1
|
Szlanka T, Lukacsovich T, Bálint É, Virágh E, Szabó K, Hajdu I, Molnár E, Lin YH, Zvara Á, Kelemen-Valkony I, Méhi O, Török I, Hegedűs Z, Kiss B, Ramasz B, Magdalena LM, Puskás L, Mechler BM, Fónagy A, Asztalos Z, Steinbach G, Žurovec M, Boros I, Kiss I. Dominant suppressor genes of p53-induced apoptosis in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae149. [PMID: 38985658 PMCID: PMC11373661 DOI: 10.1093/g3journal/jkae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/06/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024]
Abstract
One of the major functions of programmed cell death (apoptosis) is the removal of cells that suffered oncogenic mutations, thereby preventing cancerous transformation. By making use of a Double-Headed-EP (DEP) transposon, a P element derivative made in our laboratory, we made an insertional mutagenesis screen in Drosophila melanogaster to identify genes that, when overexpressed, suppress the p53-activated apoptosis. The DEP element has Gal4-activatable, outward-directed UAS promoters at both ends, which can be deleted separately in vivo. In the DEP insertion mutants, we used the GMR-Gal4 driver to induce transcription from both UAS promoters and tested the suppression effect on the apoptotic rough eye phenotype generated by an activated UAS-p53 transgene. By DEP insertions, 7 genes were identified, which suppressed the p53-induced apoptosis. In 4 mutants, the suppression effect resulted from single genes activated by 1 UAS promoter (Pka-R2, Rga, crol, and Spt5). In the other 3 (Orct2, Polr2M, and stg), deleting either UAS promoter eliminated the suppression effect. In qPCR experiments, we found that the genes in the vicinity of the DEP insertion also showed an elevated expression level. This suggested an additive effect of the nearby genes on suppressing apoptosis. In the eukaryotic genomes, there are coexpressed gene clusters. Three of the DEP insertion mutants are included, and 2 are in close vicinity of separate coexpressed gene clusters. This raises the possibility that the activity of some of the genes in these clusters may help the suppression of the apoptotic cell death.
Collapse
Affiliation(s)
- Tamás Szlanka
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Tamás Lukacsovich
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Éva Bálint
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Erika Virágh
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Kornélia Szabó
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Department of Developmental Genetics, German Cancer Research Centre, 69120 Heidelberg, Germany
| | - Ildikó Hajdu
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Enikő Molnár
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Yu-Hsien Lin
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Ágnes Zvara
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Ildikó Kelemen-Valkony
- Cellular Imaging Laboratory, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Orsolya Méhi
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - István Török
- Department of Developmental Genetics, German Cancer Research Centre, 69120 Heidelberg, Germany
| | - Zoltán Hegedűs
- Bioinformatics Laboratory, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Brigitta Kiss
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Beáta Ramasz
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Laura M Magdalena
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - László Puskás
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Bernard M Mechler
- Department of Developmental Genetics, German Cancer Research Centre, 69120 Heidelberg, Germany
| | - Adrien Fónagy
- Centre for Agricultural Sciences, Plant Protection Institute, 1022 Budapest, Hungary
| | - Zoltán Asztalos
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Aktogen Hungary Ltd., 6726 Szeged, Hungary
| | - Gábor Steinbach
- Cellular Imaging Laboratory, Core Facility, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Michal Žurovec
- Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Imre Boros
- Institute of Biochemistry, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - István Kiss
- Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| |
Collapse
|
2
|
González C, Martínez‐Sánchez L, Clemente P, Toivonen JM, Arredondo JJ, Fernández‐Moreno MÁ, Carrodeguas JA. Dysfunction of Drosophila mitochondrial carrier homolog (Mtch) alters apoptosis and disturbs development. FEBS Open Bio 2024; 14:276-289. [PMID: 38013241 PMCID: PMC10839352 DOI: 10.1002/2211-5463.13742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Mitochondrial carrier homologs 1 (MTCH1) and 2 (MTCH2) are orphan members of the mitochondrial transporter family SLC25. Human MTCH1 is also known as presenilin 1-associated protein, PSAP. MTCH2 is a receptor for tBid and is related to lipid metabolism. Both proteins have been recently described as protein insertases of the outer mitochondrial membrane. We have depleted Mtch in Drosophila and show here that mutant flies are unable to complete development, showing an excess of apoptosis during pupation; this observation was confirmed by RNAi in Schneider cells. These findings are contrary to what has been described in humans. We discuss the implications in view of recent reports concerning the function of these proteins.
Collapse
Affiliation(s)
- Cristina González
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Lidia Martínez‐Sánchez
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Paula Clemente
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Janne Markus Toivonen
- LAGENBIO, Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2)Universidad de ZaragozaSpain
- IIS AragónZaragozaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Juan José Arredondo
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas “Alberto Sols”The Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasSpain
| | - Miguel Ángel Fernández‐Moreno
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER)Facultad de Medicina, UAMMadridSpain
- Departamento de Bioquímica & Instituto de Investigaciones Biomédicas Sols‐MorrealeThe Autonomous University of Madrid‐Consejo Superior de Investigaciones CientíficasMadridSpain
| | - José Alberto Carrodeguas
- IIS AragónZaragozaSpain
- Institute for Biocomputation and Physics of Complex Systems (BIFI)University of ZaragozaSpain
- Department of Biochemistry and Molecular and Cellular Biology, School of SciencesUniversity of ZaragozaSpain
| |
Collapse
|
3
|
Heron R, Amato C, Wood W, Davidson AJ. Understanding the diversity and dynamics of in vivo efferocytosis: Insights from the fly embryo. Immunol Rev 2023; 319:27-44. [PMID: 37589239 PMCID: PMC10952863 DOI: 10.1111/imr.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
The clearance of dead and dying cells, termed efferocytosis, is a rapid and efficient process and one that is critical for organismal health. The extraordinary speed and efficiency with which dead cells are detected and engulfed by immune cells within tissues presents a challenge to researchers who wish to unravel this fascinating process, since these fleeting moments of uptake are almost impossible to catch in vivo. In recent years, the fruit fly (Drosophila melanogaster) embryo has emerged as a powerful model to circumvent this problem. With its abundance of dying cells, specialist phagocytes and relative ease of live imaging, the humble fly embryo provides a unique opportunity to catch and study the moment of cell engulfment in real-time within a living animal. In this review, we explore the recent advances that have come from studies in the fly, and how live imaging and genetics have revealed a previously unappreciated level of diversity in the efferocytic program. A variety of efferocytic strategies across the phagocytic cell population ensure efficient and rapid clearance of corpses wherever death is encountered within the varied and complex setting of a multicellular living organism.
Collapse
Affiliation(s)
- Rosalind Heron
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Clelia Amato
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Will Wood
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Andrew J. Davidson
- Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
- School of Cancer SciencesWolfson Wohl Cancer Research Centre, University of GlasgowGlasgowUK
| |
Collapse
|
4
|
Liu Z, Pan X, Guo J, Li L, Tang Y, Wu G, Li M, Wang H. Long-term sevoflurane exposure resulted in temporary rather than lasting cognitive impairment in Drosophila. Behav Brain Res 2023; 442:114327. [PMID: 36738841 DOI: 10.1016/j.bbr.2023.114327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Sevoflurane is the primary inhaled anesthetic used in pediatric surgery. It has been the focus of research since animal models studies found that it was neurotoxic to the developing brain two decades ago. However, whether pediatric general anesthesia can lead to permanent cognitive deficits remained a subject of heated debate. Therefore, our study aims to determine the lifetime neurotoxicity of early long-time sevoflurane exposure using a short-life-cycle animal model, Drosophila melanogaster. To investigate this question, we measured the lifetime changes of two-day-old flies' learning and memory abilities after anesthesia with 3 % sevoflurane for 6 h by the T-maze memory assay. We evaluated the apoptosis, levels of ATP and ROS, and related genes in the fly head. Our results suggest that 6 h 3 % sevoflurane exposure at a young age can only induce transient neuroapoptosis and cognitive deficits around the first week after anesthesia. But this brain damage recedes with time and vanishes in late life. We also found that the mRNA level of caspases and Bcl-2, ROS level, and ATP level increased during this temporary neuroapoptosis process. And mRNA levels of antioxidants, such as SOD2 and CAT, increased and decreased simultaneously with the rise and fall of the ROS level, indicating a possible contribution to the recovery from the sevoflurane impairment. In conclusion, our results suggest that one early prolonged sevoflurane-based general anesthesia can induce neuroapoptosis and learning and memory deficit transiently but not permanently in Drosophila.
Collapse
Affiliation(s)
- Ziming Liu
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Xuanyi Pan
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Jiguang Guo
- School of Basic Medical Sciences, Hebei University, Baoding 071000, Hebei, China
| | - Liping Li
- Institute of Materia Medical, Hebei Centers for Disease Control and Prevention, Shijiazhuang 050021, Hebei, China
| | - Yuxin Tang
- School of Basic Medical Sciences, Hebei University, Baoding 071000, Hebei, China
| | - Guangyi Wu
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China
| | - Ming Li
- School of Basic Medical Sciences, Hebei University, Baoding 071000, Hebei, China.
| | - Hongjie Wang
- Department of Anesthesiology, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China; Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding 071000, Hebei, China.
| |
Collapse
|
5
|
Ikegawa Y, Combet C, Groussin M, Navratil V, Safar-Remali S, Shiota T, Aouacheria A, Yoo SK. Evidence for existence of an apoptosis-inducing BH3-only protein, sayonara, in Drosophila. EMBO J 2023; 42:e110454. [PMID: 36727601 PMCID: PMC10107002 DOI: 10.15252/embj.2021110454] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 02/03/2023] Open
Abstract
Cells need to sense stresses to initiate the execution of the dormant cell death program. Since the discovery of the first BH3-only protein Bad, BH3-only proteins have been recognized as indispensable stress sensors that induce apoptosis. BH3-only proteins have so far not been identified in Drosophila despite their importance in other organisms. Here, we identify the first Drosophila BH3-only protein and name it sayonara. Sayonara induces apoptosis in a BH3 motif-dependent manner and interacts genetically and biochemically with the BCL-2 homologous proteins, Buffy and Debcl. There is a positive feedback loop between Sayonara-mediated caspase activation and autophagy. The BH3 motif of sayonara phylogenetically appeared at the time of the ancestral gene duplication that led to the formation of Buffy and Debcl in the dipteran lineage. To our knowledge, this is the first identification of a bona fide BH3-only protein in Drosophila, thus providing a unique example of how cell death mechanisms can evolve both through time and across taxa.
