomal recessive limb girdle muscular dystrophy subtypes diagnosed nowadays at one reference center in Brazil. Preoperative image studies guide muscle biopsy site selection. Muscle involvement image pattern differs depending on the limb girdle muscular dystrophy subtype. Muscle involvement is conspicuous at the posterior thigh in calpainopathy and fukutin-related proteinopathy; anterior thigh in sarcoglycanopathy; whole thigh in dysferlinopathy, and telethoninopathy. The precise differential diagnosis of limb girdle muscular dystrophies is important for genetic counseling, prognostic orientation, cardiac and respiratory management. Besides that, it may probably, in the future, provide specific genetic therapies for each subtype.
Collapse
Affiliation(s)
- Ana Cotta
- Departamento de Patologia, Rede SARAH de Hospitais de Reabilitação, Brazil
| | - Elmano Carvalho
- Departamento de Neurofisiologia, Rede SARAH de Hospitais de Reabilitação, Brazil
| | | | - Júlia Filardi Paim
- Departamento de Patologia, Rede SARAH de Hospitais de Reabilitação, Brazil
| | - Monica M Navarro
- Departamento de Pediatria, Rede SARAH de Hospitais de Reabilitação, Brazil
| | - Jaquelin Valicek
- Departamento de Neurofisiologia, Rede SARAH de Hospitais de Reabilitação, Brazil
| | | | | | - Rafael Xavier Neto
- Departamento de Neurologia, Rede SARAH de Hospitais de Reabilitação, Brazil
| | - Reinaldo Issao Takata
- Departamento de Biologia Molecular, Rede SARAH de Hospitais de Reabilitação, Brasília DF, Brazil
| | | |
Collapse
|
32
|
Schade van Westrum SM, Dekker LRC, de Voogt WG, Wilde AAM, Ginjaar IB, de Visser M, van der Kooi AJ. Cardiac involvement in Dutch patients with sarcoglycanopathy: a cross-sectional cohort and follow-up study. Muscle Nerve 2015; 50:909-13. [PMID: 24619517 DOI: 10.1002/mus.24233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2014] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The aim of this study is to describe the frequency, nature, severity, and progression of cardiac abnormalities in a cohort of Dutch sarcoglycanopathy patients. METHODS In this cross-sectional cohort study, patients were interviewed using a standardized questionnaire and assigned a functional score. Electrocardiography (ECG), echocardiography, and 24-h ECG were performed. RESULTS Twenty-four patients with sarcoglycanopathy had a median age of 25 years (range, 8-59 years). Beta blockers were used by 13%, and 17% used angiotensin-converting enzyme inhibitors. ECG abnormalities were present in 5 (21%), and 4 (17%) fulfilled the criteria for dilated cardiomyopathy (DCM). There were no significant differences in median age or severity of disease between patients with or without DCM. Eleven patients were examined earlier. Median follow-up time was 10 years. Two of the 11 patients (18%) developed DCM during follow-up. CONCLUSIONS Seventeen percent of the patients with sarcoglycanopathy were found to have dilated cardiomyopathy. We recommend biannual cardiac monitoring, including ECG and echocardiography.
