1
|
Bollepogu Raja KK, Yeung K, Shim YK, Mardon G. Integrative genomic analyses reveal putative cell type-specific targets of the Drosophila ets transcription factor Pointed. BMC Genomics 2024; 25:103. [PMID: 38262913 PMCID: PMC10807358 DOI: 10.1186/s12864-024-10017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024] Open
Abstract
The Ets domain transcription factors direct diverse biological processes throughout all metazoans and are implicated in development as well as in tumor initiation, progression and metastasis. The Drosophila Ets transcription factor Pointed (Pnt) is the downstream effector of the Epidermal growth factor receptor (Egfr) pathway and is required for cell cycle progression, specification, and differentiation of most cell types in the larval eye disc. Despite its critical role in development, very few targets of Pnt have been reported previously. Here, we employed an integrated approach by combining genome-wide single cell and bulk data to identify putative cell type-specific Pnt targets. First, we used chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) to determine the genome-wide occupancy of Pnt in late larval eye discs. We identified enriched regions that mapped to an average of 6,941 genes, the vast majority of which are novel putative Pnt targets. Next, we integrated ChIP-seq data with two other larval eye single cell genomics datasets (scRNA-seq and snATAC-seq) to reveal 157 putative cell type-specific Pnt targets that may help mediate unique cell type responses upon Egfr-induced differentiation. Finally, our integrated data also predicts cell type-specific functional enhancers that were not reported previously. Together, our study provides a greatly expanded list of putative cell type-specific Pnt targets in the eye and is a resource for future studies that will allow mechanistic insights into complex developmental processes regulated by Egfr signaling.
Collapse
Affiliation(s)
- Komal Kumar Bollepogu Raja
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kelvin Yeung
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yoon-Kyung Shim
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Bernasek SM, Hur SSJ, Peláez-Restrepo N, Boisclair Lachance JF, Bakker R, Navarro HT, Sanchez-Luege N, Amaral LAN, Bagheri N, Rebay I, Carthew RW. Ratiometric sensing of Pnt and Yan transcription factor levels confers ultrasensitivity to photoreceptor fate transitions in Drosophila. Development 2023; 150:dev201467. [PMID: 36942737 PMCID: PMC10163347 DOI: 10.1242/dev.201467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
Cell state transitions are often triggered by large changes in the concentrations of transcription factors and therefore large differences in their stoichiometric ratios. Whether cells can elicit transitions using modest changes in the ratios of co-expressed factors is unclear. Here, we investigate how cells in the Drosophila eye resolve state transitions by quantifying the expression dynamics of the ETS transcription factors Pnt and Yan. Eye progenitor cells maintain a relatively constant ratio of Pnt/Yan protein, despite expressing both proteins with pulsatile dynamics. A rapid and sustained twofold increase in the Pnt/Yan ratio accompanies transitions to photoreceptor fates. Genetic perturbations that modestly disrupt the Pnt/Yan ratio produce fate transition defects consistent with the hypothesis that transitions are normally driven by a twofold shift in the ratio. A biophysical model based on cooperative Yan-DNA binding coupled with non-cooperative Pnt-DNA binding illustrates how twofold ratio changes could generate ultrasensitive changes in target gene transcription to drive fate transitions. Thus, coupling cell state transitions to the Pnt/Yan ratio sensitizes the system to modest fold-changes, conferring robustness and ultrasensitivity to the developmental program.