Collapse
Affiliation(s)
- Yuko Ikegawa
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Christophe Combet
- Centre de Recherche en Cancérologie de Lyon, UMR Inserm U1052, CNRS 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Mathieu Groussin
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Vincent Navratil
- PRABI, Rhône-Alpes Bioinformatics Center, Université Lyon 1, Villeurbanne, France.,UMS 3601, Institut Français de Bioinformatique, IFB-Core, Évry, France
| | - Sabrina Safar-Remali
- Centre de Recherche en Cancérologie de Lyon, UMR Inserm U1052, CNRS 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Takuya Shiota
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki, Japan.,Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Abdel Aouacheria
- ISEM, Institut des Sciences de l'Evolution de Montpellier, UMR 5554, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | - Sa Kan Yoo
- Laboratory for Homeodynamics, RIKEN BDR, Kobe, Japan.,Physiological Genetics Laboratory, RIKEN CPR, Kobe, Japan
| |
Collapse
|
6
|
Valencia-Expósito A, Gómez-Lamarca MJ, Widmann TJ, Martín-Bermudo MD. Integrins Cooperate With the EGFR/Ras Pathway to Preserve Epithelia Survival and Architecture in Development and Oncogenesis. Front Cell Dev Biol 2022; 10:892691. [PMID: 35769262 PMCID: PMC9234701 DOI: 10.3389/fcell.2022.892691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Adhesion to the extracellular matrix (ECM) is required for normal epithelial cell survival. Disruption of this interaction leads to a specific type of apoptosis known as anoikis. Yet, there are physiological and pathological situations in which cells not connected to the ECM are protected from anoikis, such as during cell migration or metastasis. The main receptors transmitting signals from the ECM are members of the integrin family. However, although integrin-mediated cell-ECM anchorage has been long recognized as crucial for epithelial cell survival, the in vivo significance of this interaction remains to be weighed. In this work, we have used the Drosophila wing imaginal disc epithelium to analyze the importance of integrins as survival factors during epithelia morphogenesis. We show that reducing integrin expression in the wing disc induces caspase-dependent cell death and basal extrusion of the dead cells. In this case, anoikis is mediated by the activation of the JNK pathway, which in turn triggers expression of the proapoptotic protein Hid. In addition, our results strongly suggest that, during wing disc morphogenesis, the EGFR pathway protects cells undergoing cell shape changes upon ECM detachment from anoikis. Furthermore, we show that oncogenic activation of the EGFR/Ras pathway in integrin mutant cells rescues them from apoptosis while promoting their extrusion from the epithelium. Altogether, our results support the idea that integrins promote cell survival during normal tissue morphogenesis and prevent the extrusion of transformed cells.
Collapse
Affiliation(s)
| | - M. Jesús Gómez-Lamarca
- Centro Andaluz de Biología del Desarrollo CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- Departamento de Biología Celular, Universidad de Sevilla, Sevilla, Spain
| | | | - María D. Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo CSIC-Universidad Pablo de Olavide, Sevilla, Spain
- *Correspondence: María D. Martín-Bermudo,
| |
Collapse
|
7
|
Buhlman LM, Krishna G, Jones TB, Thomas TC. Drosophila as a model to explore secondary injury cascades after traumatic brain injury. Biomed Pharmacother 2021; 142:112079. [PMID: 34463269 PMCID: PMC8458259 DOI: 10.1016/j.biopha.2021.112079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
Drosophilae are emerging as a valuable model to study traumatic brain injury (TBI)-induced secondary injury cascades that drive persisting neuroinflammation and neurodegenerative pathology that imposes significant risk for long-term neurological deficits. As in mammals, TBI in Drosophila triggers axonal injury, metabolic crisis, oxidative stress, and a robust innate immune response. Subsequent neurodegeneration stresses quality control systems and perpetuates an environment for neuroprotection, regeneration, and delayed cell death via highly conserved cell signaling pathways. Fly injury models continue to be developed and validated for both whole-body and head-specific injury to isolate, evaluate, and modulate these parallel pathways. In conjunction with powerful genetic tools, the ability for longitudinal evaluation, and associated neurological deficits that can be tested with established behavioral tasks, Drosophilae are an attractive model to explore secondary injury cascades and therapeutic intervention after TBI. Here, we review similarities and differences between mammalian and fly pathophysiology and highlight strategies for their use in translational neurotrauma research.
Collapse
Affiliation(s)
- Lori M Buhlman
- Biomedical Sciences Program, Midwestern University, Glendale, AZ, USA.
| | - Gokul Krishna
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - T Bucky Jones
- Department of Anatomy, Midwestern University, Glendale, AZ, USA
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA; Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA; Phoenix VA Health Care System, Phoenix, AZ, USA.
| |
Collapse
|
8
|
Hounsell C, Fan Y. The Duality of Caspases in Cancer, as Told through the Fly. Int J Mol Sci 2021; 22:8927. [PMID: 34445633 PMCID: PMC8396359 DOI: 10.3390/ijms22168927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Caspases, a family of cysteine-aspartic proteases, have an established role as critical components in the activation and initiation of apoptosis. Alongside this a variety of non-apoptotic caspase functions in proliferation, differentiation, cellular plasticity and cell migration have been reported. The activity level and context are important factors in determining caspase function. As a consequence of their critical role in apoptosis and beyond, caspases are uniquely situated to have pathological roles, including in cancer. Altered caspase function is a common trait in a variety of cancers, with apoptotic evasion defined as a "hallmark of cancer". However, the role that caspases play in cancer is much more complex, acting both to prevent and to promote tumourigenesis. This review focuses on the major findings in Drosophila on the dual role of caspases in tumourigenesis. This has major implications for cancer treatments, including chemotherapy and radiotherapy, with the activation of apoptosis being the end goal. However, such treatments may inadvertently have adverse effects on promoting tumour progression and acerbating the cancer. A comprehensive understanding of the dual role of caspases will aid in the development of successful cancer therapeutic approaches.
Collapse
Affiliation(s)
| | - Yun Fan
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
9
|
Hu S, Wang Y, Xu Z, Zhou Y, Cao J, Zhang H, Zhou J. Identification of the Bcl-2 and Bax homologs from Rhipicephalus haemaphysaloides and their function in the degeneration of tick salivary glands. Parasit Vectors 2021; 14:386. [PMID: 34348769 PMCID: PMC8336254 DOI: 10.1186/s13071-021-04879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022] Open
Abstract
Background The salivary glands of female ticks degenerate rapidly by apoptosis and autophagy after feeding. Bcl-2 family proteins play an important role in the apoptosis pathways, but the functions of these proteins in ticks are unclear. We studied Bcl-2 and Bax homologs from Rhipicephalus haemaphysaloides and determined their functions in the degeneration of the salivary glands. Methods Two molecules containing conserved BH (Bcl-2 family homology) domains were identified and named RhBcl-2 and RhBax. After protein purification and mouse immunization, specific polyclonal antibodies (PcAb) were created in response to the recombinant proteins. Reverse transcription quantitative PCR (RT-qPCR) and western blot were used to detect the presence of RhBcl-2 and RhBax in ticks. TUNEL assays were used to determine the level of apoptosis in the salivary glands of female ticks at different feeding times after gene silencing. Co-transfection and GST pull-down assays were used to identify interactions between RhBcl-2 and RhBax. Results The RT-qPCR assay revealed that RhBax gene transcription increased significantly during feeding at all tick developmental stages (engorged larvae, nymphs, and adult females). Transcriptional levels of RhBcl-2 and RhBax increased more significantly in the female salivary glands than in other tissues post engorgement. RhBcl-2 silencing significantly inhibited tick feeding. In contrast, RhBax interference had no effect on tick feeding. TUNEL staining showed that apoptosis levels were significantly reduced after interference with RhBcl-2 expression. Co-transfection and GST pull-down assays showed that RhBcl-2 and RhBax could interact but not combine in the absence of the BH3 domain. Conclusions This study identified the roles of RhBcl-2 and RhBax in tick salivary gland degeneration and finds that the BH3 domain is a key factor in their interactions. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04879-z.
Collapse
Affiliation(s)
- Shanming Hu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
10
|
Abstract
Cell death is an important facet of animal development. In some developing tissues, death is the ultimate fate of over 80% of generated cells. Although recent studies have delineated a bewildering number of cell death mechanisms, most have only been observed in pathological contexts, and only a small number drive normal development. This Primer outlines the important roles, different types and molecular players regulating developmental cell death, and discusses recent findings with which the field currently grapples. We also clarify terminology, to distinguish between developmental cell death mechanisms, for which there is evidence for evolutionary selection, and cell death that follows genetic, chemical or physical injury. Finally, we suggest how advances in understanding developmental cell death may provide insights into the molecular basis of developmental abnormalities and pathological cell death in disease.
