1
|
Bardwell L, Thorner J. Mitogen-activated protein kinase (MAPK) cascades-A yeast perspective. Enzymes 2023; 54:137-170. [PMID: 37945169 DOI: 10.1016/bs.enz.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Discovery of the class of protein kinase now dubbed a mitogen (or messenger)-activated protein kinase (MAPK) is an illustrative example of how disparate lines of investigation can converge and reveal an enzyme family universally conserved among eukaryotes, from single-celled microbes to humans. Moreover, elucidation of the circuitry controlling MAPK function defined a now overarching principle in enzyme regulation-the concept of an activation cascade mediated by sequential phosphorylation events. Particularly ground-breaking for this field of exploration were the contributions of genetic approaches conducted using several model organisms, but especially the budding yeast Saccharomyces cerevisiae. Notably, examination of how haploid yeast cells respond to their secreted peptide mating pheromones was crucial in pinpointing genes encoding MAPKs and their upstream activators. Fully contemporaneous biochemical analysis of the activities elicited upon stimulation of mammalian cells by insulin and other growth- and differentiation-inducing factors lead eventually to the demonstration that components homologous to those in yeast were involved. Continued studies of these pathways in yeast were integral to other foundational discoveries in MAPK signaling, including the roles of tethering, scaffolding and docking interactions.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States.
| |
Collapse
|
2
|
Scott TD, Xu P, McClean MN. Strain-dependent differences in coordination of yeast signalling networks. FEBS J 2023; 290:2097-2114. [PMID: 36416575 PMCID: PMC10121740 DOI: 10.1111/febs.16689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
Abstract
The yeast mitogen-activated protein kinase pathways serve as a model system for understanding how network interactions affect the way in which cells coordinate the response to multiple signals. We have quantitatively compared two yeast strain backgrounds YPH499 and ∑1278b (both of which have previously been used to study these pathways) and found several important differences in how they coordinate the interaction between the high osmolarity glycerol (HOG) and mating pathways. In the ∑1278b background, in response to simultaneous stimulus, mating pathway activation is dampened and delayed in a dose-dependent manner. In the YPH499 background, only dampening is dose-dependent. Furthermore, leakage from the HOG pathway into the mating pathway (crosstalk) occurs during osmostress alone in the ∑1278b background only. The mitogen-activated protein kinase Hog1p suppresses crosstalk late in an induction time course in both strains but does not affect the early crosstalk seen in the ∑1278b background. Finally, the kinase Rck2p plays a greater role suppressing late crosstalk in the ∑1278b background than in the YPH499 background. Our results demonstrate that comparisons between laboratory yeast strains provide an important resource for understanding how signalling network interactions are tuned by genetic variation without significant alteration to network structure.
Collapse
Affiliation(s)
- Taylor D. Scott
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ping Xu
- Lewis-Sigler Institute for Integrative Biology, Princeton University, Princeton, NJ, USA
| | - Megan N. McClean
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Lewis-Sigler Institute for Integrative Biology, Princeton University, Princeton, NJ, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
3
|
Nitika, Zheng B, Ruan L, Kline JT, Omkar S, Sikora J, Texeira Torres M, Wang Y, Takakuwa JE, Huguet R, Klemm C, Segarra VA, Winters MJ, Pryciak PM, Thorpe PH, Tatebayashi K, Li R, Fornelli L, Truman AW. Comprehensive characterization of the Hsp70 interactome reveals novel client proteins and interactions mediated by posttranslational modifications. PLoS Biol 2022; 20:e3001839. [PMID: 36269765 PMCID: PMC9629621 DOI: 10.1371/journal.pbio.3001839] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/02/2022] [Accepted: 09/21/2022] [Indexed: 01/06/2023] Open
Abstract
Hsp70 interactions are critical for cellular viability and the response to stress. Previous attempts to characterize Hsp70 interactions have been limited by their transient nature and the inability of current technologies to distinguish direct versus bridged interactions. We report the novel use of cross-linking mass spectrometry (XL-MS) to comprehensively characterize the Saccharomyces cerevisiae (budding yeast) Hsp70 protein interactome. Using this approach, we have gained fundamental new insights into Hsp70 function, including definitive evidence of Hsp70 self-association as well as multipoint interaction with its client proteins. In addition to identifying a novel set of direct Hsp70 interactors that can be used to probe chaperone function in cells, we have also identified a suite of posttranslational modification (PTM)-associated Hsp70 interactions. The majority of these PTMs have not been previously reported and appear to be critical in the regulation of client protein function. These data indicate that one of the mechanisms by which PTMs contribute to protein function is by facilitating interaction with chaperones. Taken together, we propose that XL-MS analysis of chaperone complexes may be used as a unique way to identify biologically important PTMs on client proteins.
Collapse
Affiliation(s)
- Nitika
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States America
| | - Bo Zheng
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States America
| | - Linhao Ruan
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
| | - Jake T. Kline
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States America
| | - Siddhi Omkar
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States America
| | - Jacek Sikora
- Department of Molecular Biosciences, Department of Chemistry, and the Feinberg School of Medicine, Northwestern University, Evanston, Illinois, United States America
| | - Mara Texeira Torres
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Yuhao Wang
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
| | - Jade E. Takakuwa
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States America
| | - Romain Huguet
- Thermo Scientific, San Jose, California, United States America
| | - Cinzia Klemm
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Verónica A. Segarra
- Departments of Biological Sciences and Chemistry, Goucher College, Baltimore, Maryland, United States America
| | - Matthew J. Winters
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States America
| | - Peter M. Pryciak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States America
| | - Peter H. Thorpe
- School of Biological and Chemical Sciences, Queen Mary University, London, United Kingdom
| | - Kazuo Tatebayashi
- Laboratory of Molecular Genetics, Frontier Research Unit, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rong Li
- Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
- Biochemistry, Cellular and Molecular Biology (BCMB) Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States America
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Luca Fornelli
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States America
| | - Andrew W. Truman
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, North Carolina, United States America
| |
Collapse
|
4
|
Tatebayashi K, Yamamoto K, Tomida T, Nishimura A, Takayama T, Oyama M, Kozuka-Hata H, Adachi-Akahane S, Tokunaga Y, Saito H. Osmostress enhances activating phosphorylation of Hog1 MAP kinase by mono-phosphorylated Pbs2 MAP2K. EMBO J 2020; 39:e103444. [PMID: 32011004 PMCID: PMC7049814 DOI: 10.15252/embj.2019103444] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/22/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
The MAP kinase (MAPK) Hog1 is the central regulator of osmoadaptation in yeast. When cells are exposed to high osmolarity, the functionally redundant Sho1 and Sln1 osmosensors, respectively, activate the Ste11‐Pbs2‐Hog1 MAPK cascade and the Ssk2/Ssk22‐Pbs2‐Hog1 MAPK cascade. In a canonical MAPK cascade, a MAPK kinase kinase (MAP3K) activates a MAPK kinase (MAP2K) by phosphorylating two conserved Ser/Thr residues in the activation loop. Here, we report that the MAP3K Ste11 phosphorylates only one activating phosphorylation site (Thr‐518) in Pbs2, whereas the MAP3Ks Ssk2/Ssk22 can phosphorylate both Ser‐514 and Thr‐518 under optimal osmostress conditions. Mono‐phosphorylated Pbs2 cannot phosphorylate Hog1 unless the reaction between Pbs2 and Hog1 is enhanced by osmostress. The lack of the osmotic enhancement of the Pbs2‐Hog1 reaction suppresses Hog1 activation by basal MAP3K activities and prevents pheromone‐to‐Hog1 crosstalk in the absence of osmostress. We also report that the rapid‐and‐transient Hog1 activation kinetics at mildly high osmolarities and the slow and prolonged activation kinetics at severely high osmolarities are both caused by a common feedback mechanism.