Collapse
Affiliation(s)
- Sebastian M. Bernasek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Suzy S. J. Hur
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Nicolás Peláez-Restrepo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute (HHMI), Hanna H. Gray Fellows Program
| | | | - Rachael Bakker
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | | | - Nicelio Sanchez-Luege
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Luís A. N. Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Neda Bagheri
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes, Northwestern University, Evanston, IL 60208, USA
| | - Ilaria Rebay
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Richard W. Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University, Evanston, IL 60611, USA
| |
Collapse
|
3
|
Biswas A, Rajesh Y, Das S, Banerjee I, Kapoor N, Mitra P, Mandal M. Therapeutic targeting of RBPJ, an upstream regulator of ETV6 gene, abrogates ETV6-NTRK3 fusion gene transformations in glioblastoma. Cancer Lett 2022; 544:215811. [PMID: 35787922 DOI: 10.1016/j.canlet.2022.215811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Fusion genes are abnormal genes resulting from chromosomal translocation, insertion, deletion, inversion, etc. ETV6, a rather promiscuous partner forms fusions with several other genes, most commonly, the NTRK3 gene. This fusion leads to the formation of a constitutively activated tyrosine kinase which activates the Ras-Raf-MEK and PI3K/AKT/MAPK pathways, leading the cells through cycles of uncontrolled division and ultimately resulting in cancer. Targeted therapies against this ETV6-NTRK3 fusion protein are much needed. Therefore, to find a targeted approach, a transcription factor RBPJ regulating the ETV6 gene was established and since the ETV6-NTRK3 fusion gene is downstream of the ETV6 promoter/enhancer, this fusion protein is also regulated. The regulation of the ETV6 gene via RBPJ was validated by ChIP analysis in human glioblastoma (GBM) cell lines and patient tissue samples. This study was further followed by the identification of an inhibitor, Furamidine, against transcription factor RBPJ. It was found to be binding with the DNA binding domain of RBPJ with antitumorigenic properties and minimal organ toxicity. Hence, a new target RBPJ, regulating the production of ETV6 and ETV6-NTRK3 fusion protein was found along with a potent RBPJ inhibitor Furamidine.
Collapse
Affiliation(s)
- Angana Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Yetirajam Rajesh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Indranil Banerjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Neelkamal Kapoor
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
4
|
Wu C, Boisclair Lachance JF, Ludwig MZ, Rebay I. A context-dependent bifurcation in the Pointed transcriptional effector network contributes specificity and robustness to retinal cell fate acquisition. PLoS Genet 2020; 16:e1009216. [PMID: 33253156 PMCID: PMC7728396 DOI: 10.1371/journal.pgen.1009216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/10/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022] Open
Abstract
Spatiotemporally precise and robust cell fate transitions, which depend on specific signaling cues, are fundamental to the development of appropriately patterned tissues. The fidelity and precision with which photoreceptor fates are recruited in the Drosophila eye exemplifies these principles. The fly eye consists of a highly ordered array of ~750 ommatidia, each of which contains eight distinct photoreceptors, R1-R8, specified sequentially in a precise spatial pattern. Recruitment of R1-R7 fates requires reiterative receptor tyrosine kinase / mitogen activated protein kinase (MAPK) signaling mediated by the transcriptional effector Pointed (Pnt). However the overall signaling levels experienced by R2-R5 cells are distinct from those experienced by R1, R6 and R7. A relay mechanism between two Pnt isoforms initiated by MAPK activation directs the universal transcriptional response. Here we ask how the generic Pnt response is tailored to these two rounds of photoreceptor fate transitions. We find that during R2-R5 specification PntP2 is coexpressed with a closely related but previously uncharacterized isoform, PntP3. Using CRISPR/Cas9-generated isoform specific null alleles we show that under otherwise wild type conditions, R2-R5 fate specification is robust to loss of either PntP2 or PntP3, and that the two activate pntP1 redundantly; however under conditions of reduced MAPK activity, both are required. Mechanistically, our data suggest that intrinsic activity differences between PntP2 and PntP3, combined with positive and unexpected negative transcriptional auto- and cross-regulation, buffer first-round fates against conditions of compromised RTK signaling. In contrast, in a mechanism that may be adaptive to the stronger signaling environment used to specify R1, R6 and R7 fates, the Pnt network resets to a simpler topology in which PntP2 uniquely activates pntP1 and auto-activates its own transcription. We propose that differences in expression patterns, transcriptional activities and regulatory interactions between Pnt isoforms together facilitate context-appropriate cell fate specification in different signaling environments.