Collapse
Affiliation(s)
- Piya Ghose
- Department of Biology, The University of Texas at Arlington, 655 Mitchell St., Arlington, TX 76019, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
11
|
Tichý A. Apoptotic Machinery: The Bcl-2 Family Proteins in the Role of Inspectors and Superintendents. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2017.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Programmed cell death, apoptosis, plays an integral role in a variety of biological events, e.g. morphogenesis, removal of unwanted or harmful cells, tissue homeostasis etc. Members of the Bcl-2 family have been described as the key players in the regulation of the apoptotic process. This family consists of proteins that prevent apoptosis (Bcl-2–like) and two structurally distinct subgroups (Bax-like and BH3–only) that on the contrary promote cell death. Majority of their response is concentrated to the mitochondrial level. In this paper, besides reviewing some new information in this field we focused on how they interact among each other and on the way they sense and influence the death signals from the environment. Here, we compare Bcl-2 family to inspectors and superintendents since they supervise the manufacturing process of cell death and they determine whether the cell will die or it will resist and survive.
Collapse
|
12
|
Birkinshaw RW, Czabotar PE. The BCL-2 family of proteins and mitochondrial outer membrane permeabilisation. Semin Cell Dev Biol 2017; 72:152-162. [PMID: 28396106 DOI: 10.1016/j.semcdb.2017.04.001] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/03/2017] [Accepted: 04/06/2017] [Indexed: 01/24/2023]
Abstract
Apoptosis is a form of programmed cell death critical for the development and homeostasis of multicellular organisms. A key event within the mitochondrial pathway to apoptosis is the permeabilisation of the mitochondrial outer membrane (MOM), a point of no return in apoptotic progression. This event is governed by a complex interplay of interactions between BCL-2 family members. Here we discuss the roles of opposing factions within the family. We focus on the structural details of these interactions, how they promote or prevent apoptosis and recent developments towards understanding the conformational changes of BAK and BAX that lead to MOM permeabilisation. These interactions and structural insights are of particular interest for drug discovery, as highlighted by the development of therapeutics that target pro-survival family members and restore apoptosis in cancer cells.
Collapse
Affiliation(s)
- Richard W Birkinshaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
13
|
M'Angale PG, Staveley BE. Bax-inhibitor-1 knockdown phenotypes are suppressed by Buffy and exacerbate degeneration in a Drosophila model of Parkinson disease. PeerJ 2017; 5:e2974. [PMID: 28243526 PMCID: PMC5322759 DOI: 10.7717/peerj.2974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/10/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Bax inhibitor-1 (BI-1) is an evolutionarily conserved cytoprotective transmembrane protein that acts as a suppressor of Bax-induced apoptosis by regulation of endoplasmic reticulum stress-induced cell death. We knocked down BI-1 in the sensitive dopa decarboxylase (Ddc) expressing neurons of Drosophila melanogaster to investigate its neuroprotective functions. We additionally sought to rescue the BI-1-induced phenotypes by co-expression with the pro-survival Buffy and determined the effect of BI-1 knockdown on the neurodegenerative α-synuclein-induced Parkinson disease (PD) model. METHODS We used organismal assays to assess longevity of the flies to determine the effect of the altered expression of BI-1 in the Ddc-Gal4-expressing neurons by employing two RNAi transgenic fly lines. We measured the locomotor ability of these RNAi lines by computing the climbing indices of the climbing ability and compared them to a control line that expresses the lacZ transgene. Finally, we performed biometric analysis of the developing eye, where we counted the number of ommatidia and calculated the area of ommatidial disruption. RESULTS The knockdown of BI-1 in these neurons was achieved under the direction of the Ddc-Gal4 transgene and resulted in shortened lifespan and precocious loss of locomotor ability. The co-expression of Buffy, the Drosophila anti-apoptotic Bcl-2 homologue, with BI-1-RNAi resulted in suppression of the reduced lifespan and impaired climbing ability. Expression of human α-synuclein in Drosophila dopaminergic neurons results in neuronal degeneration, accompanied by the age-dependent loss in climbing ability. We exploited this neurotoxic system to investigate possible BI-1 neuroprotective function. The co-expression of α-synuclein with BI-1-RNAi results in a slight decrease in lifespan coupled with an impairment in climbing ability. In supportive experiments, we employed the neuron-rich Drosophila compound eye to investigate subtle phenotypes that result from altered gene expression. The knockdown of BI-1 in the Drosophila developing eye under the direction of the GMR-Gal4 transgene results in reduced ommatidia number and increased disruption of the ommatidial array. Similarly, the co-expression of BI-1-RNAi with Buffy results in the suppression of the eye phenotypes. The expression of α-synuclein along with the knockdown of BI-1 resulted in reduction of ommatidia number and more disruption of the ommatidial array. CONCLUSION Knockdown of BI-1 in the dopaminergic neurons of Drosophila results in a shortened lifespan and premature loss in climbing ability, phenotypes that appear to be strongly associated with models of PD in Drosophila, and which are suppressed upon overexpression of Buffy and worsened by co-expression with α-synuclein. This suggests that BI-1 is neuroprotective and its knockdown can be counteracted by the overexpression of the pro-survival Bcl-2 homologue.
Collapse
Affiliation(s)
- P Githure M'Angale
- Department of Biology, Memorial University of Newfoundland , St. John's, NL , Canada
| | - Brian E Staveley
- Department of Biology, Memorial University of Newfoundland , St. John's, NL , Canada
| |
Collapse
|
14
|
M'Angale PG, Staveley BE. Loss of porin function in dopaminergic neurons of Drosophila is suppressed by Buffy. J Biomed Sci 2016; 23:84. [PMID: 27881168 PMCID: PMC5122015 DOI: 10.1186/s12929-016-0300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondrial porin, also known as the voltage-dependent anion channel (VDAC), is a multi-functional channel protein that shuttles metabolites between the mitochondria and the cytosol and implicated in cellular life and death decisions. The inhibition of porin under the control of neuronal Ddc-Gal4 result in short lifespan and in an age-dependent loss in locomotor function, phenotypes that are strongly associated with Drosophila models of Parkinson disease. METHODS Loss of porin function was achieved through exploitation of RNA interference while derivative lines were generated by homologous recombination and tested by PCR. The UAS/Gal4 expression system was exploited with directed expression in neurons achieved with the use of the Dopa decarboxylase and in the developing eye with the Glass multiple reporter transgenes. Statistical analyses for ageing assay employed Log rank (Mantel-Cox) test, climbing indices were fitted with a non-linear curve and confidence intervals compared at 95%. Biometric analysis of the eye phenotypes was obtained by unpaired student T-test. RESULTS The expression of α-synuclein in neuronal populations that include dopamine producing neurons under the control of Ddc-Gal4 produces a robust Parkinson disease model, and results in severely reduced lifespan and locomotor dysfunction. In addition, the porin-induced phenotypes are greatly suppressed when the pro-survival Bcl-2 homologue Buffy is overexpressed in these neurons and in the developing eye adding to the cellular advantages of altered expression of this anti-apoptotic gene. When we co-expressed α-synuclein along with porin, it results in a decrease in lifespan and impaired climbing ability. This enhancement of the α-synuclein-induced phenotypes observed in neurons was demonstrated in the neuron rich eye, where the simultaneous co-expression of porin-RNAi and α-synuclein resulted in an enhanced eye phenotype, marked by reduced number of ommatidia and increased disarray of the ommatidia. CONCLUSIONS The inhibition of porin in dopaminergic neurons among others result in reduced lifespan and age-dependent loss in climbing ability, phenotypes that are suppressed by the overexpression of the sole pro-survival Bcl-2 homologue Buffy. The inhibition of porin phenocopies Parkinson disease phenotypes in Drosophila, while the overexpression of Buffy can counteract these phenotypes to improve the overall "healthspan" of the organism.
Collapse
Affiliation(s)
- P Githure M'Angale
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, A1B 3X9, Canada
| | - Brian E Staveley
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, A1B 3X9, Canada.
| |
Collapse
|
15
|
M'Angale PG, Staveley BE. Bcl-2 homologue Debcl enhances α-synuclein-induced phenotypes in Drosophila. PeerJ 2016; 4:e2461. [PMID: 27672511 PMCID: PMC5028777 DOI: 10.7717/peerj.2461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022] Open
Abstract
Background Parkinson disease (PD) is a debilitating movement disorder that afflicts 1–2% of the population over 50 years of age. The common hallmark for both sporadic and familial forms of PD is mitochondrial dysfunction. Mammals have at least twenty proapoptotic and antiapoptotic Bcl-2 family members, in contrast, only two Bcl-2 family genes have been identified in Drosophila melanogaster, the proapoptotic mitochondrial localized Debcl and the antiapoptotic Buffy. The expression of the human transgene α-synuclein, a gene that is strongly associated with inherited forms of PD, in dopaminergic neurons (DA) of Drosophila, results in loss of neurons and locomotor dysfunction to model PD in flies. The altered expression of Debcl in the DA neurons and neuron-rich eye and along with the expression of α-synuclein offers an opportunity to highlight the role of Debcl in mitochondrial-dependent neuronal degeneration and death. Results The directed overexpression of Debcl using the Ddc-Gal4 transgene in the DA of Drosophila resulted in flies with severely decreased survival and a premature age-dependent loss in climbing ability. The inhibition of Debcl resulted in enhanced survival and improved climbing ability whereas the overexpression of Debcl in the α-synuclein-induced Drosophila model of PD resulted in more severe phenotypes. In addition, the co-expression of Debcl along with Buffy partially counteracts the Debcl-induced phenotypes, to improve the lifespan and the associated loss of locomotor ability observed. In complementary experiments, the overexpression of Debcl along with the expression of α-synuclein in the eye, enhanced the eye ablation that results from the overexpression of Debcl. The co-expression of Buffy along with Debcl overexpression results in the rescue of the moderate developmental eye defects. The co-expression of Buffy along with inhibition of Debcl partially restores the eye to a roughened eye phenotype. Discussion The overexpression of Debcl in DA neurons produces flies with shortened lifespan and impaired locomotor ability, phenotypes that are strongly associated with models of PD in Drosophila. The co-expression of Debcl along with α-synuclein enhanced the PD-like phenotypes. The co-expression of Debcl along with Buffy suppresses these phenotypes. Complementary experiments in the Drosophila eye show similar trends during development. Taken all together these results suggest a role for Debcl in neurodegenerative disorders.