Collapse
Affiliation(s)
- Kazuo Tatebayashi
- Laboratory of Molecular Genetics, Frontier Research Unit, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Katsuyoshi Yamamoto
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taichiro Tomida
- Department of Physiology, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Akiko Nishimura
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomomi Takayama
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satomi Adachi-Akahane
- Department of Physiology, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yuji Tokunaga
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Haruo Saito
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Deng FS, Lin CH. Cpp1 phosphatase mediated signaling crosstalk between Hog1 and Cek1 mitogen-activated protein kinases is involved in the phenotypic transition in Candida albicans. Med Mycol 2018; 56:242-252. [PMID: 28431022 DOI: 10.1093/mmy/myx027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/23/2017] [Indexed: 12/29/2022] Open
Abstract
Cellular signaling pathways involved in cell growth and differentiation mediated by mitogen-activated protein kinase (MAPK) cascades have been well characterized in fungi. However, the mechanisms of signaling crosstalk between MAPKs to ensure signaling specificity are largely unknown. Previous work showed that activation of the Candida albicans Cek1 MAPK pathway resulted in opaque cell formation and filamentation, which mirrored the phenotypes to hog1Δ. Additionally, deleting the HOG1 gene stimulated Cek1p. Thus, we hypothesized that an unknown factor could act as a bridge between these two MAPKs. In Saccharomyces cerevisiae, the dual-specificity phosphatase (DSP) Msg5 specifically dephosphorylates Fus3p/Kss1p. C. albicans Cpp1, an ortholog of Msg5, has been shown to be important in regulating Cek1p. Compared with the wild-type strain, hog1Δ shows a ∼40% reduction in CPP1 expression. Consistent with previous reports, CPP1 deletion also resulted in Cek1 hyperphosphorylation, implicating Cpp1 as a regulator of the Hog1 and Cek1 cascades. Interestingly, both cpp1Δ and hog1Δ induced 100% opaque colony formation in MTL-homozygous strains grown on N-acetylglucosamine (NAG) plates, whereas the wild-type and complemented strains exhibited 80.9% and 77.1% white-to-opaque switching rates, respectively. CPP1 gene deletion also caused hyperfilamentous phenotypes in both white and opaque cells. These phenomena may be due to highly phosphorylated Cek1p, as deleting CEK1 in the cpp1Δ background generated nonfilamentous strains and reduced opaque colony formation. Taken together, we conclude that cpp1Δ and hog1Δ exhibited comparable phenotypes, and both are involved in regulating Cek1 phosphorylation, implicating Cpp1 phosphatase as a key intermediary between the Hog1 and Cek1 signal transduction pathways.
Collapse
Affiliation(s)
- Fu-Sheng Deng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Rusnak L, Fu H. Regulation of ASK1 signaling by scaffold and adaptor proteins. Adv Biol Regul 2017; 66:23-30. [PMID: 29102394 DOI: 10.1016/j.jbior.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway is a three-tiered kinase cascade where mitogen-activated protein kinase kinase kinases (MAP3Ks) lead to the activation of mitogen-activated protein kinase kinases (MAP2K), and ultimately MAPK proteins. MAPK signaling can promote a diverse set of biological outcomes, ranging from cell death to proliferation. There are multiple mechanisms which govern MAPK output, such as the duration and strength of the signal, cellular localization to upstream and downstream binding partners, pathway crosstalk and the binding to scaffold and adaptor molecules. This review will focus on scaffold and adaptor proteins that bind to and regulate apoptosis signal-regulating kinase 1 (ASK1), a MAP3K protein with a critical role in mediating stress response pathways.
Collapse
Affiliation(s)
- Lauren Rusnak
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA 30322, USA; Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA.
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA 30322, USA; Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA; Department of Hematology & Medical Oncology, Emory University, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Teichert I, Lutomski M, Märker R, Nowrousian M, Kück U. New insights from an old mutant: SPADIX4 governs fruiting body development but not hyphal fusion in Sordaria macrospora. Mol Genet Genomics 2016; 292:93-104. [DOI: 10.1007/s00438-016-1258-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/11/2016] [Indexed: 11/30/2022]
|
8
|
Groves B, Khakhar A, Nadel CM, Gardner RG, Seelig G. Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination. eLife 2016; 5. [PMID: 27525484 PMCID: PMC5019841 DOI: 10.7554/elife.15200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 08/14/2016] [Indexed: 12/18/2022] Open
Abstract
Evolution has often copied and repurposed the mitogen-activated protein kinase (MAPK) signaling module. Understanding how connections form during evolution, in disease and across individuals requires knowledge of the basic tenets that govern kinase-substrate interactions. We identify criteria sufficient for establishing regulatory links between a MAPK and a non-native substrate. The yeast MAPK Fus3 and human MAPK ERK2 can be functionally redirected if only two conditions are met: the kinase and substrate contain matching interaction domains and the substrate includes a phospho-motif that can be phosphorylated by the kinase and recruit a downstream effector. We used a panel of interaction domains and phosphorylation-activated degradation motifs to demonstrate modular and scalable retargeting. We applied our approach to reshape the signaling behavior of an existing kinase pathway. Together, our results demonstrate that a MAPK can be largely defined by its interaction domains and compatible phospho-motifs and provide insight into how MAPK-substrate connections form. DOI:http://dx.doi.org/10.7554/eLife.15200.001 Nature has evolved a number of ways to link signals from a cell’s environment, like the concentration of a hormone, to the behavior of that cell. These new connections often form by reusing certain common signaling components, such as mitogen-activated protein kinases. These enzymes – referred to as MAPKs for short – are activated by specific signals and alter the activity of target proteins in the cell by adding a phosphate group to them: a process called phosphorylation. These connections thus dictate how cells respond to their environments – and consequently, disruptions to the connections are a common source of disease. Groves, Khakhar et al. set out to understand how connections can be made between a MAPK and a new target protein to gain insights into how these links emerge through evolution and how they might break in disease. Their approach focused on one of the ways that phosphorylation can alter the activity of a target protein: marking it for degradation. Experiments with budding yeast showed that a MAPK could only achieve this if two conditions are met. First, the target protein and kinase need to bind to each other. Second, the target needs to contain a site that when phosphorylated is subsequently recognized by the cell’s protein degradation machinery. By engineering proteins so that they fulfilled these two criteria, Groves, Khakhar et al. created new connections between a yeast MAPK called Fus3 or a human MAPK called ERK2 and a variety of targets. The results showed that the parts of the proteins involved in the interaction step could be completely separate from the parts that are involved in the phosphorylation step. This suggests that connections between kinases and their targets can be rewired simple by mixing together parts of other existing proteins. Finally, Groves, Khakhar et al. confirmed that engineered connections between kinases and targets could predictably change how yeast cells responded to a hormone that normally controls the yeast’s reproductive cycle. Together these results bring us one step closer to understanding how cells assemble the signaling pathways that they use to process information. However further work is needed to see if these findings can be generalized to other signaling components, and if so, to explore if new connections can be built to yield more complicated cellular behaviors. DOI:http://dx.doi.org/10.7554/eLife.15200.002
Collapse
Affiliation(s)
- Benjamin Groves
- Department of Electrical Engineering, University of Washington, Seattle, United States
| | - Arjun Khakhar
- Department of Bioengineering, University of Washington, Seattle, United States
| | - Cory M Nadel
- Department of Pharmacology, University of Washington, Seattle, United States
| | - Richard G Gardner
- Department of Pharmacology, University of Washington, Seattle, United States
| | - Georg Seelig
- Department of Electrical Engineering, University of Washington, Seattle, United States.,Department of Computer Science and Engineering, University of Washington, Seattle, United States
| |
Collapse
|
9
|
Chang WH, Liang SH, Deng FS, Lin CH. The conserved dual phosphorylation sites of the Candida albicans Hog1 protein are crucial for white-opaque switching, mating, and pheromone-stimulated cell adhesion. Med Mycol 2016; 54:628-40. [PMID: 27118797 DOI: 10.1093/mmy/myw015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/24/2016] [Indexed: 01/13/2023] Open
Abstract
Candida albicans is an opportunistic human pathogen capable of causing life-threatening infections in immunocompromised patients. C. albicans has a unique morphological transition between white and opaque phases. These two cells differ in virulence, mating capability, biofilm formation, and host-cell interaction. Previous studies revealed that deletion of the SSK2, PBS2, or HOG1 gene resulted in 100% opaque cell formation and suppressed the mating response. Thr-174 and Tyr-176 of the Hog1 protein are important phosphoacceptors and can be activated in response to stimuli. In this study, we first demonstrated the importance of two conserved phosphorylation sites in white-opaque switching, mating, and pheromone-stimulated cell adhesion. Six Hog1 point-mutated strains were generated, including nonphosphorylated strains (Hog1(T174A), Hog1(Y176F), and Hog1(T174A,Y176F)) and negatively charged phosphorylated strains (Hog1(T174D), Hog1(Y176D), and Hog1(T174D,Y176D)). Point mutation on Thr-174, Tyr-176 or in combination with the Hog1 protein in C. albicans MTL homozygous strains stimulated opaque cell formation at a frequency of 100%. Furthermore, mating projections of point-mutated strains were significantly shorter and their mating efficiencies and pheromone-stimulated cell adhesive numbers were lower than those of the wild-type. By investigating the effects of Hog1 phosphorylation in ssk1Δ and sln1Δ, we also demonstrate that the phosphorylation intensity of Hog1p is directly involved in the white-opaque switching. Taken together, the results of our study demonstrate that dual phosphorylation sites of C. albicans are crucial for white-opaque transition, sexual mating, and pheromone-induced cell adhesion.