Collapse
Affiliation(s)
- Chudong Wu
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | | | - Michael Z. Ludwig
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Ilaria Rebay
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
5
|
Koca Y, Housden BE, Gault WJ, Bray SJ, Mlodzik M. Notch signaling coordinates ommatidial rotation in the Drosophila eye via transcriptional regulation of the EGF-Receptor ligand Argos. Sci Rep 2019; 9:18628. [PMID: 31819141 PMCID: PMC6901570 DOI: 10.1038/s41598-019-55203-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/24/2019] [Indexed: 02/02/2023] Open
Abstract
In all metazoans, a small number of evolutionarily conserved signaling pathways are reiteratively used during development to orchestrate critical patterning and morphogenetic processes. Among these, Notch (N) signaling is essential for most aspects of tissue patterning where it mediates the communication between adjacent cells to control cell fate specification. In Drosophila, Notch signaling is required for several features of eye development, including the R3/R4 cell fate choice and R7 specification. Here we show that hypomorphic alleles of Notch, belonging to the Nfacet class, reveal a novel phenotype: while photoreceptor specification in the mutant ommatidia is largely normal, defects are observed in ommatidial rotation (OR), a planar cell polarity (PCP)-mediated cell motility process. We demonstrate that during OR Notch signaling is specifically required in the R4 photoreceptor to upregulate the transcription of argos (aos), an inhibitory ligand to the epidermal growth factor receptor (EGFR), to fine-tune the activity of EGFR signaling. Consistently, the loss-of-function defects of Nfacet alleles and EGFR-signaling pathway mutants are largely indistinguishable. A Notch-regulated aos enhancer confers R4 specific expression arguing that aos is directly regulated by Notch signaling in this context via Su(H)-Mam-dependent transcription.
Collapse
Affiliation(s)
- Yildiz Koca
- 0000 0001 0670 2351grid.59734.3cDept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ,0000 0001 0670 2351grid.59734.3cGraduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Benjamin E. Housden
- 0000000121885934grid.5335.0Dept. of Physiology, Development and Neuroscience, University of Cambridge Downing Street, Cambridge, CB2 3DY UK ,0000 0004 1936 8024grid.8391.3Present Address: Living Systems Institute, University of Exeter, Exeter, EX4 4QD UK
| | - William J. Gault
- 0000 0001 0670 2351grid.59734.3cDept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ,0000 0001 0670 2351grid.59734.3cGraduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ,0000 0001 2264 7145grid.254250.4Present Address: City College of New York, 160 Convert Ave, New York, NY USA
| | - Sarah J. Bray
- 0000000121885934grid.5335.0Dept. of Physiology, Development and Neuroscience, University of Cambridge Downing Street, Cambridge, CB2 3DY UK
| | - Marek Mlodzik
- 0000 0001 0670 2351grid.59734.3cDept. of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA ,0000 0001 0670 2351grid.59734.3cGraduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| |
Collapse
|
6
|
Webber JL, Zhang J, Massey A, Sanchez-Luege N, Rebay I. Collaborative repressive action of the antagonistic ETS transcription factors Pointed and Yan fine-tunes gene expression to confer robustness in Drosophila. Development 2018; 145:dev.165985. [PMID: 29848501 DOI: 10.1242/dev.165985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/17/2018] [Indexed: 01/29/2023]
Abstract
The acquisition of cellular identity during development depends on precise spatiotemporal regulation of gene expression, with combinatorial interactions between transcription factors, accessory proteins and the basal transcription machinery together translating complex signaling inputs into appropriate gene expression outputs. The opposing repressive and activating inputs of the Drosophila ETS family transcription factors Yan and Pointed orchestrate numerous cell fate transitions downstream of receptor tyrosine kinase signaling, providing one of the premier systems for studying this process. Current models describe the differentiative transition as a switch from Yan-mediated repression to Pointed-mediated activation of common target genes. We describe here a new layer of regulation whereby Yan and Pointed co-occupy regulatory elements to repress gene expression in a coordinated manner, with Pointed being unexpectedly required for the genome-wide occupancy of both Yan and the co-repressor Groucho. Using even skipped as a test-case, synergistic genetic interactions between Pointed, Groucho, Yan and components of the RNA polymerase II pausing machinery suggest that Pointed integrates multiple scales of repressive regulation to confer robustness. We speculate that this mechanism may be used broadly to fine-tune the expression of many genes crucial for development.