Collapse
Affiliation(s)
- P Githure M'Angale
- Department of Biology, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador , Canada
| | - Brian E Staveley
- Department of Biology, Memorial University of Newfoundland , St. John's, Newfoundland and Labrador , Canada
| |
Collapse
|
16
|
Nakazawa M, Matsubara H, Matsushita Y, Watanabe M, Vo N, Yoshida H, Yamaguchi M, Kataoka T. The Human Bcl-2 Family Member Bcl-rambo Localizes to Mitochondria and Induces Apoptosis and Morphological Aberrations in Drosophila. PLoS One 2016; 11:e0157823. [PMID: 27348811 PMCID: PMC4922555 DOI: 10.1371/journal.pone.0157823] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/06/2016] [Indexed: 01/21/2023] Open
Abstract
Bcl-2 family proteins play a central role in regulating apoptosis. We previously reported that human Bcl-rambo, also termed BCL2L13, localized to mitochondria and induced apoptosis when overexpressed in human embryonic kidney 293T cells. However, the physiological function of Bcl-rambo currently remains unclear. In the present study, human Bcl-rambo was ectopically expressed in Drosophila melanogaster. Bcl-rambo mainly localized to the mitochondria of Drosophila Schneider 2 (S2) cells. The overexpression of Bcl-rambo, but not Bcl-rambo lacking a C-terminal transmembrane domain, induced apoptosis in S2 cells. Moreover, the ectopic expression of Bcl-rambo by a GAL4-UAS system induced aberrant morphological changes characterized by atrophied wing, split thorax, and rough eye phenotypes. Bcl-rambo induced the activation of effector caspases in eye imaginal discs. The rough eye phenotype induced by Bcl-rambo was partly rescued by the co-expression of p35, Diap1, and Diap2. By using this Drosophila model, we showed that human Bcl-rambo interacted genetically with Drosophila homologues of adenine nucleotide translocators and the autophagy-related 8 protein. The results of the present study demonstrated that human Bcl-rambo localized to mitochondria and at least regulated an apoptosis signaling pathway in Drosophila.
Collapse
Affiliation(s)
- Mako Nakazawa
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606–8585, Japan
| | - Hisanori Matsubara
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606–8585, Japan
| | - Yuka Matsushita
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606–8585, Japan
| | - Megumi Watanabe
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606–8585, Japan
| | - Nicole Vo
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606–8585, Japan
- The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606–8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606–8585, Japan
- The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606–8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606–8585, Japan
- The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606–8585, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606–8585, Japan
- The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606–8585, Japan
- * E-mail:
| |
Collapse
|
17
|
Clavier A, Rincheval-Arnold A, Mignotte B, Guénal I. [The comeback of mitochondria in Drosophila apoptosis]. Med Sci (Paris) 2016; 32:478-84. [PMID: 27225920 DOI: 10.1051/medsci/20163205014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The role of the mitochondrion in mammalian cell apoptosis has been established since the mid-1990s. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, notably because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and apoptosis in Drosophila cell death occurs at the mitochondrial level. Numerous proteins that appear key for Drosophila apoptosis regulation constitutively or transiently bind to mitochondria. They participate in the cell death process at different levels such as degradation of an IAP caspase inhibitor, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. The aim of this review is to take stock of these events that might have their counterpart in humans.
Collapse
Affiliation(s)
- Amandine Clavier
- Laboratoire de génétique et biologie cellulaire, université de Versailles Saint-Quentin-en-Yvelines, université Paris-Saclay, 2, avenue de la Source de la Bièvre, 78180 Montigny-le-Bretonneux, France - Laboratoire de génétique moléculaire et physiologique, École pratique des hautes études, PSL research university, 78180 Montigny-le-Bretonneux, France
| | - Aurore Rincheval-Arnold
- Laboratoire de génétique et biologie cellulaire, université de Versailles Saint-Quentin-en-Yvelines, université Paris-Saclay, 2, avenue de la Source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| | - Bernard Mignotte
- Laboratoire de génétique et biologie cellulaire, université de Versailles Saint-Quentin-en-Yvelines, université Paris-Saclay, 2, avenue de la Source de la Bièvre, 78180 Montigny-le-Bretonneux, France - Laboratoire de génétique moléculaire et physiologique, École pratique des hautes études, PSL research university, 78180 Montigny-le-Bretonneux, France
| | - Isabelle Guénal
- Laboratoire de génétique et biologie cellulaire, université de Versailles Saint-Quentin-en-Yvelines, université Paris-Saclay, 2, avenue de la Source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| |
Collapse
|
18
|
M'Angale PG, Staveley BE. The Bcl-2 homologue Buffy rescues α-synuclein-induced Parkinson disease-like phenotypes in Drosophila. BMC Neurosci 2016; 17:24. [PMID: 27192974 PMCID: PMC4872331 DOI: 10.1186/s12868-016-0261-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/11/2016] [Indexed: 01/09/2023] Open
Abstract
Background In contrast to the complexity found in mammals, only two Bcl-2 family genes have been found in Drosophila melanogaster including the pro-cell survival, human Bok-related orthologue, Buffy. The directed expression of α-synuclein, the first gene identified to contribute to inherited forms of Parkinson disease (PD), in the dopaminergic neurons (DA) of flies has provided a robust and well-studied Drosophila model of PD complete with the loss of neurons and accompanying motor defects. To more fully understand the biological basis of Bcl-2 genes in PD, we altered the expression of Buffy in the dopamine producing neurons with and without the expression of α-synuclein, and in the developing neuron-rich eye. Results To alter the expression of Buffy in the dopaminergic neurons of Drosophila, the Ddc-Gal4 transgene was used. The directed expression of Buffy in the dopamine producing neurons resulted in flies with increased climbing ability and enhanced survival, while the inhibition of Buffy in the dopaminergic neurons reduced climbing ability over time prematurely, similar to the phenotype observed in the α-synuclein-induced Drosophila model of PD. Subsequently, the expression of Buffy was altered in the α-synuclein-induced Drosophila model of PD. Analysis revealed that Buffy acted to rescue the associated loss of locomotor ability observed in the α-synuclein-induced model of PD, while Buffy RNA interference resulted in an enhanced α-synuclein-induced loss of climbing ability. In complementary experiments the overexpression of Buffy in the developing eye suppressed the mild rough eye phenotype that results from Gal4 expression and from α-synuclein expression. When Buffy is inhibited the roughened eye phenotype is enhanced. Conclusions The inhibition of Buffy in DA neurons produces a novel model of PD in Drosophila. The directed expression of Buffy in DA neurons provide protection and counteracts the α-synuclein-induced Parkinson disease-like phenotypes. Taken all together this demonstrates a role for Buffy, a Bcl-2 pro-cell survival gene, in neuroprotection.
Collapse
Affiliation(s)
- P Githure M'Angale
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Brian E Staveley
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
19
|
Apoptotic Caspases in Promoting Cancer: Implications from Their Roles in Development and Tissue Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 930:89-112. [PMID: 27558818 DOI: 10.1007/978-3-319-39406-0_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis, a major form of programmed cell death, is an important mechanism to remove extra or unwanted cells during development. In tissue homeostasis apoptosis also acts as a monitoring machinery to eliminate damaged cells in response to environmental stresses. During these processes, caspases, a group of proteases, have been well defined as key drivers of cell death. However, a wealth of evidence is emerging which supports the existence of many other non-apoptotic functions of these caspases, which are essential not only in proper organism development but also in tissue homeostasis and post-injury recovery. In particular, apoptotic caspases in stress-induced dying cells can activate mitogenic signals leading to proliferation of neighbouring cells, a phenomenon termed apoptosis-induced proliferation. Apparently, such non-apoptotic functions of caspases need to be controlled and restrained in a context-dependent manner during development to prevent their detrimental effects. Intriguingly, accumulating studies suggest that cancer cells are able to utilise these functions of caspases to their advantage to enable their survival, proliferation and metastasis in order to grow and progress. This book chapter will review non-apoptotic functions of the caspases in development and tissue homeostasis with focus on how these cellular processes can be hijacked by cancer cells and contribute to tumourigenesis.