Collapse
Affiliation(s)
- Wen-Han Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shen-Huan Liang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Fu-Sheng Deng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Xiong J, Cui X, Yuan X, Yu X, Sun J, Gong Q. The Hippo/STE20 homolog SIK1 interacts with MOB1 to regulate cell proliferation and cell expansion in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1461-75. [PMID: 26685188 DOI: 10.1093/jxb/erv538] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Multicellular organisms co-ordinate cell proliferation and cell expansion to maintain organ growth. In animals, the Hippo tumor suppressor pathway is a master regulator of organ size. Central to this pathway is a kinase cascade composed of Hippo and Warts, and their activating partners Salvador and Mob1/Mats. In plants, the Mob1/Mats homolog MOB1A has been characterized as a regulator of cell proliferation and sporogenesis. Nonetheless, no Hippo homologs have been identified. Here we show that the Arabidopsis serine/threonine kinase 1 (SIK1) is a Hippo homolog, and that it interacts with MOB1A to control organ size. SIK1 complements the function of yeast Ste20 in bud site selection and mitotic exit. The sik1 null mutant is dwarf with reduced cell numbers, endoreduplication, and cell expansion. A yeast two-hybrid screen identified Mob1/Mats homologs MOB1A and MOB1B as SIK1-interacting partners. The interaction between SIK1 and MOB1 was found to be mediated by an N-terminal domain of SIK1 and was further confirmed by bimolecular fluorescence complementation. Interestingly, sik1 mob1a is arrested at the seedling stage, and overexpression of neither SIK1 in mob1a nor MOB1A in sik1 can rescue the dwarf phenotypes, suggesting that SIK1 and MOB1 may be components of a larger protein complex. Our results pave the way for constructing a complete Hippo pathway that controls organ growth in higher plants.
Collapse
Affiliation(s)
- Jie Xiong
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xuefei Cui
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiangrong Yuan
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiulian Yu
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jialei Sun
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qingqiu Gong
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Ryu J, Park SH. Simple synthetic protein scaffolds can create adjustable artificial MAPK circuits in yeast and mammalian cells. Sci Signal 2015; 8:ra66. [PMID: 26126717 DOI: 10.1126/scisignal.aab3397] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As hubs for eukaryotic cell signaling, scaffold proteins are attractive targets for engineering and manipulating signaling circuits. We designed synthetic scaffolds with a repeated PDZ domain that interacted with engineered kinases of the mitogen-activated protein kinase (MAPK) cascade involved in yeast mating to investigate how modular interactions mediate kinase cascades. The synthetic scaffolds functioned as logic gates of signaling circuits. We replaced the endogenous yeast scaffold Ste5 with designer scaffolds with a variable numbers of a PDZ domain that bound kinases or phosphatases engineered with a PDZ-binding motif. Although association with the membrane was necessary for pathway activity, surprisingly, mating responses occurred when the circuit contained a scaffold with only two PDZ domains, which could only bind two of the three kinases simultaneously. Additionally, the three tiers of the MAPK pathway exhibited decreasing positional plasticity from the top [MAPK kinase kinase (MAPKKK)] to the bottom (MAPK) tier such that binding of a MAPKKK, but not a MAPK, from the osmoregulatory pathway or protein kinase C pathway to the synthetic scaffold activated a reporter of the mating response. We also showed that the output duration and intensity could be altered by recruiting phosphatases or varying the affinity of the recruited proteins for the scaffold and that a designer MAPK scaffold functioned in mammalian cells. Thus, this synthetic approach with designer scaffolds should enable the rational manipulation or engineering of signaling pathways and provide insight into the functional roles of scaffold proteins.
Collapse
Affiliation(s)
- Jihoon Ryu
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Sang-Hyun Park
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
12
|
Msb2 is a Ste11 membrane concentrator required for full activation of the HOG pathway. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:722-30. [PMID: 25689021 DOI: 10.1016/j.bbagrm.2015.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 01/05/2023]
Abstract
The high osmolarity glycerol (HOG) pathway, composed of membrane-associated osmosensors, adaptor proteins and core signaling kinases, is essential for the survival of yeast cells under hyper-osmotic stress. Here, we studied how the MAPKKK Ste11 might change its protein interaction profile during acute stress exposure, with an emphasis on the sensory system of the so-called Sho1/Msb2 signaling branch. To characterize the transience of protein-protein interactions we utilized a recently described enzymatic in vivo protein proximity assay (M-track). Accordingly, interaction signals between Ste11 and many of its signaling partners can already be detected even under basal conditions. In most cases these signals increase after stress induction. All the interactions are completely dependent on the function of the Ste11-adaptor protein Ste50. Moreover, the presence of either Msb2 or Hkr1 is necessary for observing the interaction between Ste11 and scaffolding factors such as Sho1 and Pbs2. Additional assays suggest that Msb2 is not only in close proximity to Ste11 but might function as an individual Ste11 concentrator at the plasma membrane. Our results confirm the existence of negative feedback systems targeting the protein levels of Ste11 and Msb2 and also hint at changes in the dissociation rates of intermediate signaling complexes.
Collapse
|
13
|
Liang SH, Cheng JH, Deng FS, Tsai PA, Lin CH. A novel function for Hog1 stress-activated protein kinase in controlling white-opaque switching and mating in Candida albicans. EUKARYOTIC CELL 2014; 13:1557-66. [PMID: 25344054 PMCID: PMC4248679 DOI: 10.1128/ec.00235-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 11/20/2022]
Abstract
Candida albicans is a commensal in heathy people but has the potential to become an opportunistic pathogen and is responsible for half of all clinical infections in immunocompromised patients. Central to understanding C. albicans behavior is the white-opaque phenotypic switch, in which cells can undergo an epigenetic transition between the white state and the opaque state. The phenotypic switch regulates multiple properties, including biofilm formation, virulence, mating, and fungus-host interactions. Switching between the white and opaque states is associated with many external stimuli, such as oxidative stress, pH, and N-acetylglucosamine, and is directly regulated by the Wor1 transcriptional circuit. The Hog1 stress-activated protein kinase (SAPK) pathway is recognized as the main pathway for adapting to environmental stress in C. albicans. In this work, we first show that loss of the HOG1 gene in A: / A: and α/α cells, but not A: /α cells, results in 100% white-to-opaque switching when cells are grown on synthetic medium, indicating that switching is repressed by the A1: /α2 heterodimer that represses WOR1 gene expression. Indeed, switching in the hog1Δ strain was dependent on the presence of WOR1, as a hog1Δ wor1Δ strain did not show switching to the opaque state. Deletion of PBS2 and SSK2 also resulted in C. albicans cells switching from white to opaque with 100% efficiency, indicating that the entire Hog1 SAPK pathway is involved in regulating this unique phenotypic transition. Interestingly, all Hog1 pathway mutants also caused defects in shmoo formation and mating efficiencies. Overall, this work reveals a novel role for the Hog1 SAPK pathway in regulating white-opaque switching and sexual behavior in C. albicans.
Collapse
Affiliation(s)
- Shen-Huan Liang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jen-Hua Cheng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Fu-Sheng Deng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Pei-An Tsai
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Abstract
Many cells are able to orient themselves in a non-uniform environment by responding to localized cues. This leads to a polarized cellular response, where the cell can either grow or move towards the cue source. Fungal haploid cells secrete pheromones to signal mating, and respond by growing a mating projection towards a potential mate. Upon contact of the two partner cells, these fuse to form a diploid zygote. In this review, we present our current knowledge on the processes of mating signalling, pheromone-dependent polarized growth and cell fusion in Saccharomyces cerevisiae and Schizosaccharomyces pombe, two highly divergent ascomycete yeast models. While the global architecture of the mating response is very similar between these two species, they differ significantly both in their mating physiologies and in the molecular connections between pheromone perception and downstream responses. The use of both yeast models helps enlighten both conserved solutions and species-specific adaptations to a general biological problem.
Collapse
Affiliation(s)
- Laura Merlini
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | | | | |
Collapse
|
15
|
Abstract
An appropriate response and adaptation to hyperosmolarity, i.e., an external osmolarity that is higher than the physiological range, can be a matter of life or death for all cells. It is especially important for free-living organisms such as the yeast Saccharomyces cerevisiae. When exposed to hyperosmotic stress, the yeast initiates a complex adaptive program that includes temporary arrest of cell-cycle progression, adjustment of transcription and translation patterns, and the synthesis and retention of the compatible osmolyte glycerol. These adaptive responses are mostly governed by the high osmolarity glycerol (HOG) pathway, which is composed of membrane-associated osmosensors, an intracellular signaling pathway whose core is the Hog1 MAP kinase (MAPK) cascade, and cytoplasmic and nuclear effector functions. The entire pathway is conserved in diverse fungal species, while the Hog1 MAPK cascade is conserved even in higher eukaryotes including humans. This conservation is illustrated by the fact that the mammalian stress-responsive p38 MAPK can rescue the osmosensitivity of hog1Δ mutations in response to hyperosmotic challenge. As the HOG pathway is one of the best-understood eukaryotic signal transduction pathways, it is useful not only as a model for analysis of osmostress responses, but also as a model for mathematical analysis of signal transduction pathways. In this review, we have summarized the current understanding of both the upstream signaling mechanism and the downstream adaptive responses to hyperosmotic stress in yeast.