Collapse
Affiliation(s)
- Jemma L Webber
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Jie Zhang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Alex Massey
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Nicelio Sanchez-Luege
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Tomer D, Chippalkatti R, Mitra K, Rikhy R. ERK regulates mitochondrial membrane potential in fission deficient Drosophila follicle cells during differentiation. Dev Biol 2018; 434:48-62. [DOI: 10.1016/j.ydbio.2017.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/04/2017] [Accepted: 11/15/2017] [Indexed: 01/10/2023]
|
8
|
Meserve JH, Duronio RJ. A population of G2-arrested cells are selected as sensory organ precursors for the interommatidial bristles of the Drosophila eye. Dev Biol 2017. [PMID: 28645749 DOI: 10.1016/j.ydbio.2017.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cell cycle progression and differentiation are highly coordinated during the development of multicellular organisms. The mechanisms by which these processes are coordinated and how their coordination contributes to normal development are not fully understood. Here, we determine the developmental fate of a population of precursor cells in the developing Drosophila melanogaster retina that arrest in G2 phase of the cell cycle and investigate whether cell cycle phase-specific arrest influences the fate of these cells. We demonstrate that retinal precursor cells that arrest in G2 during larval development are selected as sensory organ precursors (SOPs) during pupal development and undergo two cell divisions to generate the four-cell interommatidial mechanosensory bristles. While G2 arrest is not required for bristle development, preventing G2 arrest results in incorrect bristle positioning in the adult eye. We conclude that G2-arrested cells provide a positional cue during development to ensure proper spacing of bristles in the eye. Our results suggest that the control of cell cycle progression refines cell fate decisions and that the relationship between these two processes is not necessarily deterministic.
Collapse
Affiliation(s)
- Joy H Meserve
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Departments of Biology and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Ling X, Huang Q, Xu Y, Jin Y, Feng Y, Shi W, Ye X, Lin Y, Hou L, Lin X. The deubiquitinating enzyme Usp5 regulates Notch and RTK signaling duringDrosophilaeye development. FEBS Lett 2017; 591:875-888. [PMID: 28140449 DOI: 10.1002/1873-3468.12580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Xuemei Ling
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Qinzhu Huang
- Taizhou Hospital of Zhejiang Province; Wenzhou Medical University; Linhai Zhejiang China
| | - Yanqin Xu
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Yuxiao Jin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Ying Feng
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Weijie Shi
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Xiaolei Ye
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Yi Lin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Ling Hou
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Xinhua Lin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| |
Collapse
|
10
|
Boisclair Lachance JF, Peláez N, Cassidy JJ, Webber JL, Rebay I, Carthew RW. A comparative study of Pointed and Yan expression reveals new complexity to the transcriptional networks downstream of receptor tyrosine kinase signaling. Dev Biol 2013; 385:263-78. [PMID: 24240101 DOI: 10.1016/j.ydbio.2013.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/05/2013] [Indexed: 11/29/2022]
Abstract
The biochemical regulatory network downstream of receptor tyrosine kinase (RTK) signaling is controlled by two opposing ETS family members: the transcriptional activator Pointed (Pnt) and the transcriptional repressor Yan. A bistable switch model has been invoked to explain how pathway activation can drive differentiation by shifting the system from a high-Yan/low-Pnt activity state to a low-Yan/high-Pnt activity state. Although the model explains yan and pnt loss-of-function phenotypes in several different cell types, how Yan and Pointed protein expression dynamics contribute to these and other developmental transitions remains poorly understood. Toward this goal we have used a functional GFP-tagged Pnt transgene (Pnt-GFP) to perform a comparative study of Yan and Pnt protein expression throughout Drosophila development. Consistent with the prevailing model of the Pnt-Yan network, we found numerous instances where Pnt-GFP and Yan adopt a mutually exclusive pattern of expression. However we also observed many examples of co-expression. While some co-expression occurred in cells where RTK signaling is presumed low, other co-expression occurred in cells with high RTK signaling. The instances of co-expressed Yan and Pnt-GFP in tissues with high RTK signaling cannot be explained by the current model, and thus they provide important contexts for future investigation of how context-specific differences in RTK signaling, network topology, or responsiveness to other signaling inputs, affect the transcriptional response.