Collapse
|
20
|
Clavier A, Rincheval-Arnold A, Colin J, Mignotte B, Guénal I. Apoptosis in Drosophila: which role for mitochondria? Apoptosis 2015; 21:239-51. [DOI: 10.1007/s10495-015-1209-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Clavier A, Ruby V, Rincheval-Arnold A, Mignotte B, Guénal I. The Drosophila retinoblastoma protein, Rbf1, induces a Debcl- and Drp1-dependent mitochondrial apoptosis. J Cell Sci 2015. [PMID: 26208635 DOI: 10.1242/jcs.169896] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In accordance with its tumor suppressor role, the retinoblastoma protein pRb can ensure pro-apoptotic functions. Rbf1, the Drosophila homolog of Rb, also displays a pro-apoptotic activity in proliferative cells. We have previously shown that the Rbf1 pro-apoptotic activity depends on its ability to decrease the level of anti-apoptotic proteins such as the Bcl-2 family protein Buffy. Buffy often acts in an opposite manner to Debcl, the other Drosophila Bcl-2-family protein. Both proteins can localize at the mitochondrion, but the way they control apoptosis still remains unclear. Here, we demonstrate that Debcl and the pro-fission gene Drp1 are necessary downstream of Buffy to trigger a mitochondrial fragmentation during Rbf1-induced apoptosis. Interestingly, Rbf1-induced apoptosis leads to a Debcl- and Drp1-dependent reactive oxygen species production, which in turn activates the Jun Kinase pathway to trigger cell death. Moreover, we show that Debcl and Drp1 can interact and that Buffy inhibits this interaction. Notably, Debcl modulates Drp1 mitochondrial localization during apoptosis. These results provide a mechanism by which Drosophila Bcl-2 family proteins can control apoptosis, and shed light on a link between Rbf1 and mitochondrial dynamics in vivo.
Collapse
Affiliation(s)
- Amandine Clavier
- Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire, EA4589, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France Ecole Pratique des Hautes Etudes, Laboratoire de Génétique et Biologie Cellulaire, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France
| | - Vincent Ruby
- Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire, EA4589, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France
| | - Aurore Rincheval-Arnold
- Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire, EA4589, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France
| | - Bernard Mignotte
- Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire, EA4589, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France Ecole Pratique des Hautes Etudes, Laboratoire de Génétique et Biologie Cellulaire, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France
| | - Isabelle Guénal
- Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire, EA4589, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France
| |
Collapse
|
22
|
Colin J, Garibal J, Clavier A, Szuplewski S, Risler Y, Milet C, Gaumer S, Guénal I, Mignotte B. Screening of suppressors of bax-induced cell death identifies glycerophosphate oxidase-1 as a mediator of debcl-induced apoptosis in Drosophila. Genes Cancer 2015; 6:241-253. [PMID: 26124923 PMCID: PMC4482245 DOI: 10.18632/genesandcancer.68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/06/2015] [Indexed: 01/20/2023] Open
Abstract
Members of the Bcl-2 family are key elements of the apoptotic machinery. In mammals, this multigenic family contains about twenty members, which either promote or inhibit apoptosis. We have previously shown that the mammalian pro-apoptotic Bcl-2 family member Bax is very efficient in inducing apoptosis in Drosophila, allowing the study of bax-induced cell death in a genetic animal model. We report here the results of the screening of a P[UAS]-element insertion library performed to identify gene products that modify the phenotypes induced by the expression of bax in Drosophila melanogaster. We isolated 17 putative modifiers involved in various function or process: the ubiquitin/proteasome pathway; cell growth, proliferation and death; pathfinding and cell adhesion; secretion and extracellular signaling; metabolism and oxidative stress. Most of these suppressors also inhibit debcl-induced phenotypes, suggesting that the activities of both proteins can be modulated in part by common signaling or metabolic pathways. Among these suppressors, Glycerophosphate oxidase-1 is found to participate in debcl-induced apoptosis by increasing mitochondrial reactive oxygen species accumulation.
Collapse
Affiliation(s)
- Jessie Colin
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France.,Ecole Pratique des Hautes Etudes, Laboratoire de Génétique Moléculaire et Physiologique, Montigny-le-Bretonneux, France
| | - Julie Garibal
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France.,Ecole Pratique des Hautes Etudes, Laboratoire de Génétique Moléculaire et Physiologique, Montigny-le-Bretonneux, France
| | - Amandine Clavier
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France.,Ecole Pratique des Hautes Etudes, Laboratoire de Génétique Moléculaire et Physiologique, Montigny-le-Bretonneux, France
| | - Sébastien Szuplewski
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France
| | - Yanick Risler
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France
| | - Cécile Milet
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France.,Ecole Pratique des Hautes Etudes, Laboratoire de Génétique Moléculaire et Physiologique, Montigny-le-Bretonneux, France
| | - Sébastien Gaumer
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France
| | - Isabelle Guénal
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France.,Co-senior authors
| | - Bernard Mignotte
- Université Versailles St-Quentin, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France.,Ecole Pratique des Hautes Etudes, Laboratoire de Génétique Moléculaire et Physiologique, Montigny-le-Bretonneux, France.,Co-senior authors
| |
Collapse
|
23
|
Colin J, Garibal J, Clavier A, Rincheval-Arnold A, Gaumer S, Mignotte B, Guénal I. The drosophila Bcl-2 family protein Debcl is targeted to the proteasome by the β-TrCP homologue slimb. Apoptosis 2014; 19:1444-56. [DOI: 10.1007/s10495-014-1034-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Zhou R, Si J, Zhang H, Wang Z, Li J, Zhou X, Gan L, Liu Y. The effects of x-ray radiation on the eye development of zebrafish. Hum Exp Toxicol 2014; 33:1040-50. [DOI: 10.1177/0960327114522278] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The toxic effects of x-ray radiation on eye development was measured using zebrafish as a model organism. Zebrafish embryos at 8 h post-fertilization (hpf) were irradiated using X-rays at doses of 1, 2, 4, and 8 Gy. At 24 and 48 hpf, x-ray radiation induced a significant increase in reactive oxygen species (ROS) content and cell apoptotic signals. Both of these increases were dose dependent and there were significant positive relationships between them at 24 hpf. At 48 and 72 hpf, the increase of ROS concentration can be eliminated by increasing activities of superoxide dismutase and catalase. Although the ROS generated by x-ray radiation caused a significant increase in cell apoptosis at 24 and 48 hpf, the cellular layers of the retina and lens formation in the irradiated groups were not significantly disrupted at 144 hpf compared with the control group, with the exception of a heterogeneous distribution of the cells in inner nuclear cell layer and a significant decrease in the diameters of whole eyes after 8 Gy irradiation. X-Ray radiation at later stages of gastrulation may not cause distinct optic complications; however, there is still a risk of microophthalmia at high doses of irradiation.
Collapse
Affiliation(s)
- R Zhou
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
| | - J Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
| | - H Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
| | - Z Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - J Li
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - X Zhou
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
| | - L Gan
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
| | - Y Liu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, China
| |
Collapse
|
25
|
Denton D, Aung-Htut MT, Kumar S. Developmentally programmed cell death in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3499-3506. [DOI: 10.1016/j.bbamcr.2013.06.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/16/2013] [Indexed: 12/24/2022]
|
26
|
Modi V, Sankararamakrishnan R. Antiapoptotic Bcl-2 homolog CED-9 in Caenorhabditis elegans
: Dynamics of BH3 and CED-4 binding regions and comparison with mammalian antiapoptotic Bcl-2 proteins. Proteins 2013; 82:1035-47. [DOI: 10.1002/prot.24476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 10/16/2013] [Accepted: 11/04/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Vivek Modi
- Department of Biological Sciences & Bioengineering; Indian Institute of Technology Kanpur; Kanpur 208016 India
| | | |
Collapse
|
27
|
Centrosomal kinase Nek2 cooperates with oncogenic pathways to promote metastasis. Oncogenesis 2013; 2:e69. [PMID: 24018644 PMCID: PMC3816224 DOI: 10.1038/oncsis.2013.34] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 12/16/2022] Open
Abstract
Centrosomal kinase Nek2 is overexpressed in different cancers, yet how it contributes toward tumorigenesis remains poorly understood. dNek2 overexpression in a Drosophila melanogaster model led to upregulation of Drosophila Wnt ortholog wingless (Wg), and alteration of cell migration markers—Rho1, Rac1 and E-cadherin (Ecad)—resulting in changes in cell shape and tissue morphogenesis. dNek2 overexpression cooperated with receptor tyrosine kinase and mitogen-activated protein kinase signaling to upregulate activated Akt, Diap1, Mmp1 and Wg protein to promote local invasion, distant seeding and metastasis. In tumor cell injection assays, dNek2 cooperated with Ras and Src signaling to promote aggressive colonization of tumors into different adult fly tissues. Inhibition of the PI3K pathway suppressed the cooperation of dNek2 with other growth pathways. Consistent with our fly studies, overexpression of human Nek2 in A549 lung adenocarcinoma and HEK293T cells led to activation of the Akt pathway and increase in β-catenin protein levels. Our computational approach identified a class of Nek2-inhibitory compounds and a novel drug-like pharmacophore that reversed the Nek2 overexpression phenotypes in flies and human cells. Our finding posits a novel role for Nek2 in promoting metastasis in addition to its currently defined role in promoting chromosomal instability. It provides a rationale for the selective advantage of centrosome amplification in cancer.