Collapse
|
33
|
Nigro V, Piluso G. Spectrum of muscular dystrophies associated with sarcolemmal-protein genetic defects. Biochim Biophys Acta Mol Basis Dis 2014; 1852:585-93. [PMID: 25086336 DOI: 10.1016/j.bbadis.2014.07.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/19/2014] [Accepted: 07/23/2014] [Indexed: 01/31/2023]
Abstract
Muscular dystrophies are heterogeneous genetic disorders that share progressive muscle wasting. This may generate partial impairment of motility as well as a dramatic and fatal course. Less than 30 years ago, the identification of the genetic basis of Duchenne muscular dystrophy opened a new era. An explosion of new information on the mechanisms of disease was witnessed, with many thousands of publications and the characterization of dozens of other genetic forms. Genes mutated in muscular dystrophies encode proteins of the plasma membrane and extracellular matrix, several of which are part of the dystrophin-associated complex. Other gene products localize at the sarcomere and Z band, or are nuclear membrane components. In the present review, we focus on muscular dystrophies caused by defects that affect the sarcolemmal and sub-sarcolemmal proteins. We summarize the nature of each disease, the genetic cause, and the pathogenic pathways that may suggest future treatment options. We examine X-linked Duchenne and Becker muscular dystrophies and the autosomal recessive limb-girdle muscular dystrophies caused by mutations in genes encoding sarcolemmal proteins. The mechanism of muscle damage is reviewed starting from disarray of the shock-absorbing dystrophin-associated complex at the sarcolemma and activation of inflammatory response up to the final stages of fibrosis. We trace only a part of the biochemical, physiopathological and clinical aspects of muscular dystrophy to avoid a lengthy list of different and conflicting observations. We attempt to provide a critical synthesis of what we consider important aspects to better understand the disease. In our opinion, it is becoming ever more important to go back to the bedside to validate and then translate each proposed mechanism. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Vincenzo Nigro
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, via Luigi De Crecchio 7, 80138 Napoli, Italy; Telethon Institute of Genetics and Medicine (TIGEM), via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Giulio Piluso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, via Luigi De Crecchio 7, 80138 Napoli, Italy; Telethon Institute of Genetics and Medicine (TIGEM), via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
34
|
Affiliation(s)
- Louise R Rodino-Klapac
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
35
|
Cardiomyopathy in neurological disorders. Cardiovasc Pathol 2013; 22:389-400. [PMID: 23433859 DOI: 10.1016/j.carpath.2012.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 12/26/2012] [Accepted: 12/30/2012] [Indexed: 12/13/2022] Open
Abstract
According to the American Heart Association, cardiomyopathies are classified as primary (solely or predominantly confined to heart muscle), secondary (those showing pathological myocardial involvement as part of a neuromuscular disorder) and those in which cardiomyopathy is the first/predominant manifestation of a neuromuscular disorder. Cardiomyopathies may be further classified as hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, or unclassified cardiomyopathy (noncompaction, Takotsubo-cardiomyopathy). This review focuses on secondary cardiomyopathies and those in which cardiomyopathy is the predominant manifestation of a myopathy. Any of them may cause neurological disease, and any of them may be a manifestation of a neurological disorder. Neurological disease most frequently caused by cardiomyopathies is ischemic stroke, followed by transitory ischemic attack, syncope, or vertigo. Neurological disease, which most frequently manifests with cardiomyopathies are the neuromuscular disorders. Most commonly associated with cardiomyopathies are muscular dystrophies, myofibrillar myopathies, congenital myopathies and metabolic myopathies. Management of neurological disease caused by cardiomyopathies is not at variance from the same neurological disorders due to other causes. Management of secondary cardiomyopathies is not different from that of cardiomyopathies due to other causes either. Patients with neuromuscular disorders require early cardiologic investigations and close follow-ups, patients with cardiomyopathies require neurological investigation and avoidance of muscle toxic medication if a neuromuscular disorder is diagnosed. Which patients with cardiomyopathy profit most from primary stroke prevention is unsolved and requires further investigations.
Collapse
|
36
|
Sarkozy A, Bushby K, Mercuri E. Muscular Dystrophies. EMERY AND RIMOIN'S PRINCIPLES AND PRACTICE OF MEDICAL GENETICS 2013:1-58. [DOI: 10.1016/b978-0-12-383834-6.00134-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
37
|
Abstract
PURPOSE OF REVIEW More than 40 different individual genes have been implicated in the inheritance of dilated cardiomyopathy. For a subset of these genes, mutations can lead to a spectrum of cardiomyopathy that extends to hypertrophic cardiomyopathy and left ventricular noncompaction. In nearly all cases, there is an increased risk of arrhythmias. With some genetic mutations, extracardiac manifestations are likely to be present. The precise genetic cause can usually not be discerned from the cardiac and/or extracardiac manifestations and requires molecular genetic diagnosis for prognostic determination and cardiac care. RECENT FINDINGS Newer technologies are influencing genetic testing, especially cardiomyopathy genetic testing, wherein an increased number of genes are now routinely being tested simultaneously. Although this approach to testing multiple genes is increasing the diagnostic yield, the analysis of multiple genes in one test is also resulting in a large amount of genetic information of unclear significance. SUMMARY Genetic testing is highly useful in the care of patients and families, as it guides diagnosis, influences care and aids in prognosis. However, the large amount of benign human genetic variation may complicate genetic results and often requires a skilled team to accurately interpret the findings.