Collapse
Affiliation(s)
- Jean-François Boisclair Lachance
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Nicolás Peláez
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Justin J Cassidy
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jemma L Webber
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
The relationship between long-range chromatin occupancy and polymerization of the Drosophila ETS family transcriptional repressor Yan. Genetics 2012; 193:633-49. [PMID: 23172856 DOI: 10.1534/genetics.112.146647] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
ETS family transcription factors are evolutionarily conserved downstream effectors of Ras/MAPK signaling with critical roles in development and cancer. In Drosophila, the ETS repressor Yan regulates cell proliferation and differentiation in a variety of tissues; however, the mechanisms of Yan-mediated repression are not well understood and only a few direct target genes have been identified. Yan, like its human ortholog TEL1, self-associates through an N-terminal sterile α-motif (SAM), leading to speculation that Yan/TEL1 polymers may spread along chromatin to form large repressive domains. To test this hypothesis, we created a monomeric form of Yan by recombineering a point mutation that blocks SAM-mediated self-association into the yan genomic locus and compared its genome-wide chromatin occupancy profile to that of endogenous wild-type Yan. Consistent with the spreading model predictions, wild-type Yan-bound regions span multiple kilobases. Extended occupancy patterns appear most prominent at genes encoding crucial developmental regulators and signaling molecules and are highly conserved between Drosophila melanogaster and D. virilis, suggesting functional relevance. Surprisingly, although occupancy is reduced, the Yan monomer still makes extensive multikilobase contacts with chromatin, with an overall pattern similar to that of wild-type Yan. Despite its near-normal chromatin recruitment, the repressive function of the Yan monomer is significantly impaired, as evidenced by elevated target gene expression and failure to rescue a yan null mutation. Together our data argue that SAM-mediated polymerization contributes to the functional output of the active Yan repressive complexes that assemble across extended stretches of chromatin, but does not directly mediate recruitment to DNA or chromatin spreading.
Collapse
|
12
|
De Lella Ezcurra AL, Bertolin AP, Melani M, Wappner P. Robustness of the hypoxic response: Another job for miRNAs? Dev Dyn 2012; 241:1842-8. [DOI: 10.1002/dvdy.23865] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2012] [Indexed: 12/22/2022] Open
|
13
|
Weng M, Haenfler JM, Lee CY. Changes in Notch signaling coordinates maintenance and differentiation of the Drosophila larval optic lobe neuroepithelia. Dev Neurobiol 2012; 72:1376-90. [PMID: 22038743 DOI: 10.1002/dneu.20995] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/20/2011] [Indexed: 11/08/2022]
Abstract
A dynamic balance between stem cell maintenance and differentiation paces generation of post-mitotic progeny during normal development and maintenance of homeostasis. Recent studies show that Notch plays a key role in regulating the identity of neuroepithelial stem cells, which generate terminally differentiated neurons that populate the adult optic lobe via the intermediate progenitor cell type called neuroblast. Thus, understanding how Notch controls neuroepithelial cell maintenance and neuroblast formation will provide critical insight into the intricate regulation of stem cell function during tissue morphogenesis. Here, we showed that a low level of Notch signaling functions to maintain the neuroepithelial cell identity by suppressing the expression of pointedP1 gene through the transcriptional repressor Anterior open. Increased Notch signaling, which coincides with transient cell cycle arrest but precedes the expression of PointedP1 in cells near the medial edge of neuroepithelia, defines transitioning neuroepithelial cells that are in the process of acquiring the neuroblast identity. Transient up-regulation of Notch signaling in transitioning neuroepithelial cells decreases their sensitivity to PointedP1 and prevents them from becoming converted into neuroblasts prematurely. Down-regulation of Notch signaling combined with a high level of PointedP1 trigger a synchronous conversion from transitioning neuroepithelial cells to immature neuroblasts at the medial edge of neuroepithelia. Thus, changes in Notch signaling orchestrate a dynamic balance between maintenance and conversion of neuroepithelial cells during optic lobe neurogenesis.