Collapse
|
28
|
Induction of heat shock protein 70 ameliorates ultraviolet-induced photokeratitis in mice. Int J Mol Sci 2013; 14:2175-89. [PMID: 23340653 PMCID: PMC3565371 DOI: 10.3390/ijms14012175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/09/2013] [Accepted: 01/18/2013] [Indexed: 11/17/2022] Open
Abstract
Acute ultraviolet (UV) B exposure causes photokeratitis and induces apoptosis in corneal cells. Geranylgeranylacetone (GGA) is an acyclic polyisoprenoid that induces expression of heat shock protein (HSP)70, a soluble intracellular chaperone protein expressed in various tissues, protecting cells against stress conditions. We examined whether induction of HSP70 has therapeutic effects on UV-photokeratitis in mice. C57 BL/6 mice were divided into four groups, GGA-treated (500 mg/kg/mouse) and UVB-exposed (400 mJ/cm2), GGA-untreated UVB-exposed (400 mJ/cm2), GGA-treated (500 mg/kg/mouse) but not exposed and naive controls. Eyeballs were collected 24 h after irradiation, and corneas were stained with hematoxylin and eosin (H&E) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). HSP70, reactive oxygen species (ROS) production, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and protein kinase B (Akt) expression were also evaluated. Irradiated corneal epithelium was significantly thicker in the eyes of mice treated with GGA compared with those given the vehicle alone (p < 0.01). Significantly fewer TUNEL-positive cells were observed in the eyes of GGA-treated mice than controls after irradiation (p < 0.01). Corneal HSP70 levels were significantly elevated in corneas of mice treated with GGA (p < 0.05). ROS signal was not affected by GGA. NF-κB activation was reduced but phospho-(Ser/Ther) Akt substrate expression was increased in corneas after irradiation when treated with GGA. GGA-treatment induced HSP70 expression and ameliorated UV-induced corneal damage through the reduced NF-κB activation and possibly increased Akt phosphorilation.
Collapse
|
29
|
Sin3a acts through a multi-gene module to regulate invasion in Drosophila and human tumors. Oncogene 2012; 32:3184-97. [PMID: 22890320 DOI: 10.1038/onc.2012.326] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chromatin remodeling proteins regulate multiple aspects of cell homeostasis, making them ideal candidates for misregulation in transformed cells. Here, we explore Sin3A, a member of the Sin3 family of proteins linked to tumorigenesis that are thought to regulate gene expression through their role as histone deacetylases (HDACs). We identified Drosophila Sin3a as an important mediator of oncogenic Ret receptor in a fly model of Multiple Endocrine Neoplasia Type 2. Reducing Drosophila Sin3a activity led to metastasis-like behavior and, in the presence of Diap1, secondary tumors distant from the site of origin. Genetic and Chip-Seq analyses identified previously undescribed Sin3a targets including genes involved in cell motility and actin dynamics, as well as signaling pathways including Src, Jnk and Rho. A key Sin3a oncogenic target, PP1B, regulates stability of β-Catenin/Armadillo: the outcome is to oppose T-cell factor (TCF) function and Wg/Wnt pathway signaling in both fly and mammalian cancer cells. Reducing Sin3A strongly increased the invasive behavior of A549 human lung adenocarcinoma cells. We show that Sin3A is downregulated in a variety of human tumors and that Src, JNK, RhoA and PP1B/β-Catenin are regulated in a manner analogous to our Drosophila models. Our data suggest that Sin3A influences a specific step of tumorigenesis by regulating a module of genes involved in cell invasion. Tumor progression may commonly rely on such 'modules of invasion' under the control of broad transcriptional regulators.
Collapse
|
30
|
Monserrate JP, Chen MYY, Brachmann CB. Drosophila larvae lacking the bcl-2 gene, buffy, are sensitive to nutrient stress, maintain increased basal target of rapamycin (Tor) signaling and exhibit characteristics of altered basal energy metabolism. BMC Biol 2012; 10:63. [PMID: 22824239 PMCID: PMC3411425 DOI: 10.1186/1741-7007-10-63] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/24/2012] [Indexed: 01/07/2023] Open
Abstract
Background B cell lymphoma 2 (Bcl-2) proteins are the central regulators of apoptosis. The two bcl-2 genes in Drosophila modulate the response to stress-induced cell death, but not developmental cell death. Because null mutants are viable, Drosophila provides an optimum model system to investigate alternate functions of Bcl-2 proteins. In this report, we explore the role of one bcl-2 gene in nutrient stress responses. Results We report that starvation of Drosophila larvae lacking the bcl-2 gene, buffy, decreases survival rate by more than twofold relative to wild-type larvae. The buffy null mutant reacted to starvation with the expected responses such as inhibition of target of rapamycin (Tor) signaling, autophagy initiation and mobilization of stored lipids. However, the autophagic response to starvation initiated faster in larvae lacking buffy and was inhibited by ectopic buffy. We demonstrate that unusually high basal Tor signaling, indicated by more phosphorylated S6K, was detected in the buffy mutant and that removal of a genomic copy of S6K, but not inactivation of Tor by rapamycin, reverted the precocious autophagy phenotype. Instead, Tor inactivation also required loss of a positive nutrient signal to trigger autophagy and loss of both was sufficient to activate autophagy in the buffy mutant even in the presence of enforced phosphoinositide 3-kinase (PI3K) signaling. Prior to starvation, the fed buffy mutant stored less lipid and glycogen, had high lactate levels and maintained a reduced pool of cellular ATP. These observations, together with the inability of buffy mutant larvae to adapt to nutrient restriction, indicate altered energy metabolism in the absence of buffy. Conclusions All animals in their natural habitats are faced with periods of reduced nutrient availability. This study demonstrates that buffy is required for adaptation to both starvation and nutrient restriction. Thus, Buffy is a Bcl-2 protein that plays an important non-apoptotic role to promote survival of the whole organism in a stressful situation.
Collapse
|
31
|
Dar AC, Das TK, Shokat KM, Cagan RL. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 2012; 486:80-4. [PMID: 22678283 DOI: 10.1038/nature11127] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 04/05/2012] [Indexed: 01/07/2023]
Abstract
The complexity of cancer has led to recent interest in polypharmacological approaches for developing kinase-inhibitor drugs; however, optimal kinase-inhibition profiles remain difficult to predict. Using a Ret-kinase-driven Drosophila model of multiple endocrine neoplasia type 2 and kinome-wide drug profiling, here we identify that AD57 rescues oncogenic Ret-induced lethality, whereas related Ret inhibitors imparted reduced efficacy and enhanced toxicity. Drosophila genetics and compound profiling defined three pathways accounting for the mechanistic basis of efficacy and dose-limiting toxicity. Inhibition of Ret plus Raf, Src and S6K was required for optimal animal survival, whereas inhibition of the 'anti-target' Tor led to toxicity owing to release of negative feedback. Rational synthetic tailoring to eliminate Tor binding afforded AD80 and AD81, compounds featuring balanced pathway inhibition, improved efficacy and low toxicity in Drosophila and mammalian multiple endocrine neoplasia type 2 models. Combining kinase-focused chemistry, kinome-wide profiling and Drosophila genetics provides a powerful systems pharmacology approach towards developing compounds with a maximal therapeutic index.
Collapse
Affiliation(s)
- Arvin C Dar
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
32
|
Kinser RD, Dolph PJ. Cathepsin proteases mediate photoreceptor cell degeneration in Drosophila. Neurobiol Dis 2012; 46:655-62. [PMID: 22426392 DOI: 10.1016/j.nbd.2012.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 02/14/2012] [Accepted: 03/01/2012] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ronald D Kinser
- Department of Biology, Dartmouth College, 54 College St, Hanover, NH 03755, USA
| | | |
Collapse
|
33
|
Abstract
Apoptosis is a process of programmed cell death that serves as a major mechanism for the precise regulation of cell numbers, and as a defense mechanism to remove unwanted and potentially dangerous cells. Studies in nematode, Drosophila and mammals have shown that, although regulation of the cell death machinery is somehow different from one species to another, it is controlled by homologous proteins and involves mitochondria. In mammals, activation of caspases (cysteine proteases that are the main executioners of apoptosis) is under the tight control of the Bcl-2 family proteins, named in reference to the first discovered mammalian cell death regulator. These proteins mainly act by regulating the release of caspases activators from mitochondria. Although for a long time the absence of mitochondrial changes was considered as a hallmark of apoptosis, mitochondria appear today as the central executioner of apoptosis. In this chapter, we present the current view on the mitochondrial pathway of apoptosis with a particular attention to new aspects of the regulation of the Bcl-2 proteins family control of mitochondrial membrane permeabilization: the mechanisms implicated in their mitochondrial targeting and activation during apoptosis, the function(s) of the oncosuppressive protein p53 at the mitochondria and the role of the processes of mitochondrial fusion and fission.
Collapse
|
34
|
Zou S, Chang J, LaFever L, Tang W, Johnson EL, Hu J, Wilk R, Krause HM, Drummond-Barbosa D, Irusta PM. Identification of dAven, a Drosophila melanogaster ortholog of the cell cycle regulator Aven. Cell Cycle 2011; 10:989-98. [PMID: 21368576 DOI: 10.4161/cc.10.6.15080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aven is a regulator of the DNA-damage response and G2/M cell cycle progression. Overexpression of Aven is associated with poor prognosis in patients with childhood acute lymphoblastic leukemia and acute myeloid leukemia, and altered intracellular Aven distribution is associated with infiltrating ductal carcinoma and papillary carcinoma breast cancer subtypes. Although Aven orthologs have been identified in most vertebrate species, no Aven gene has been reported in invertebrates. Here, we describe a Drosophila melanogaster open reading frame (ORF) that shares sequence and functional similarities with vertebrate Aven genes. The protein encoded by this ORF, which we named dAven, contains several domains that are highly conserved among Aven proteins of fish, amphibian, bird and mammalian origins. In flies, knockdown of dAven by RNA interference (RNAi) resulted in lethality when its expression was reduced either ubiquitously or in fat cells using Gal4 drivers. Animals undergoing moderate dAven knockdown in the fat body had smaller fat cells displaying condensed chromosomes and increased levels of the mitotic marker phosphorylated histone H3 (PHH3), suggesting that dAven was required for normal cell cycle progression in this tissue. Remarkably, expression of dAven in Xenopus egg extracts resulted in G2/M arrest that was comparable to that caused by human Aven. Taken together, these results suggest that, like its vertebrate counterparts, dAven plays a role in cell cycle regulation. Drosophila could be an excellent model for studying the function of Aven and identifying cellular factors that influence its activity, revealing information that may be relevant to human disease.