Collapse
|
38
|
Fayssoil A, Nardi O, Orlikowski D, Annane D. [Heart involvement in sarcoglycanopathies]. Rev Neurol (Paris) 2012; 168:779-82. [PMID: 22405990 DOI: 10.1016/j.neurol.2011.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/16/2011] [Accepted: 11/23/2011] [Indexed: 10/28/2022]
Abstract
Sarcoglycanopathies (SG) are autosomic recessive muscular dystrophies, secondary to mutations of the sarcoglycan complex. Clinical pictures include muscle weakness affecting mainly the proximal limb girdle musculature. We review heart involvement in this group of disease.
Collapse
Affiliation(s)
- A Fayssoil
- Réanimation médicale, université Versailles SQY, CHU Raymond-Poincaré, 104 boulevard Raymond-Poincaré, Garches, France.
| | | | | | | |
Collapse
|
39
|
|
40
|
Wansapura JP, Millay DP, Dunn RS, Molkentin JD, Benson DW. Magnetic resonance imaging assessment of cardiac dysfunction in δ-sarcoglycan null mice. Neuromuscul Disord 2010; 21:68-73. [PMID: 20934875 DOI: 10.1016/j.nmd.2010.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 08/02/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
Abstract
Delta-sarcoglycan (δ-sarcoglycan) null, Scgd(-/-), mice develop cardiac and skeletal muscle histopathological alterations similar to those in humans with limb-girdle muscular dystrophy. The objective of this study was to assess the feasibility of using MRI to investigate cardiac dysfunction in Scgd(-/-) mice. Cardiac MRI of 8 month old Scgd(-/-) and wild type (WT) mice was performed. Compared to WT, Scgd(-/-) mice had significantly lower LV ejection fraction (44±5% vs. 66±4%, p=0.014), lower RV ejection fraction (25±2% vs. 51±3%, p<0.001) lower myocardial circumferential strain, (15.0±0.3% vs. 16.9±0.3%, p=0.007) and RV dilatation (54±3 μL vs. 40±3 μL, p=0.007). The regional circumferential strain also demonstrated significant temporal dyssynchrony between opposing regions of the Scgd(-/-) LV. Our results demonstrate severe cardiac dysfunction in Scgd(-/-) mice at 8 months. The study identifies a set of non-invasive markers that could be used to study efficacy of novel therapeutic agents in dystrophic mice.
Collapse
Affiliation(s)
- Janaka P Wansapura
- Department of Radiology/Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Hermans M, Pinto Y, Merkies I, de Die-Smulders C, Crijns H, Faber C. Hereditary muscular dystrophies and the heart. Neuromuscul Disord 2010; 20:479-92. [DOI: 10.1016/j.nmd.2010.04.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/19/2010] [Accepted: 04/21/2010] [Indexed: 01/16/2023]
|
43
|
Navarro C, Teijeira S. Molecular diagnosis of muscular dystrophies, focused on limb girdle muscular dystrophies. ACTA ACUST UNITED AC 2009; 3:631-47. [PMID: 23496048 DOI: 10.1517/17530050903313988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Muscular dystrophies include a spectrum of muscle disorders, some of which are phenotypically well characterized. The identification of dystrophin as the causative factor in Duchenne muscular dystrophy has led to the development of molecular genetics and has facilitated the division of muscular dystrophies into distinct groups, among which are the 'limb girdle muscular dystrophies'. OBJECTIVES This article reviews the methodology to be used in the diagnosis of muscular dystrophies, focused on the groups of limb girdle muscular dystrophies, and the development of new strategies to reach a final molecular diagnosis. METHOD A literature review (Medline) from 1985 to the present. CONCLUSION Immunohistochemistry and western blotting analyses of the proteins involved in the various forms of muscular dystrophies have permitted a refined pathological approach necessary to conduct genetic studies and to offer appropriate genetic counseling. The application of molecular medicine in genetic muscular dystrophies also brings great hope to the therapeutic management of these patients.