Collapse
Affiliation(s)
- Mo Weng
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
14
|
Technau M, Knispel M, Roth S. Molecular mechanisms of EGF signaling-dependent regulation of pipe, a gene crucial for dorsoventral axis formation in Drosophila. Dev Genes Evol 2011; 222:1-17. [PMID: 22198544 PMCID: PMC3291829 DOI: 10.1007/s00427-011-0384-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/29/2011] [Indexed: 01/28/2023]
Abstract
During Drosophila oogenesis the expression of the sulfotransferase Pipe in ventral follicle cells is crucial for dorsoventral axis formation. Pipe modifies proteins that are incorporated in the ventral eggshell and activate Toll signaling which in turn initiates embryonic dorsoventral patterning. Ventral pipe expression is the result of an oocyte-derived EGF signal which down-regulates pipe in dorsal follicle cells. The analysis of mutant follicle cell clones reveals that none of the transcription factors known to act downstream of EGF signaling in Drosophila is required or sufficient for pipe regulation. However, the pipe cis-regulatory region harbors a 31-bp element which is essential for pipe repression, and ovarian extracts contain a protein that binds this element. Thus, EGF signaling does not act by down-regulating an activator of pipe as previously suggested but rather by activating a repressor. Surprisingly, this repressor acts independent of the common co-repressors Groucho or CtBP.
Collapse
Affiliation(s)
- Martin Technau
- Institute for Developmental Biology, Biocenter, University of Cologne, Zuelpicher Straße 47b, 50674, Cologne, Germany
| | | | | |
Collapse
|
15
|
The lens in focus: a comparison of lens development in Drosophila and vertebrates. Mol Genet Genomics 2011; 286:189-213. [PMID: 21877135 DOI: 10.1007/s00438-011-0643-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/04/2011] [Indexed: 12/24/2022]
Abstract
The evolution of the eye has been a major subject of study dating back centuries. The advent of molecular genetics offered the surprising finding that morphologically distinct eyes rely on conserved regulatory gene networks for their formation. While many of these advances often stemmed from studies of the compound eye of the fruit fly, Drosophila melanogaster, and later translated to discoveries in vertebrate systems, studies on vertebrate lens development far outnumber those in Drosophila. This may be largely historical, since Spemann and Mangold's paradigm of tissue induction was discovered in the amphibian lens. Recent studies on lens development in Drosophila have begun to define molecular commonalities with the vertebrate lens. Here, we provide an overview of Drosophila lens development, discussing intrinsic and extrinsic factors controlling lens cell specification and differentiation. We then summarize key morphological and molecular events in vertebrate lens development, emphasizing regulatory factors and networks strongly associated with both systems. Finally, we provide a comparative analysis that highlights areas of research that would help further clarify the degree of conservation between the formation of dioptric systems in invertebrates and vertebrates.
Collapse
|
16
|
Abstract
Micro-ribonucleic acids (miRNAs) are small (21-24 nucleotide), endogenously expressed, noncoding RNAs that have emerged as important posttranscriptional regulators of gene expression. MiRNAs have been identified and cloned from diverse eukaryotic organisms where they have been shown to control important physiological and developmental processes such as apoptosis, cell division, and differentiation. A high level of conservation of some miRNAs across phyla further emphasizes their importance as posttranscriptional regulators. Research in a variety of model systems has been instrumental in dissecting the biological functions of miRNAs. In this chapter, we discuss the current literature on the role of miRNAs as developmental regulators in Drosophila.
Collapse
|
17
|
Graham TGW, Tabei SMA, Dinner AR, Rebay I. Modeling bistable cell-fate choices in the Drosophila eye: qualitative and quantitative perspectives. Development 2010; 137:2265-78. [PMID: 20570936 PMCID: PMC2889600 DOI: 10.1242/dev.044826] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A major goal of developmental biology is to understand the molecular mechanisms whereby genetic signaling networks establish and maintain distinct cell types within multicellular organisms. Here, we review cell-fate decisions in the developing eye of Drosophila melanogaster and the experimental results that have revealed the topology of the underlying signaling circuitries. We then propose that switch-like network motifs based on positive feedback play a central role in cell-fate choice, and discuss how mathematical modeling can be used to understand and predict the bistable or multistable behavior of such networks.