Collapse
Affiliation(s)
- Sige Zou
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tanner EA, Blute TA, Brachmann CB, McCall K. Bcl-2 proteins and autophagy regulate mitochondrial dynamics during programmed cell death in the Drosophila ovary. Development 2011; 138:327-38. [PMID: 21177345 DOI: 10.1242/dev.057943] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Bcl-2 family has been shown to regulate mitochondrial dynamics during cell death in mammals and C. elegans, but evidence for this in Drosophila has been elusive. Here, we investigate the regulation of mitochondrial dynamics during germline cell death in the Drosophila melanogaster ovary. We find that mitochondria undergo a series of events during the progression of cell death, with remodeling, cluster formation and uptake of clusters by somatic follicle cells. These mitochondrial dynamics are dependent on caspases, the Bcl-2 family, the mitochondrial fission and fusion machinery, and the autophagy machinery. Furthermore, Bcl-2 family mutants show a striking defect in cell death in the ovary. These data indicate that a mitochondrial pathway is a major mechanism for activation of cell death in Drosophila oogenesis.
Collapse
|
36
|
Cordero JB, Cagan RL. Canonical wingless signaling regulates cone cell specification in the Drosophila retina. Dev Dyn 2010; 239:875-84. [PMID: 20140910 DOI: 10.1002/dvdy.22235] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Correct tissue patterning during development involves multiple morphogenetic events that include specification of different cell fates, cell proliferation, cell death, and coordinated changes in cell shape, position, and adhesion. Here, we use the Drosophila retina to explore the molecular mechanisms that regulate and integrate these various events. In a previous report, we found that wingless (wg) was required to induce a previously unknown surge of cell death ("early death") in the pupal retina. Here, we show that wg is also required to induce the more widely studied mid-pupal cell death ("late death") in a process that involves regulation of DIAP1. Furthermore, our data suggest that wg has a previously unreported role in specifying the glial-like cone cells. This activity requires canonical Wg signaling and is linked with Notch pathway activity. Our work broadens the role of canonical Wg signaling to encompass multiple patterning steps in the emerging Drosophila retina.
Collapse
Affiliation(s)
- Julia B Cordero
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
37
|
Abdelwahid E, Rolland S, Teng X, Conradt B, Hardwick JM, White K. Mitochondrial involvement in cell death of non-mammalian eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:597-607. [PMID: 20950655 DOI: 10.1016/j.bbamcr.2010.10.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/29/2010] [Accepted: 10/04/2010] [Indexed: 12/28/2022]
Abstract
Although mitochondria are essential organelles for long-term survival of eukaryotic cells, recent discoveries in biochemistry and genetics have advanced our understanding of the requirements for mitochondria in cell death. Much of what we understand about cell death is based on the identification of conserved cell death genes in Drosophila melanogaster and Caenorhabditis elegans. However, the role of mitochondria in cell death in these models has been much less clear. Considering the active role that mitochondria play in apoptosis in mammalian cells, the mitochondrial contribution to cell death in non-mammalian systems has been an area of active investigation. In this article, we review the current research on this topic in three non-mammalian models, C. elegans, Drosophila, and Saccharomyces cerevisiae. In addition, we discuss how non-mammalian models have provided important insight into the mechanisms of human disease as they relate to the mitochondrial pathway of cell death. The unique perspective derived from each of these model systems provides a more complete understanding of mitochondria in programmed cell death. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Eltyeb Abdelwahid
- Cutaneous Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
38
|
Cordero JB, Macagno JP, Stefanatos RK, Strathdee KE, Cagan RL, Vidal M. Oncogenic Ras diverts a host TNF tumor suppressor activity into tumor promoter. Dev Cell 2010; 18:999-1011. [PMID: 20627081 DOI: 10.1016/j.devcel.2010.05.014] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/15/2010] [Accepted: 04/07/2010] [Indexed: 01/12/2023]
Abstract
The roles of inflammatory cytokines and the immune response in cancer remain paradoxical. In the case of tumor necrosis factor (TNF), there is undisputed evidence indicating both protumor and antitumor activities. Recent work in Drosophila indicated that a TNF-dependent mechanism eliminates cells deficient for the polarity tumor suppressors dlg or scrib. In this study, however, we show that in tumors deficient for scrib that also expressed the Ras oncoprotein, the TNF signal was diverted into a protumor signal that enhanced tumor growth through larval arrest and stimulated invasive migration. In this case, TNF promoted malignancy and was detrimental to host survival. TNF was expressed at high levels by tumor-associated hemocytes recruited from the circulation. The expression of TNF by hemocytes was both necessary and sufficient to trigger TNF signaling in tumor cells. Our evidence suggests that tumors can evolve into malignancy through oncogenic Ras activation and the hijacking of TNF signaling.
Collapse
Affiliation(s)
- Julia B Cordero
- Beatson Institute for Cancer Research, Cancer Research UK, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | | | | | | | | | | |
Collapse
|
39
|
Wu JN, Nguyen N, Aghazarian M, Tan Y, Sevrioukov EA, Mabuchi M, Tang W, Monserrate JP, White K, Brachmann CB. grim promotes programmed cell death of Drosophila microchaete glial cells. Mech Dev 2010; 127:407-17. [PMID: 20558283 DOI: 10.1016/j.mod.2010.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 05/28/2010] [Accepted: 06/05/2010] [Indexed: 12/01/2022]
Abstract
The Inhibitor of apoptosis (IAP) antagonists Reaper (Rpr), Grim and Hid are central regulators of developmental apoptosis in Drosophila. Ectopic expression of each is sufficient to trigger apoptosis, and hid and rpr have been shown to be important for programmed cell death (PCD). To investigate the role for grim in PCD, a grim null mutant was generated. grim was not a key proapoptotic gene for embryonic PCD, confirming that grim cooperates with rpr and hid in embryogenesis. In contrast, PCD of glial cells in the microchaete lineage required grim, identifying a death process dependent upon endogenous grim. Grim associates with mitochondria and has been shown to activate a mitochondrial death pathway distinct from IAP antagonization; therefore, the Drosophila bcl-2 genes buffy and debcl were investigated for genetic interaction with grim. Loss of buffy led to microchaete glial cell survival and suppressed death in the eye induced by ectopic Grim. This is the first example of a developmental PCD process influenced by buffy, and places buffy in a proapoptotic role. PCD of microchaete glial cells represents an exceptional opportunity to study the mitochondrial proapoptotic process induced by Grim.
Collapse
Affiliation(s)
- Julie N Wu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Vidal M, Salavaggione L, Ylagan L, Wilkins M, Watson M, Weilbaecher K, Cagan R. A role for the epithelial microenvironment at tumor boundaries: evidence from Drosophila and human squamous cell carcinomas. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:3007-14. [PMID: 20363916 DOI: 10.2353/ajpath.2010.090253] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent work has shown an increasing appreciation for the importance of the tumor environment, most commonly the overlying stroma. Less emphasis has been placed on the importance of local communication between transformed cells and their neighbors within the epithelium at tumor boundaries. We previously reported a Drosophila model that highlighted the importance of local interactions within the epithelial microenvironment: Src-transformed cells (Csk-deficient) were influenced by their immediate normal neighbors. The result was a consistent change in 'border cells' at the edge of transformed patches including delocalized p120-catenin and E-cadherin as well as invasive migration through the basal lamina. Here we show that the invasive properties of the boundary cells depend on up-regulation of Drosophila matrix metalloproteinase-1 as assessed by promoter activity, protein levels, in situ enzymatic activity, and tests of genetic modifier activity. Further, we provide evidence that these events at tumor borders may be evolutionarily conserved. We detected changes in 'boundary cells' within histological sections of human squamous cell carcinomas that were similar to those observed in Drosophila: both E-cadherin and p120-catenin exhibited normal junctional localization at the centers of the tumors but were reduced or delocalized at the boundary. Further, matrix metalloproteinase-2 was up regulated within these same boundary cells. These results support the view that local cell-cell interactions within the epithelial microenvironment impact tumor invasion and progression.
Collapse
Affiliation(s)
- Marcos Vidal
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road B, Cancer Research UK, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
41
|
Simon CR, Moda LMR, Octacilio-Silva S, Anhezini L, Machado-Gitai LCH, Ramos RGP. Precise temporal regulation of roughest is required for correct salivary gland autophagic cell death in Drosophila. Genesis 2009; 47:492-504. [PMID: 19415632 DOI: 10.1002/dvg.20527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Drosophila roughest (rst) locus encodes an immunoglobulin superfamily transmembrane glycoprotein implicated in a variety of embryonic and postembryonic developmental processes. Here we demonstrate a previously unnoticed role for this gene in the autophagic elimination of larval salivary glands during early pupal stages by showing that overexpression of the Rst protein ectodomain in early pupa leads to persistence of salivary glands up to at least 12 hours after head eversion, although with variable penetrance. The same phenotype is observed in individuals carrying the dominant regulatory allele rst(D), but not in loss of function alleles. Analysis of persistent glands at the ultrastructural level showed that programmed cell death starts at the right time but is arrested at an early stage of the process. Finally we describe the expression pattern and intracellular distribution of Rst in wild type and rst(D) mutants, showing that its downregulation in salivary glands at the beginning of pupal stage is an important factor in the correct implementation of the autophagic program of this tissue in space and time.