Collapse
Affiliation(s)
- Haruo Saito
- Division of Molecular Cell Signaling, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8638, Japan, and
| | - Francesc Posas
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| |
Collapse
|
16
|
Zalatan JG, Coyle SM, Rajan S, Sidhu SS, Lim WA. Conformational control of the Ste5 scaffold protein insulates against MAP kinase misactivation. Science 2012; 337:1218-22. [PMID: 22878499 DOI: 10.1126/science.1220683] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cells reuse signaling proteins in multiple pathways, raising the potential for improper cross talk. Scaffold proteins are thought to insulate against such miscommunication by sequestering proteins into distinct physical complexes. We show that the scaffold protein Ste5, which organizes the yeast mating mitogen-activated protein kinase (MAPK) pathway, does not use sequestration to prevent misactivation of the mating response. Instead, Ste5 appears to use a conformation mechanism: Under basal conditions, an intramolecular interaction of the pleckstrin homology (PH) domain with the von Willebrand type A (VWA) domain blocks the ability to coactivate the mating-specific MAPK Fus3. Pheromone-induced membrane binding of Ste5 triggers release of this autoinhibition. Thus, in addition to serving as a conduit guiding kinase communication, Ste5 directly receives input information to decide if and when signal can be transmitted to mating output.
Collapse
Affiliation(s)
- Jesse G Zalatan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
17
|
Lewitzky M, Simister PC, Feller SM. Beyond 'furballs' and 'dumpling soups' - towards a molecular architecture of signaling complexes and networks. FEBS Lett 2012; 586:2740-50. [PMID: 22710161 DOI: 10.1016/j.febslet.2012.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 04/16/2012] [Indexed: 12/14/2022]
Abstract
The molecular architectures of intracellular signaling networks are largely unknown. Understanding their design principles and mechanisms of processing information is essential to grasp the molecular basis of virtually all biological processes. This is particularly challenging for human pathologies like cancers, as essentially each tumor is a unique disease with vastly deranged signaling networks. However, even in normal cells we know almost nothing. A few 'signalosomes', like the COP9 and the TCR signaling complexes have been described, but detailed structural information on their architectures is largely lacking. Similarly, many growth factor receptors, for example EGF receptor, insulin receptor and c-Met, signal via huge protein complexes built on large platform proteins (Gab, Irs/Dok, p130Cas[BCAR1], Frs families etc.), which are structurally not well understood. Subsequent higher order processing events remain even more enigmatic. We discuss here methods that can be employed to study signaling architectures, and the importance of too often neglected features like macromolecular crowding, intrinsic disorder in proteins and the sophisticated cellular infrastructures, which need to be carefully considered in order to develop a more mature understanding of cellular signal processing.
Collapse
Affiliation(s)
- Marc Lewitzky
- Biological Systems Architecture Group, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom.
| | | | | |
Collapse
|
18
|
Nagiec MJ, Dohlman HG. Checkpoints in a yeast differentiation pathway coordinate signaling during hyperosmotic stress. PLoS Genet 2012; 8:e1002437. [PMID: 22242015 PMCID: PMC3252264 DOI: 10.1371/journal.pgen.1002437] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/11/2011] [Indexed: 12/21/2022] Open
Abstract
All eukaryotes have the ability to detect and respond to environmental and hormonal signals. In many cases these signals evoke cellular changes that are incompatible and must therefore be orchestrated by the responding cell. In the yeast Saccharomyces cerevisiae, hyperosmotic stress and mating pheromones initiate signaling cascades that each terminate with a MAP kinase, Hog1 and Fus3, respectively. Despite sharing components, these pathways are initiated by distinct inputs and produce distinct cellular behaviors. To understand how these responses are coordinated, we monitored the pheromone response during hyperosmotic conditions. We show that hyperosmotic stress limits pheromone signaling in at least three ways. First, stress delays the expression of pheromone-induced genes. Second, stress promotes the phosphorylation of a protein kinase, Rck2, and thereby inhibits pheromone-induced protein translation. Third, stress promotes the phosphorylation of a shared pathway component, Ste50, and thereby dampens pheromone-induced MAPK activation. Whereas all three mechanisms are dependent on an increase in osmolarity, only the phosphorylation events require Hog1. These findings reveal how an environmental stress signal is able to postpone responsiveness to a competing differentiation signal, by acting on multiple pathway components, in a coordinated manner. All cells can detect and respond to signals in their environment. The ability to interpret these signals with accuracy is needed for proper growth and differentiation. Moreover, cells must prioritize responses when confronted with competing signals. However the molecular mechanisms that govern signal prioritization are poorly understood. To address this question, we studied two signaling pathways in the genetic model organism budding yeast. Specifically we focused on the pheromone mating (differentiation) pathway and the high osmolarity glycerol (stress response) pathway. These pathways respond differently to each stimulus despite sharing pathway components. We find that cells must first adapt to stress before they can mate. At early times, the stress response cross-inhibits and dampens the pheromone response to suspend mating differentiation. Once cells adapt, the stress response ends and the differentiation program resumes. All signaling pathways that regulate cell fate decisions are interconnected to varying degrees. Our study highlights the importance of proper signal coordination in cell fate decisions, and it reveals new mechanisms that govern signal coordination within complex signaling networks.
Collapse
Affiliation(s)
- Michal J. Nagiec
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Henrik G. Dohlman
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
19
|
Scaffold-mediated nucleation of protein signaling complexes: elementary principles. Math Biosci 2011; 232:164-73. [PMID: 21683720 DOI: 10.1016/j.mbs.2011.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 05/24/2011] [Accepted: 06/02/2011] [Indexed: 11/20/2022]
Abstract
Proteins with multiple binding sites play important roles in cell signaling systems by nucleating protein complexes in which, for example, enzymes and substrates are co-localized. Proteins that specialize in this function are called by a variety names, including adapter, linker and scaffold. Scaffold-mediated nucleation of protein complexes can be either constitutive or induced. Induced nucleation is commonly mediated by a docking site on a scaffold that is activated by phosphorylation. Here, by considering minimalist mathematical models, which recapitulate scaffold effects seen in more mechanistically detailed models, we obtain analytical and numerical results that provide insights into scaffold function. These results elucidate how recruitment of a pair of ligands to a scaffold depends on the concentrations of the ligands, on the binding constants for ligand-scaffold interactions, on binding cooperativity, and on the milieu of the scaffold, as ligand recruitment is affected by competitive ligands and decoy receptors. For the case of a bivalent scaffold, we obtain an expression for the unique scaffold concentration that maximally recruits a pair of monovalent ligands. Through simulations, we demonstrate that a bivalent scaffold can nucleate distinct sets of ligands to equivalent extents when the scaffold is present at different concentrations. Thus, the function of a scaffold can potentially change qualitatively with a change in copy number. We also demonstrate how a scaffold can change the catalytic efficiency of an enzyme and the sensitivity of the rate of reaction to substrate concentration. The results presented here should be useful for understanding scaffold function and for engineering scaffolds to have desired properties.
Collapse
|
20
|
Recruitment interactions can override catalytic interactions in determining the functional identity of a protein kinase. Proc Natl Acad Sci U S A 2011; 108:9809-14. [PMID: 21628578 DOI: 10.1073/pnas.1016337108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The yeast Saccharomyces cerevisae has four distinct mitogen-activated protein kinase kinases (MAPKKs), each of which has a distinct functional identity characterized by communication with specific upstream and downstream partners to form distinct functional pathways. These four kinases belong to one family, sharing closely related catalytic domains. How have these four related kinases diverged to take on four distinct functional roles? The specificity of an enzyme for a particular substrate is often thought to reside in differences in the catalytic domain. However, many kinases, including MAPKKs, have modular interaction domains and motifs that have been shown to play an important role in determining the specificity of kinases through recruitment to specific partners and complexes. Here we probe the relative importance of catalytic domain interactions versus recruitment interactions in defining the functional identity of MAPKKs by asking whether we can use recruitment interactions to force other MAPKK catalytic domains to play the functional role of the mating MAPKK, Ste7. We find that two alternative MAPKKs, Pbs2 and Mkk2, can be forced to functionally replace the mating MAPKK Ste7, but only if the proper set of recruitment interactions are grafted onto their catalytic domains. These results show that within a family of kinases, recruitment interactions can play a dominant role in defining functional identity, and is consistent with a model in which new kinase functions can arise through recombination of existing catalytic domains with new interaction modules.
Collapse
|
21
|
The Hog1 mitogen-activated protein kinase mediates a hypoxic response in Saccharomyces cerevisiae. Genetics 2011; 188:325-38. [PMID: 21467572 DOI: 10.1534/genetics.111.128322] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have studied hypoxic induction of transcription by studying the seripauperin (PAU) genes of Saccharomyces cerevisiae. Previous studies showed that PAU induction requires the depletion of heme and is dependent upon the transcription factor Upc2. We have now identified additional factors required for PAU induction during hypoxia, including Hog1, a mitogen-activated protein kinase (MAPK) whose signaling pathway originates at the membrane. Our results have led to a model in which heme and ergosterol depletion alters membrane fluidity, thereby activating Hog1 for hypoxic induction. Hypoxic activation of Hog1 is distinct from its previously characterized response to osmotic stress, as the two conditions cause different transcriptional consequences. Furthermore, Hog1-dependent hypoxic activation is independent of the S. cerevisiae general stress response. In addition to Hog1, specific components of the SAGA coactivator complex, including Spt20 and Sgf73, are also required for PAU induction. Interestingly, the mammalian ortholog of Spt20, p38IP, has been previously shown to interact with the mammalian ortholog of Hog1, p38. Taken together, our results have uncovered a previously unknown hypoxic-response pathway that may be conserved throughout eukaryotes.