Collapse
Affiliation(s)
- Thomas G. W. Graham
- Ben May Department for Cancer Research, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - S. M. Ali Tabei
- James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Aaron R. Dinner
- James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Ben May Department for Cancer Research, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Pickup AT, Ming L, Lipshitz HD. Hindsight modulates Delta expression during Drosophila cone cell induction. Development 2009; 136:975-82. [PMID: 19234063 DOI: 10.1242/dev.027318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The induction of cone cells in the Drosophila larval eye disc by the determined R1/R6 photoreceptor precursor cells requires integration of the Delta-Notch and EGF receptor signaling pathways with the activity of the Lozenge transcription factor. Here, we demonstrate that the zinc-finger transcription factor Hindsight (HNT) is required for normal cone-cell induction. R-cells in which hindsight levels are knocked down using RNAi show normal subtype specification, but these cells have lower levels of the Notch ligand Delta. We show that HNT functions in the determined R1/R6 precursor cells to allow Delta transcription to reach high enough levels at the right time to induce the cone-cell determinants Prospero and D-Pax2 in neighboring cells. The Delta signal emanating from the R1/R6 precursor cells is also required to specify the R7 precursor cell by repressing seven-up. As hindsight mutants have normal R7 cell-fate determination, we infer that there is a lower threshold of Delta required for R7 specification than for cone-cell induction.
Collapse
Affiliation(s)
- Amanda T Pickup
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Department of Molecular Genetics, University of Toronto, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | | | | |
Collapse
|
19
|
A microRNA imparts robustness against environmental fluctuation during development. Cell 2009; 137:273-82. [PMID: 19379693 DOI: 10.1016/j.cell.2009.01.058] [Citation(s) in RCA: 361] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 11/25/2008] [Accepted: 01/29/2009] [Indexed: 11/20/2022]
Abstract
The microRNA miR-7 is perfectly conserved from annelids to humans, and yet some of the genes that it regulates in Drosophila are not regulated in mammals. We have explored the role of lineage restricted targets, using Drosophila, in order to better understand the evolutionary significance of microRNA-target relationships. From studies of two well characterized developmental regulatory networks, we find that miR-7 functions in several interlocking feedback and feedforward loops, and propose that its role in these networks is to buffer them against perturbation. To directly demonstrate this function for miR-7, we subjected the networks to temperature fluctuation and found that miR-7 is essential for the maintenance of regulatory stability under conditions of environmental flux. We suggest that some conserved microRNAs like miR-7 may enter into novel genetic relationships to buffer developmental programs against variation and impart robustness to diverse regulatory networks.
Collapse
|
20
|
Abstract
Metazoans use a handful of highly conserved signaling pathways to create a signaling backbone that governs development. How these few signals have such a versatile action likely depends upon the larger-scale network they form through integration, as exemplified by cross-talk between the Notch and receptor tyrosine kinase (RTK) pathways. We examined the transcriptional output of Notch-RTK cross-talk during Drosophila development and present in vivo data supporting a role for selected mutually regulated genes in signal integration. Interestingly, Notch-RTK integration did not lead to general antagonism of either pathway, as is commonly believed. Instead, integration had a combinatorial effect on specific cross-regulated targets, which unexpectedly included numerous core components of the RTK and other major signaling pathways (TGF-beta, Hh, Jak/Stat, nuclear receptor and Wnt). We find the majority of Ras-responsive genes are also Notch-responsive, suggesting Notch may function to specify the response to Ras activation.
Collapse
|
21
|
Fan Y, Bergmann A. Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye. Dev Cell 2008; 14:399-410. [PMID: 18331718 DOI: 10.1016/j.devcel.2008.01.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 10/15/2007] [Accepted: 01/07/2008] [Indexed: 01/08/2023]
Abstract
In multicellular organisms, apoptotic cells induce compensatory proliferation of neighboring cells to maintain tissue homeostasis. In the Drosophila wing imaginal disc, dying cells trigger compensatory proliferation through secretion of the mitogens Decapentaplegic (Dpp) and Wingless (Wg). This process is under control of the initiator caspase Dronc, but not effector caspases. Here we show that a second mechanism of apoptosis-induced compensatory proliferation exists. This mechanism is dependent on effector caspases which trigger the activation of Hedgehog (Hh) signaling for compensatory proliferation. Furthermore, whereas Dpp and Wg signaling is preferentially employed in apoptotic proliferating tissues, Hh signaling is activated in differentiating eye tissues. Interestingly, effector caspases in photoreceptor neurons stimulate Hh signaling which triggers cell-cycle reentry of cells that had previously exited the cell cycle. In summary, dependent on the developmental potential of the affected tissue, different caspases trigger distinct forms of compensatory proliferation in an apparent nonapoptotic function.