Collapse
Affiliation(s)
- Carmen Navarro
- University Hospital of Vigo, Department of Pathology and Neuropathology, Meixoeiro, s/n, 36200 Vigo - Pontevedra, Spain +34 986 81 11 11 ext. 211661 ; +34 986 27 64 16 ;
| | | |
Collapse
|
44
|
Sarcolemmal neuronal nitric oxide synthase defect in limb-girdle muscular dystrophy: an adverse modulating factor in the disease course? J Neuropathol Exp Neurol 2009; 68:383-90. [PMID: 19287313 DOI: 10.1097/nen.0b013e31819cd612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Reduction of neuronal nitric oxide synthase (nNOS) has been associated with the pathogenesis and clinical expression of inherited myopathies. To determine whether a defect in nNOS might be an adverse modulating factor in the course of limb-girdle muscular dystrophy, we investigated cytosolic and sarcolemmal nNOS expression in muscle biopsies from 32 patients with 7 forms of limb-girdle muscular dystrophy. Primary calpainopathy, dysferlinopathy, and caveolinopathy biopsies showed normal levels of cytosolic nNOS and preserved sarcolemmal nNOS immunoreactivity. By contrast, the cytosolic nNOS levels in sarcoglycanopathy muscles were variably reduced. Sarcolemmal nNOS immunoreactivity varied from absent to reduced, depending on the integrity of the sarcoglycan complex. In muscles with loss of the entire sarcoglycan complex, sarcolemmal nNOS was absent; it otherwise depended on the specific sarcoglycan gene and type of mutation. The integrity of the entire sarcoglycan complex is, therefore, essential for the stabilization of nNOS to the sarcolemma. Absence of sarcolemmal nNOS in sarcoglycanopathy muscle was always associated with severe muscular dystrophy and sometimes with dilated cardiomyopathy, supporting the hypothesis that nNOS defect might contribute to skeletal and cardiac muscle disease progression. These results emphasize the value of nNOS immunohistochemical analysis in limb-girdle muscular dystrophy and provide additional insights for future therapeutic interventions in these disorders.
Collapse
|
45
|
Trabelsi M, Kavian N, Daoud F, Commere V, Deburgrave N, Beugnet C, Llense S, Barbot JC, Vasson A, Kaplan JC, Leturcq F, Chelly J. Revised spectrum of mutations in sarcoglycanopathies. Eur J Hum Genet 2008; 16:793-803. [PMID: 18285821 DOI: 10.1038/ejhg.2008.9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To define the spectrum of mutations in alpha-, beta-, gamma-, and delta-sarcoglycan (SG) genes, we analyzed these genes in 69 probands with clinical and biological criteria compatible with the diagnosis of autosomal recessive limb-girdle muscular dystrophy. For 48 patients, muscle biopsies were available and multiplex western blot analysis of muscle proteins showed significant abnormalities of alpha- and gamma-SG. Our diagnostic strategy includes multiplex western blot, sequencing of SG genes, multiplex quantitative-fluorescent PCR and RT-PCR analyses. Mutations were detected in 57 patients and homozygous or compound heterozygous mutations were identified in 75% (36/48) of the patients with abnormal western blot, and in 52% (11/21) of the patients without muscle biopsy. Involvement of alpha-SG was demonstrated in 55.3% of cases (26/47), whereas gamma- and beta-SG were implicated in 25.5% (12/47) and in 17% (8/47) of cases, respectively. Interestingly, we identified 25 novel mutations, and a significant proportion of these mutations correspond to deletions (identified in 14 patients) of complete exon(s) of alpha- or gamma-SG genes, and partial duplications (identified in 5 patients) of exon 1 of beta-SG gene. This study highlights the high frequency of exonic deletions of alpha- and gamma-SG genes, as well as the presence of a hotspot of duplications affecting exon 1 of the beta-SG gene. In addition, protein analysis by multiplex western blot in combination with mutation screening and genotyping results allowed to propose a comprehensive and efficient diagnostic strategy and strongly suggested the implication of additional genes, yet to be identified, in sarcoglycanopathy-like disorders.