Collapse
Affiliation(s)
- Claudio R Simon
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | | | | | | | | | | |
Collapse
|
42
|
Krieser RJ, White K. Inside an enigma: do mitochondria contribute to cell death in Drosophila? Apoptosis 2009; 14:961-8. [PMID: 19479378 DOI: 10.1007/s10495-009-0362-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mitochondria have been shown to play an important role in cell death in mammalian cells. However, the importance of mitochondria in Drosophila apoptosis is still under investigation. Many proteins involved in the regulation of apoptosis in mammals act at mitochondria or are released from mitochondria, resulting in caspase activation. In addition, these organelles undergo significant ultrastructural changes during apoptosis. This review highlights similarities and differences in the roles of mitochondria and mitochondrial factors in apoptosis between Drosophila and mammals. In Drosophila, many key regulators of apoptosis also appear to localize to this organelle, which also undergoes ultrastructural changes during apoptosis. Although many of the proteins important for the control of apoptosis in mammalian cells are conserved in Drosophila, the role that mitochondria play in apoptosis in this model system remains an area of controversy and active research.
Collapse
|
43
|
Ueno T, Nakaoka T, Takeuchi H, Kubo T. Differential Gene Expression in the Hypopharyngeal Glands of Worker Honeybees (Apis melliferaL.) Associated with an Age-Dependent Role Change. Zoolog Sci 2009; 26:557-63. [DOI: 10.2108/zsj.26.557] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Abstract
Drosophila is a powerful model system for the identification of cell death genes and understanding the role of cell death in development. In this chapter, we describe three methods typically used for the detection of cell death in Drosophila. The TUNEL and acridine orange methods are used to detect dead or dying cells in a variety of tissues. We focus on methods for the embryo and the ovary, but these techniques can be used on other tissues as well. The third method is the detection of genetic interactions by expressing cell death genes in the Drosophila eye.
Collapse
|
45
|
Galindo KA, Lu WJ, Park JH, Abrams JM. The Bax/Bak ortholog in Drosophila, Debcl, exerts limited control over programmed cell death. Development 2008; 136:275-83. [PMID: 19088092 DOI: 10.1242/dev.019042] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bcl-2 family members are pivotal regulators of programmed cell death (PCD). In mammals, pro-apoptotic Bcl-2 family members initiate early apoptotic signals by causing the release of cytochrome c from the mitochondria, a step necessary for the initiation of the caspase cascade. Worms and flies do not show a requirement for cytochrome c during apoptosis, but both model systems express pro- and anti-apoptotic Bcl-2 family members. Drosophila encodes two Bcl-2 family members, Debcl (pro-apoptotic) and Buffy (anti-apoptotic). To understand the role of Debcl in Drosophila apoptosis, we produced authentic null alleles at this locus. Although gross development and lifespans were unaffected, we found that Debcl was required for pruning cells in the developing central nervous system. debcl genetically interacted with the ced-4/Apaf1 counterpart dark, but was not required for killing by RHG (Reaper, Hid, Grim) proteins. We found that debcl(KO) mutants were unaffected for mitochondrial density or volume but, surprisingly, in a model of caspase-independent cell death, heterologous killing by murine Bax required debcl to exert its pro-apoptotic activity. Therefore, although debcl functions as a limited effector of PCD during normal Drosophila development, it can be effectively recruited for killing by mammalian members of the Bcl-2 gene family.
Collapse
Affiliation(s)
- Kathleen A Galindo
- Department of Cell Biology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Studies in different organisms have revealed that ageing is a complex process involving a tight regulation of gene expression. Among other features, ageing organisms generally display an increased oxidative stress and a decreased mitochondrial function. The increase in oxidative stress can be attributable to reactive oxygen species, which are mainly produced by mitochondria as a by-product of energy metabolism. Consistent with these data, mitochondria have been suggested to play a significant role in lifespan determination. The fruitfly Drosophila melanogaster is a well-suited organism to study ageing as it is relatively short-lived, mainly composed of post-mitotic cells, has sequenced nuclear and mitochondrial genomes, and multiple genetic tools are available. It has been used in genome-wide studies to unveil the molecular signature of ageing, in different feeding and dietary restriction protocols and in overexpression and down-regulation studies to examine the effect of specific compounds or genes/proteins on lifespan. Here we review the various features linking mitochondria and ageing in Drosophila melanogaster.
Collapse
Affiliation(s)
- Geneviève Morrow
- Laboratory of Cell and Developmental Genetics, Department of Medicine, CREFSIP, Pav CE-Marchand, Université Laval, Québec, QC, Canada
| | | |
Collapse
|
47
|
Liu Y, Lehmann M. A genomic response to the yeast transcription factor GAL4 in Drosophila. Fly (Austin) 2008; 2:92-8. [PMID: 18820459 DOI: 10.4161/fly.6311] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The yeast transcription factor GAL4 is widely used in Drosophila genetics to misexpress genes that are under control of the yeast upstream activator sequence (UAS). Here we show that high levels of GAL4 change the expression of many Drosophila genes in a UAS-independent manner, including genes that encode components of important signaling pathways. We find that at least part of the genomic response to GAL4 appears to be caused by effects of GAL4 on stress and immune response pathways. Finally, using the transcription factor Senseless as an example, we demonstrate how an interaction between GAL4 and a GAL4-driven protein can impede the use of the GAL4/UAS system in experiments aimed at determining the transcriptional response to a misexpressed gene.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701-1201, USA
| | | |
Collapse
|
48
|
Vidal M, Warner S, Read R, Cagan RL. Differing Src signaling levels have distinct outcomes in Drosophila. Cancer Res 2007; 67:10278-85. [PMID: 17974969 DOI: 10.1158/0008-5472.can-07-1376] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
High levels of Src activity are found in a broad spectrum of cancers. The roles of Src and its negative regulator Csk have been extensively studied, although results have often proved contradictory or the relevance to whole organisms is unclear. In Drosophila, overexpression of either Src orthologue resulted in apoptotic cell death, but paradoxically, reducing dCsk activity led to over-proliferation and tissue overgrowth. Here, we show that in Drosophila epithelia in situ, the levels of Src signaling determine the cellular outcome of Src activation. Apoptotic cell death was triggered specifically at high Src signaling levels; lower levels directed antiapoptotic signals while promoting proliferation. Furthermore, our data indicate that expression of kinase-dead Src isoforms do not necessarily act as dominant-negative factors, but can instead increase Src pathway activity, most likely by titrating Csk activity away from endogenous Src. The importance of Src activity levels was emphasized when we examined oncogenic cooperation between Src and Ras: malignant overgrowth was observed specifically when high Src signaling levels were achieved. We propose a model in which low levels of Src signaling promote survival and proliferation during early stages of tumorigenesis, whereas strong Src signaling, coupled with antiapoptotic signals, directs invasive migration and metastasis during advanced tumor stages.
Collapse
Affiliation(s)
- Marcos Vidal
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
49
|
Peterson JS, Bass BP, Jue D, Rodriguez A, Abrams JM, McCall K. Noncanonical cell death pathways act during Drosophila oogenesis. Genesis 2007; 45:396-404. [PMID: 17506088 DOI: 10.1002/dvg.20306] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Programmed cell death (PCD) is a highly conserved process that occurs during development and in response to adverse conditions. In Drosophila, most PCDs require the genes within the H99 deficiency, the adaptor molecule Ark, and caspases. Here we investigate 10 cell death genes for their potential roles in two distinct types of PCD that occur in oogenesis: developmental nurse cell PCD and starvation-induced PCD. Most of the genes investigated were found to have little effect on late stage developmental PCD in oogenesis, although ark mutants showed a partial inhibition. Mid-stage starvation-induced germline PCD was found to be independent of the upstream activators and ark although it requires caspases, suggesting an apoptosome-independent mechanism of caspase activation in mid-oogenesis. These results indicate that novel pathways must control PCD in the ovary.
Collapse
Affiliation(s)
- Jeanne S Peterson
- Department of Biology, Boston University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
50
|
Sevrioukov EA, Burr J, Huang EW, Assi HH, Monserrate JP, Purves DC, Wu JN, Song EJ, Brachmann CB. Drosophila Bcl-2 proteins participate in stress-induced apoptosis, but are not required for normal development. Genesis 2007; 45:184-93. [PMID: 17417787 DOI: 10.1002/dvg.20279] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many developing tissues require programmed cell death (PCD) for proper formation. In mice and C. elegans, developmental PCD is regulated by the Bcl-2 family of proteins. Two bcl-2 genes are encoded in the Drosophila genome (debcl/dBorg1/Drob-1/dBok and buffy/dBorg2) and previous RNAi-based studies suggested a requirement for these in embryonic development. However, we report here that, despite the fact that many tissues in fruit flies are shaped by PCD, deletion of the bcl-2 genes does not perturb normal development. We investigated whether the fly bcl-2 genes regulate non-apoptotic processes that require caspases, but found these to be bcl-2 gene-independent. However, irradiation of the mutants demonstrates that DNA damage-induced apoptosis, mediated by Reaper, is blocked by buffy and that debcl is required to inhibit buffy. Our results demonstrate that developmental PCD regulation in the fly does not rely upon the Bcl-2 proteins, but that they provide an added layer of protection in the apoptotic response to stress.
Collapse
Affiliation(s)
- Evgueni A Sevrioukov
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|