Collapse
|
22
|
Fettich M, Lenassi M, Veranič P, Gunde-Cimerman N, Plemenitaš A. Identification and characterization of putative osmosensors, HwSho1A and HwSho1B, from the extremely halotolerant black yeast Hortaea werneckii. Fungal Genet Biol 2011; 48:475-84. [PMID: 21281727 DOI: 10.1016/j.fgb.2011.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 01/07/2011] [Accepted: 01/24/2011] [Indexed: 01/24/2023]
Abstract
In Saccharomyces cerevisiae, the Sho1 protein is one of two potential osmosensors that can activate the kinase cascade of the HOG pathway in response to increased extracellular osmolarity. Two novel SHO1-like genes, HwSHO1A and HwSHO1B, have been cloned from the saltern-inhabiting, extremely halotolerant black yeast Hortaea werneckii. The HwSho1 protein isoforms are 93.8% identical in their amino-acid sequences, and have a conserved SH3 domain. When the HwSHO1 genes were transferred into S. cerevisae cells lacking the SHO1 gene, both of the HwSho1 isoforms fully complemented the function of the native S. cerevisiae Sho1 protein. Through microscopic and biochemical validation, we demonstrate that in S. cerevisiae, both of the HwSho1 proteins have characteristic subcellular localizations similar to the S. cerevisiae Sho1 protein, and they can both activate the HOG pathway under conditions of osmotic stress. To a lower extent, crosstalk to the mating pathway expressing HwSho1 proteins is conserved in the PBS2 deleted S. cerevisiae strain. These data show that the HwSho1 proteins from H. werneckii are true functional homologs of the Sho1 protein of S. cerevisiae.
Collapse
Affiliation(s)
- Martin Fettich
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubjana, Slovenia
| | | | | | | | | |
Collapse
|
23
|
Kholodenko BN, Birtwistle MR. Four-dimensional dynamics of MAPK information processing systems. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 1:28-44. [PMID: 20182652 DOI: 10.1002/wsbm.16] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mitogen activated protein kinase (MAPK) cascades process a myriad of stimuli received by cell-surface receptors and generate precise spatio-temporal guidance for multiple target proteins, dictating receptor-specific cellular outcomes. Computational modelling reveals that the intrinsic topology of MAPK cascades enables them to amplify signal sensitivity and amplitude, reduce noise and display intricate dynamic properties, which include toggle switches, excitation pulses and oscillations. Specificity of signaling responses can be brought about by signal-induced feedback and feedforward wiring imposed on the MAPK cascade backbone. Intracellular gradients of protein activities arise from the spatial separation of opposing reactions in kinase-phosphatase cycles. The membrane confinement of the initiating kinase in MAPK cascades and cytosolic localization of phosphatases can result in precipitous gradients of phosphorylated signal-transducers if they spread solely by diffusion. Endocytotic trafficking of active kinases driven by molecular motors and traveling waves of protein phosphorylation can propagate phosphorylation signals from the plasma membrane to the nucleus, especially in large cells, such as Xenopus eggs.
Collapse
Affiliation(s)
- Boris N Kholodenko
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Marc R Birtwistle
- Departement of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
24
|
Takawira D, Budinger GRS, Hopkinson SB, Jones JCR. A dystroglycan/plectin scaffold mediates mechanical pathway bifurcation in lung epithelial cells. J Biol Chem 2010; 286:6301-10. [PMID: 21149456 DOI: 10.1074/jbc.m110.178988] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In alveolar epithelial cells (AECs), the membrane-anchored proteoglycan dystroglycan (DG) is a mechanoreceptor that transmits mechanical stretch forces to activate independently the ERK1/2 and the adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling cascades in a process called pathway bifurcation. We tested the hypothesis that the cytoskeleton cross-linker plectin, known to bind both DG and AMPK in muscle cells, acts as a scaffold to regulate DG-mediated mechanical stimulation and pathway bifurcation. We demonstrate that plectin and DG form a complex in AECs and that this complex interacts with ERK1/2 and AMPK. Plectin knockdown reduces DG interaction with AMPK but not with ERK1/2. Despite this, mechanoactivation of both signaling pathways is significantly attenuated in AECs deficient in plectin. Thus, DG has the dual role of mechanical receptor and scaffold for ERK1/2, whereas plectin acts as a scaffold for AMPK signaling but is also required for DG-mediated ERK1/2 activation. We conclude that the DG-plectin complex plays a central role in transmitting mechanical stress from the extracellular matrix to the cytoplasm.
Collapse
Affiliation(s)
- Desire Takawira
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
25
|
Haney S, Bardwell L, Nie Q. Ultrasensitive responses and specificity in cell signaling. BMC SYSTEMS BIOLOGY 2010; 4:119. [PMID: 20735856 PMCID: PMC2940771 DOI: 10.1186/1752-0509-4-119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 08/25/2010] [Indexed: 01/29/2023]
Abstract
Background Interconnected cell signaling pathways are able to efficiently and accurately transmit a multitude of different signals, despite an inherent potential for undesirable levels of cross-talk. To ensure that an appropriate response is produced, biological systems have evolved network-level mechanisms that insulate pathways from crosstalk and prevent 'leaking' or 'spillover' between pathways. Many signaling pathways have been shown to respond in an ultrasensitive (switch-like) fashion to graded input, and this behavior may influence specificity. The relationship of ultrasensitivity to signaling specificity has not been extensively explored. Results We studied the behavior of simple mathematical models of signaling networks composed of two interconnected pathways that share an intermediate component, asking if the two pathways in the network could exhibit both output specificity (preferentially activate their own output) and input fidelity (preferentially respond to their own input). Previous results with weakly-activated pathways indicated that neither mutual specificity nor mutual fidelity were obtainable in the absence of an insulating mechanism, such as cross-pathway inhibition, combinatorial signaling or scaffolding/compartmentalization. Here we found that mutual specificity is obtainable for hyperbolic or ultrasensitive pathways, even in the absence of an insulating mechanism. However, mutual fidelity is impossible at steady-state, even if pathways are hyperbolic or ultrasensitive. Nevertheless, ultrasensitivity does provide advantages in attaining specificity and fidelity to networks that contain an insulating mechanism. For networks featuring cross-pathway inhibition or combinatorial signaling, ultrasensitive activation can increase specificity in a limited way, and can only be utilized by one of the two pathways. In contrast, for networks featuring scaffolding/compartmentalization, ultrasensitive activation of both pathways can dramatically improve network specificity. Conclusions There are constraints to obtaining performance objectives associated with signaling specificity; such constraints may have influenced the evolution of signal transduction networks. Notably, input fidelity (preferential response to an authentic input) is a more difficult objective to achieve than output specificity (preferential targeting to an authentic output). Indeed, mutual fidelity is impossible in the absence of an insulating mechanism, even if pathways are ultrasensitive. Ultrasensitivity does, however, significantly enhance the performance of several insulating mechanisms. In particular, the ultrasensitive activation of both pathways can provide substantial improvement to networks containing scaffolding/compartmentalization.
Collapse
Affiliation(s)
- Seth Haney
- Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
| | | | | |
Collapse
|
26
|
Liu X, Nie Q. Compact integration factor methods for complex domains and adaptive mesh refinement. JOURNAL OF COMPUTATIONAL PHYSICS 2010; 229:5692-5706. [PMID: 20543883 PMCID: PMC2882058 DOI: 10.1016/j.jcp.2010.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Implicit integration factor (IIF) method, a class of efficient semi-implicit temporal scheme, was introduced recently for stiff reaction-diffusion equations. To reduce cost of IIF, compact implicit integration factor (cIIF) method was later developed for efficient storage and calculation of exponential matrices associated with the diffusion operators in two and three spatial dimensions for Cartesian coordinates with regular meshes. Unlike IIF, cIIF cannot be directly extended to other curvilinear coordinates, such as polar and spherical coordinate, due to the compact representation for the diffusion terms in cIIF. In this paper, we present a method to generalize cIIF for other curvilinear coordinates through examples of polar and spherical coordinates. The new cIIF method in polar and spherical coordinates has similar computational efficiency and stability properties as the cIIF in Cartesian coordinate. In addition, we present a method for integrating cIIF with adaptive mesh refinement (AMR) to take advantage of the excellent stability condition for cIIF. Because the second order cIIF is unconditionally stable, it allows large time steps for AMR, unlike a typical explicit temporal scheme whose time step is severely restricted by the smallest mesh size in the entire spatial domain. Finally, we apply those methods to simulating a cell signaling system described by a system of stiff reaction-diffusion equations in both two and three spatial dimensions using AMR, curvilinear and Cartesian coordinates. Excellent performance of the new methods is observed.