Collapse
Affiliation(s)
- Madiha Trabelsi
- Laboratoire de Biochimie Génétique et Moléculaire, Hôpital Cochin, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
|
48
|
Grootenhuis MA, de Boone J, van der Kooi AJ. Living with muscular dystrophy: health related quality of life consequences for children and adults. Health Qual Life Outcomes 2007; 5:31. [PMID: 17553127 PMCID: PMC1894786 DOI: 10.1186/1477-7525-5-31] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Accepted: 06/06/2007] [Indexed: 11/10/2022] Open
Abstract
Background Muscular dystrophies are chronic diseases manifesting with progressive muscle weakness leading to decreasing activities and participation. To understand the impact on daily life, it is important to determine patients' quality of life. Objective To investigate Health Related Quality of Life (HRQoL) of children and adults with muscular dystrophy (MD), and to study the influence of type and severity of MD on HRQoL in adult patients. Methods Age-related HRQoL questionnaires were administered to 40 children (8–17 years), and 67 adult patients with muscular dystrophies. Results Significant differences in HRQoL were found in children and adults with MD compared to healthy controls. Patients with Becker muscular dystrophy reported a better HRQoL on the several scales compared to patients with other MDs. Severity was associated with worse fine motor functioning and social functioning in adult patients. Conclusion This is one of the first studies describing HRQoL of patients with MD using validated instruments in different age groups. The results indicate that having MD negatively influences the HRQoL on several domains.
Collapse
Affiliation(s)
- Martha A Grootenhuis
- Pediatric Psychosocial department, Emma Children's Hospital AMC, Amsterdam, P.O. box 22700, 1100 DE, Amsterdam, The Netherlands
| | - Judith de Boone
- Rehabilitation Center "de Trappenberg", Huizen, The Netherlands
| | - Anneke J van der Kooi
- Department of Neurology, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
49
|
Abstract
Sarcoglycanopathies are relatively rare progressive muscular dystrophies with autosomal recessive inheritance; which belong to the group of limb girdle muscular dystrophies. The phenotype resembles dystrophinopathies due to proximal muscle weakness and calf hypertrophy. Reports from the Indian subcontinent are scarce. The authors report a case of primary beta-sarcoglycanopathy and describe literature pertaining to this rare entity.
Collapse
Affiliation(s)
- Seema Kapoor
- Department of Pathology, GB Pant Hospital, New Delhi, India.
| | | | | | | |
Collapse
|
50
|
Abstract
In this review, we draw attention to the multiple mechanisms responsible for the pathogenesis of cardiomyopathies in patients with muscular dystrophies. More than one single mechanism is likely to be involved in the development of skeletal and cardiac muscle pathology even when there is a single protein defect. The best example is dystrophin deficiency, in which increased sarcolemmal permeability following eccentric exercise, reduced force generation, and abnormal signaling are all likely to contribute to the progressive muscle damage observed. In other conditions, such as the sarcoglycanopathies, a protein deficiency both in the striated cardiomyocte and the vascular smooth muscle appears to play a significant role. An entirely different mechanism of disease is likely in defects of nuclear envelope proteins, although the precise pathogenesis of this group of conditions is still not clear. Differences between the organization of skeletal and cardiac muscle protein complex are also only starting to emerge and will very likely be the focus of future research.
Collapse
Affiliation(s)
- Fiona C Goodwin
- Dubowitz Neuromuscular Centre, Imperial College London, Hammersmith Hospital Campus, UK
| | | |
Collapse
|