Collapse
Affiliation(s)
- Xinfeng Liu
- Department of Mathematics, University of South Carolina, Columbia, SC 29208
| | | |
Collapse
|
27
|
Abstract
Living cells have evolved a broad array of complex signalling responses, which enables them to survive diverse environmental challenges and execute specific physiological functions. Our increasingly sophisticated understanding of the molecular mechanisms of cell signalling networks in eukaryotes has revealed a remarkably modular organization and synthetic biologists are exploring how this can be exploited to engineer cells with novel signalling behaviours. This approach is beginning to reveal the logic of how cells might evolve innovative new functions and moves us towards the exciting possibility of engineering custom cells with precise sensing-response functions that could be useful in medicine and biotechnology.
Collapse
Affiliation(s)
- Wendell A Lim
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, California 94158, USA.
| |
Collapse
|
28
|
Peisajovich SG, Garbarino JE, Wei P, Lim WA. Rapid diversification of cell signaling phenotypes by modular domain recombination. Science 2010; 328:368-72. [PMID: 20395511 DOI: 10.1126/science.1182376] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell signaling proteins are often modular, containing distinct catalytic and regulatory domains. Recombination of such biological modules has been proposed to be a major source of evolutionary innovation. We systematically analyzed the phenotypic diversity of a signaling response that results from domain recombination by using 11 proteins in the yeast mating pathway to construct a library of 66 chimeric domain recombinants. Domain recombination resulted in greater diversity in pathway response dynamics than did duplication of genes, of single domains, or of two unlinked domains. Domain recombination also led to changes in mating phenotype, including recombinants with increased mating efficiency over the wild type. Thus, novel linkages between preexisting domains may have a major role in the evolution of protein networks and novel phenotypic behaviors.
Collapse
Affiliation(s)
- Sergio G Peisajovich
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Proteins are the most versatile among the various biological building blocks and a mature field of protein engineering has lead to many industrial and biomedical applications. But the strength of proteins—their versatility, dynamics and interactions—also complicates and hinders systems engineering. Therefore, the design of more sophisticated, multi-component protein systems appears to lag behind, in particular, when compared to the engineering of gene regulatory networks. Yet, synthetic biologists have started to tinker with the information flow through natural signaling networks or integrated protein switches. A successful strategy common to most of these experiments is their focus on modular interactions between protein domains or domains and peptide motifs. Such modular interaction swapping has rewired signaling in yeast, put mammalian cell morphology under the control of light, or increased the flux through a synthetic metabolic pathway. Based on this experience, we outline an engineering framework for the connection of reusable protein interaction devices into self-sufficient circuits. Such a framework should help to ‘refacture’ protein complexity into well-defined exchangeable devices for predictive engineering. We review the foundations and initial success stories of protein synthetic biology and discuss the challenges and promises on the way from protein- to protein systems design.
Collapse
Affiliation(s)
- Raik Grünberg
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), UPF, 08003 Barcelona, Spain.
| | | |
Collapse
|
30
|
|
31
|
Mukherji S, van Oudenaarden A. Synthetic biology: understanding biological design from synthetic circuits. Nat Rev Genet 2009; 10:859-71. [PMID: 19898500 PMCID: PMC3138802 DOI: 10.1038/nrg2697] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here, we highlight how the process of engineering biological systems - from synthetic promoters to the control of cell-cell interactions - has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to grasp intuitively the ranges of behaviour generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes, such as gene expression and population dynamics.
Collapse
Affiliation(s)
- Shankar Mukherji
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
32
|
Dse1 may control cross talk between the pheromone and filamentation pathways in yeast. Curr Genet 2009; 55:611-21. [PMID: 19820940 DOI: 10.1007/s00294-009-0274-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 09/18/2009] [Accepted: 09/20/2009] [Indexed: 10/20/2022]
Abstract
The filamentous/invasive growth pathway is activated by nutrient limitation in the haploid form of the yeast Saccharomyces cerevisiae, whereas exposure to mating-pheromone causes cells to differentiate into gametes. Although these two pathways respond to very different stimuli and generate very different responses, they utilize many of the same signaling components. This implies the need for robust mechanisms to maintain signal fidelity. Dse1 was identified in an allele-specific suppressor screen for proteins that interact with the pheromone-responsive Gbetagamma, and found to bind both to a Gbetagamma-affinity column, and to the shared MEKK, Ste11. Although overexpression of Dse1 stimulated invasive growth and transcription of both filamentation and mating-specific transcriptional reporters, deletion of DSE1 had no effect on these outputs. In contrast, pheromone hyper-induced transcription of the filamentation reporter in cells lacking Dse1 and in cells expressing a mutant form of Gbeta that exhibits diminished interaction with Dse1. Thus, the interaction of Dse1 with both Gbeta and Ste11 may be designed to control cross talk between the pheromone and filamentation pathways.
Collapse
|
33
|
Abstract
Designing the shape and size of a cell is an interesting challenge for synthetic biology. Prolonged exposure to the mating pheromone α-factor induces an unusual morphology in yeast cells: multiple mating projections. The goal of this work was to reproduce the multiple projections phenotype in the absence of α-factor using a gain-of-function approach termed “Alternative Inputs (AIs)”. An alternative input is defined as any genetic manipulation that can activate the signaling pathway instead of the natural input. Interestingly, none of the alternative inputs were sufficient to produce multiple projections although some produced a single projection. Then, we extended our search by creating all combinations of alternative inputs and deletions that were summarized in an AIs-Deletions matrix. We found a genetic manipulation (AI-Ste5p ste2Δ) that enhanced the formation of multiple projections. Following up this lead, we demonstrated that AI-Ste4p and AI-Ste5p were sufficient to produce multiple projections when combined. Further, we showed that overexpression of a membrane-targeted form of Ste5p alone could also induce multiple projections. Thus, we successfully re-engineered the multiple projections mating morphology using alternative inputs without α-factor.
Collapse
Affiliation(s)
- Hiromasa Tanaka
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
| | - Tau-Mu Yi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Hu B, Rappel WJ, Levine H. Mechanisms and constraints on yeast MAPK signaling specificity. Biophys J 2009; 96:4755-63. [PMID: 19527636 DOI: 10.1016/j.bpj.2009.02.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 12/22/2008] [Accepted: 02/11/2009] [Indexed: 02/02/2023] Open
Abstract
The survival of cells relies on their ability to respond specifically to diverse environmental signals. Surprisingly, intracellular signaling pathways often share the same or homologous protein components, yet undesirable crosstalk is, in general, suppressed. This signaling specificity has been well studied in the yeast model system Saccharomyces cerevisiae, where the mitogen-activated protein kinase (MAPK) cascades are repeatedly employed in mediating distinct biological processes including pheromone-induced mating and filamentous growth under starvation. Although various mechanisms have been proposed to interpret the yeast MAPK signaling specificity, a consistent theory is still lacking. Here, we present a mathematical model that shows signaling specificity can arise through asymmetric hierarchical inhibition. The parameters of our model are, where possible, based on experimental data that allow us to determine the constraints imposed by signaling specificity on these parameters. Our model is in broad agreement with experimental observations to date and generates testable predictions that may stimulate further research.
Collapse
Affiliation(s)
- Bo Hu
- Center for Theoretical Biological Physics and Department of Physics, University of California at San Diego, La Jolla, California, USA
| | | | | |
Collapse
|
35
|
Owens TW, Valentijn AJ, Upton JP, Keeble J, Zhang L, Lindsay J, Zouq NK, Gilmore AP. Apoptosis commitment and activation of mitochondrial Bax during anoikis is regulated by p38MAPK. Cell Death Differ 2009; 16:1551-62. [PMID: 19662026 DOI: 10.1038/cdd.2009.102] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most cells undergo apoptosis through the intrinsic pathway. This is dependent on mitochondrial outer membrane permeabilisation (MOMP), which is mediated by the pro-apoptotic Bcl-2 family proteins, Bax and Bak. During apoptosis, Bax translocates from the cytosol to the outer mitochondrial membrane (OMM), wherein it contributes to the formation of pores to release cytochrome-c. However, it remains unclear whether Bax translocation is sufficient to bring about MOMP or whether Bax requires further signals on the OMM to be fully activated. We have previously shown that during mammary epithelial cell anoikis, Bax translocation does not commit cells to MOMP and detached cells are rescued if survival signals from the extracellular matrix (ECM) are restored. These findings implied that a second signal is required for mitochondrial Bax to fully activate and cause MOMP. We now identify p38MAPK (mitogen-activated protein kinase) as this necessary signal to activate Bax after its translocation to mitochondria. The inhibition of p38MAPK did not prevent Bax translocation, but its activity was required for mitochondrial Bax to bring about MOMP. p38MAPK was activated and recruited to a high molecular weight mitochondrial complex after loss of ECM attachment. Artificially targeting p38MAPK to the OMM increased the kinetics of anoikis, supporting a requirement for its mitochondrial localisation to regulate Bax activation and drive commitment to apoptosis.
Collapse
Affiliation(s)
- T W Owens
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Pryciak PM. Designing new cellular signaling pathways. ACTA ACUST UNITED AC 2009; 16:249-54. [PMID: 19318206 DOI: 10.1016/j.chembiol.2009.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 01/23/2009] [Accepted: 01/27/2009] [Indexed: 01/09/2023]
Abstract
All cells respond to signals from the environment. Extracellular stimuli activate intracellular signal transduction pathways that make decisions about cell identity, behavior, and survival. A nascent field aims to design and construct new signaling pathways beyond those found in nature. Current strategies exploit the structural modularity of many signaling proteins, which makes them inherently amenable to domain-swapping tactics that exchange their input and output connections. The results reveal a remarkable degree of functional plasticity in signaling proteins and pathways, as well as regulatory logic that can be transported to new proteins. Modified adaptor and scaffold proteins can reroute signal traffic and adjust the response behavior of the pathway circuit. These synthetic biology approaches promise to deepen our understanding of existing signaling pathways and spur the development of new cellular tools for research, industry, and medicine.
Collapse
Affiliation(s)
- Peter M Pryciak
- Department of Molecular Genetics & Microbiology, and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605,USA.
| |
Collapse
|
37
|
Good M, Tang G, Singleton J, Reményi A, Lim WA. The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation. Cell 2009; 136:1085-97. [PMID: 19303851 DOI: 10.1016/j.cell.2009.01.049] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/22/2009] [Accepted: 01/23/2009] [Indexed: 12/23/2022]
Abstract
The scaffold protein Ste5 is required to properly direct signaling through the yeast mating pathway to the mitogen-activated protein kinase (MAPK), Fus3. Scaffolds are thought to function by tethering kinase and substrate in proximity. We find, however, that the previously identified Fus3-binding site on Ste5 is not required for signaling, suggesting an alternative mechanism controls Fus3's activation by the MAPKK Ste7. Reconstituting MAPK signaling in vitro, we find that Fus3 is an intrinsically poor substrate for Ste7, although the related filamentation MAPK, Kss1, is an excellent substrate. We identify and structurally characterize a domain in Ste5 that catalytically unlocks Fus3 for phosphorylation by Ste7. This domain selectively increases the k(cat) of Ste7-->Fus3 phosphorylation but has no effect on Ste7-->Kss1 phosphorylation. The dual requirement for both Ste7 and this Ste5 domain in Fus3 activation explains why Fus3 is selectively activated by the mating pathway and not by other pathways that also utilize Ste7.
Collapse
Affiliation(s)
- Matthew Good
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
38
|
Takahashi S, Pryciak PM. Membrane localization of scaffold proteins promotes graded signaling in the yeast MAP kinase cascade. Curr Biol 2008; 18:1184-91. [PMID: 18722124 DOI: 10.1016/j.cub.2008.07.050] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/14/2008] [Accepted: 07/16/2008] [Indexed: 01/18/2023]
Abstract
BACKGROUND Signaling through mitogen-activated protein kinase (MAPK) cascade pathways can show various input-output behaviors, including either switch-like or graded responses to increasing levels of stimulus. Prior studies suggest that switch-like behavior is promoted by positive feedback loops and nonprocessive phosphorylation reactions, but it is unclear whether graded signaling is a default behavior or whether it must be enforced by separate mechanisms. It has been hypothesized that scaffold proteins promote graded behavior. RESULTS Here, we experimentally probe the determinants of graded signaling in the yeast mating MAPK pathway. We find that graded behavior is robust in that it resists perturbation by loss of several negative-feedback regulators. However, the pathway becomes switch-like when activated by a crosstalk stimulus that bypasses multiple upstream components. To dissect the contributing factors, we developed a method for gradually varying the signal input at different pathway steps in vivo. Input at the beginning of the kinase cascade produced a sharp, threshold-like response. Surprisingly, the scaffold protein Ste5 increased this threshold behavior when limited to the cytosol. However, signaling remained graded whenever Ste5 was allowed to function at the plasma membrane. CONCLUSIONS The results suggest that the MAPK cascade module is inherently ultrasensitive but is converted to a graded system by the pathway-specific activation mechanism. Scaffold-mediated assembly of signaling complexes at the plasma membrane allows faithful propagation of weak signals, which consequently reduces pathway ultrasensitivity. These properties help shape the input-output properties of the system to fit the physiological context.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
39
|
Hao N, Zeng Y, Elston TC, Dohlman HG. Control of MAPK specificity by feedback phosphorylation of shared adaptor protein Ste50. J Biol Chem 2008; 283:33798-802. [PMID: 18854322 DOI: 10.1074/jbc.c800179200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many different signaling pathways share common components but nevertheless invoke distinct physiological responses. In yeast, the adaptor protein Ste50 functions in multiple mitogen-activated protein (MAP) kinase pathways, each with unique dynamical and developmental properties. Although Kss1 activity is sustained and promotes invasive growth, Hog1 activity is transient and promotes cell adaptation to osmotic stress. Here we show that osmotic stress activates Kss1 as well as Hog1. We show further that Hog1 phosphorylates Ste50 and that phosphorylation of Ste50 limits the duration of Kss1 activation and prevents invasive growth under high osmolarity growth conditions. Thus feedback regulation of a shared component can restrict the activity of a competing MAP kinase to ensure signal fidelity.
Collapse
Affiliation(s)
- Nan Hao
- Department of Biochemistry, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | |
Collapse
|
40
|
Vadaie N, Dionne H, Akajagbor DS, Nickerson SR, Krysan DJ, Cullen PJ. Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast. ACTA ACUST UNITED AC 2008; 181:1073-81. [PMID: 18591427 PMCID: PMC2442203 DOI: 10.1083/jcb.200704079] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signaling mucins are cell adhesion molecules that activate RAS/RHO guanosine triphosphatases and their effector mitogen-activated protein kinase (MAPK) pathways. We found that the Saccharomyces cerevisiae mucin Msb2p, which functions at the head of the Cdc42p-dependent MAPK pathway that controls filamentous growth, is processed into secreted and cell-associated forms. Cleavage of the extracellular inhibitory domain of Msb2p by the aspartyl protease Yps1p generated the active form of the protein by a mechanism incorporating cellular nutritional status. Activated Msb2p functioned through the tetraspan protein Sho1p to induce MAPK activation as well as cell polarization, which involved the Cdc42p guanine nucleotide exchange factor Cdc24p. We postulate that cleavage-dependent activation is a general feature of signaling mucins, which brings to light a novel regulatory aspect of this class of signaling adhesion molecule.
Collapse
Affiliation(s)
- Nadia Vadaie
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | | | |
Collapse
|
41
|
Bashor CJ, Helman NC, Yan S, Lim WA. Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 2008; 319:1539-43. [PMID: 18339942 DOI: 10.1126/science.1151153] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Scaffold proteins link signaling molecules into linear pathways by physically assembling them into complexes. Scaffolds may also have a higher-order role as signal-processing hubs, serving as the target of feedback loops that optimize signaling amplitude and timing. We demonstrate that the Ste5 scaffold protein can be used as a platform to systematically reshape output of the yeast mating MAP kinase pathway. We constructed synthetic positive- and negative-feedback loops by dynamically regulating recruitment of pathway modulators to an artificial binding site on Ste5. These engineered circuits yielded diverse behaviors: ultrasensitive dose response, accelerated or delayed response times, and tunable adaptation. Protein scaffolds provide a flexible platform for reprogramming cellular responses and could be exploited to engineer cells with novel therapeutic and biotechnological functions.
Collapse
Affiliation(s)
- Caleb J Bashor
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Peter M Pryciak
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
43
|
Ganter B, Zidek N, Hewitt PR, Müller D, Vladimirova A. Pathway analysis tools and toxicogenomics reference databases for risk assessment. Pharmacogenomics 2008; 9:35-54. [PMID: 18154447 DOI: 10.2217/14622416.9.1.35] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The pharmaceutical industry has begun to leverage a range of new technologies (proteomics, pharmacogenomics, metabolomics and molecular toxicology [e.g., toxicogenomics]) and analysis tools that are becoming increasingly integrated in the area of drug discovery and development. The approach of analyzing the vast amount of toxicogenomics data generated using molecular pathway and networks analysis tools in combination with analysis of reference data will be the main focus of this review. We will demonstrate how this combined approach can increase the understanding of the molecular mechanisms that lead to chemical-induced toxicity and application of this knowledge to compound risk assessment. We will provide an example of the insights achieved through a molecular toxicology analysis based on the well-known hepatotoxicant lipopolysaccharide to illustrate the utility of these new tools in the analysis of complex data sets, both in vivo and in vitro. The ultimate objective is a better lead selection process that improves the chances for success across the different stages of drug discovery and development.
Collapse
Affiliation(s)
- Brigitte Ganter
- Ingenuity Systems, 1700 Seaport Blvd, Redwood City, CA 94063, USA.
| | | | | | | | | |
Collapse
|
44
|
Nie Q, Wan FY, Zhang YT, Liu XF. Compact integration factor methods in high spatial dimensions. JOURNAL OF COMPUTATIONAL PHYSICS 2008; 227:5238-5255. [PMID: 19809596 PMCID: PMC2756762 DOI: 10.1016/j.jcp.2008.01.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The dominant cost for integration factor (IF) or exponential time differencing (ETD) methods is the repeated vector-matrix multiplications involving exponentials of discretization matrices of differential operators. Although the discretization matrices usually are sparse, their exponentials are not, unless the discretization matrices are diagonal. For example, a two-dimensional system of N × N spatial points, the exponential matrix is of a size of N(2) × N(2) based on direct representations. The vector-matrix multiplication is of O(N(4)), and the storage of such matrix is usually prohibitive even for a moderate size N. In this paper, we introduce a compact representation of the discretized differential operators for the IF and ETD methods in both two- and three-dimensions. In this approach, the storage and CPU cost are significantly reduced for both IF and ETD methods such that the use of this type of methods becomes possible and attractive for two- or three-dimensional systems. For the case of two-dimensional systems, the required storage and CPU cost are reduced to O(N(2)) and O(N(3)), respectively. The improvement on three-dimensional systems is even more significant. We analyze and apply this technique to a class of semi-implicit integration factor method recently developed for stiff reaction-diffusion equations. Direct simulations on test equations along with applications to a morphogen system in two-dimensions and an intra-cellular signaling system in three-dimensions demonstrate an excellent efficiency of the new approach.
Collapse
Affiliation(s)
- Qing Nie
- Department of Mathematics, University of California, Irvine, CA 92697-3875, United States
| | - Frederic Y.M. Wan
- Department of Mathematics, University of California, Irvine, CA 92697-3875, United States
| | - Yong-Tao Zhang
- Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-4618, United States
| | - Xin-Feng Liu
- Department of Mathematics, University of California, Irvine, CA 92697-3875, United States
| |
Collapse
|
45
|
Strickfaden SC, Pryciak PM. Distinct roles for two Galpha-Gbeta interfaces in cell polarity control by a yeast heterotrimeric G protein. Mol Biol Cell 2007; 19:181-97. [PMID: 17978098 DOI: 10.1091/mbc.e07-04-0385] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Saccharomyces cerevisiae mating pheromones trigger dissociation of a heterotrimeric G protein (Galphabetagamma) into Galpha-guanosine triphosphate (GTP) and Gbetagamma. The Gbetagamma dimer regulates both mitogen-activated protein (MAP) kinase cascade signaling and cell polarization. Here, by independently activating the MAP kinase pathway, we studied the polarity role of Gbetagamma in isolation from its signaling role. MAP kinase signaling alone could induce cell asymmetry but not directional growth. Surprisingly, active Gbetagamma, either alone or with Galpha-GTP, could not organize a persistent polarization axis. Instead, following pheromone gradients (chemotropism) or directional growth without pheromone gradients (de novo polarization) required an intact receptor-Galphabetagamma module and GTP hydrolysis by Galpha. Our results indicate that chemoattractant-induced cell polarization requires continuous receptor-Galphabetagamma communication but not modulation of MAP kinase signaling. To explore regulation of Gbetagamma by Galpha, we mutated Gbeta residues in two structurally distinct Galpha-Gbeta binding interfaces. Polarity control was disrupted only by mutations in the N-terminal interface, and not the Switch interface. Incorporation of these mutations into a Gbeta-Galpha fusion protein, which enforces subunit proximity, revealed that Switch interface dissociation regulates signaling, whereas the N-terminal interface may govern receptor-Galphabetagamma coupling. These findings raise the possibility that the Galphabetagamma heterotrimer can function in a partially dissociated state, tethered by the N-terminal interface.
Collapse
Affiliation(s)
- Shelly C Strickfaden
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
46
|
Pincet F. Membrane recruitment of scaffold proteins drives specific signaling. PLoS One 2007; 2:e977. [PMID: 17912354 PMCID: PMC1991591 DOI: 10.1371/journal.pone.0000977] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 09/12/2007] [Indexed: 11/28/2022] Open
Abstract
Cells must give the right response to each stimulus they receive. Scaffolding, a signaling process mediated by scaffold proteins, participates in the decoding of the cues by specifically directing signal transduction. The aim of this paper is to describe the molecular mechanisms of scaffolding, i.e. the principles by which scaffold proteins drive a specific response of the cell. Since similar scaffold proteins are found in many species, they evolved according to the purpose of each organism. This means they require adaptability. In the usual description of the mechanisms of scaffolding, scaffold proteins are considered as reactors where molecules involved in a cascade of reactions are simultaneously bound with the right orientation to meet and interact. This description is not realistic: (i) it is not verified by experiments and (ii) timing and orientation constraints make it complex which seems to contradict the required adaptability. A scaffold protein, Ste5, is used in the MAPK pathway of Saccharomyces Cerevisiae for the cell to provide a specific response to stimuli. The massive amount of data available for this pathway makes it ideal to investigate the actual mechanisms of scaffolding. Here, a complete treatment of the chemical reactions allows the computation of the distributions of all the proteins involved in the MAPK pathway when the cell receives various cues. These distributions are compared to several experimental results. It turns out that the molecular mechanisms of scaffolding are much simpler and more adaptable than previously thought in the reactor model. Scaffold proteins bind only one molecule at a time. Then, their membrane recruitment automatically drives specific, amplified and localized signal transductions. The mechanisms presented here, which explain how the membrane recruitment of a protein can produce a drastic change in the activity of cells, are generic and may be commonly used in many biological processes.
Collapse
Affiliation(s)
- Frédéric Pincet
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
| |
Collapse
|
47
|
Chen RE, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1311-40. [PMID: 17604854 PMCID: PMC2031910 DOI: 10.1016/j.bbamcr.2007.05.003] [Citation(s) in RCA: 442] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 10/23/2022]
Abstract
Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) elicit many of the responses that are evoked in cells by changes in certain environmental conditions and upon exposure to a variety of hormonal and other stimuli. These pathways were first elucidated in the unicellular eukaryote Saccharomyces cerevisiae (budding yeast). Studies of MAPK pathways in this organism continue to be especially informative in revealing the molecular mechanisms by which MAPK cascades operate, propagate signals, modulate cellular processes, and are controlled by regulatory factors both internal to and external to the pathways. Here we highlight recent advances and new insights about MAPK-based signaling that have been made through studies in yeast, which provide lessons directly applicable to, and that enhance our understanding of, MAPK-mediated signaling in mammalian cells.
Collapse
Affiliation(s)
- Raymond E Chen
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
48
|
Rubenstein EM, Schmidt MC. Mechanisms regulating the protein kinases of Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:571-83. [PMID: 17337635 PMCID: PMC1865659 DOI: 10.1128/ec.00026-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Eric M Rubenstein
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, W1247 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
49
|
Lee DCW, Lau ASY. Avian influenza virus signaling: implications for the disease severity of H5N1 infection. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200600117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Gat-Viks I, Shamir R. Refinement and expansion of signaling pathways: the osmotic response network in yeast. Genome Res 2007; 17:358-67. [PMID: 17267811 PMCID: PMC1800927 DOI: 10.1101/gr.5750507] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The analysis of large-scale genome-wide experiments carries the promise of dramatically broadening our understanding on biological networks. The challenge of systematic integration of experimental results with established biological knowledge on a pathway is still unanswered. Here we present a methodology that attempts to answer this challenge when investigating signaling pathways. We formalize existing qualitative knowledge as a probabilistic model that depicts known interactions between molecules (genes, proteins, etc.) as a network and known regulatory relations as logics. We present algorithms that analyze experimental results (e.g., transcription profiles) vis-à-vis the model and propose improvements to the model based on the fit to the experimental data. These algorithms refine the relations between model components, as well as expand the model to include new components that are regulated by components of the original network. Using our methodology, we have modeled together the knowledge on four established signaling pathways related to osmotic shock response in Saccharomyces cerevisiae. Using over 100 published transcription profiles, our refinement methodology revealed three cross talks in the network. The expansion procedure identified with high confidence large groups of genes that are coregulated by transcription factors from the original network via a common logic. The results reveal a novel delicate repressive effect of the HOG pathway on many transcriptional target genes and suggest an unexpected alternative functional mode of the MAP kinase Hog1. These results demonstrate that, by integrated analysis of data and of well-defined knowledge, one can generate concrete biological hypotheses about signaling cascades and their downstream regulatory programs.
Collapse
Affiliation(s)
- Irit Gat-Viks
- School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | |
Collapse
|