Collapse
Affiliation(s)
- Yun Fan
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1000, Houston, TX 77030, USA
| | | |
Collapse
|
22
|
Weber U, Pataki C, Mihaly J, Mlodzik M. Combinatorial signaling by the Frizzled/PCP and Egfr pathways during planar cell polarity establishment in the Drosophila eye. Dev Biol 2008; 316:110-23. [PMID: 18291359 DOI: 10.1016/j.ydbio.2008.01.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 01/09/2008] [Accepted: 01/10/2008] [Indexed: 12/23/2022]
Abstract
Frizzled (Fz)/PCP signaling regulates planar, vectorial orientation of cells or groups of cells within whole tissues. Although Fz/PCP signaling has been analyzed in several contexts, little is known about nuclear events acting downstream of Fz/PCP signaling in the R3/R4 cell fate decision in the Drosophila eye or in other contexts. Here we demonstrate a specific requirement for Egfr-signaling and the transcription factors Fos (AP-1), Yan and Pnt in PCP dependent R3/R4 specification. Loss and gain-of-function assays suggest that the transcription factors integrate input from Fz/PCP and Egfr-signaling and that the ETS factors Pnt and Yan cooperate with Fos (and Jun) in the PCP-specific R3/R4 determination. Our data indicate that Fos (either downstream of Fz/PCP signaling or parallel to it) and Yan are required in R3 to specify its fate (Fos) or inhibit R4 fate (Yan) and that Egfr-signaling is required in R4 via Pnt for its fate specification. Taken together with previous work establishing a Notch-dependent Su(H) function in R4, we conclude that Fos, Yan, Pnt, and Su(H) integrate Egfr, Fz, and Notch signaling input in R3 or R4 to establish cell fate and ommatidial polarity.
Collapse
Affiliation(s)
- Ursula Weber
- Department of Developmental and Regenerative Biology, Mt. Sinai School of Medicine, Annenberg Bldg. 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
23
|
Wang Y, Werz C, Xu D, Chen Z, Li Y, Hafen E, Bergmann A. Drosophila cbl is essential for control of cell death and cell differentiation during eye development. PLoS One 2008; 3:e1447. [PMID: 18197257 PMCID: PMC2180199 DOI: 10.1371/journal.pone.0001447] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 12/14/2007] [Indexed: 11/19/2022] Open
Abstract
Background Activation of cell surface receptors transduces extracellular signals into cellular responses such as proliferation, differentiation and survival. However, as important as the activation of these receptors is their appropriate spatial and temporal down-regulation for normal development and tissue homeostasis. The Cbl family of E3-ubiquitin ligases plays a major role for the ligand-dependent inactivation of receptor tyrosine kinases (RTKs), most notably the Epidermal Growth Factor Receptor (EGFR) through ubiquitin-mediated endocytosis and lysosomal degradation. Methodology/Principal Findings Here, we report the mutant phenotypes of Drosophila cbl (D-cbl) during eye development. D-cbl mutants display overgrowth, inhibition of apoptosis, differentiation defects and increased ommatidial spacing. Using genetic interaction and molecular markers, we show that most of these phenotypes are caused by increased activity of the Drosophila EGFR. Our genetic data also indicate a critical role of ubiquitination for D-cbl function, consistent with biochemical models. Conclusions/Significance These data may provide a mechanistic model for the understanding of the oncogenic activity of mammalian cbl genes.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Biochemistry and Molecular Biology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Christian Werz
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Dongbin Xu
- Department of Biochemistry and Molecular Biology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhihong Chen
- Department of Biochemistry and Molecular Biology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ying Li
- Department of Biochemistry and Molecular Biology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ernst Hafen
- Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Andreas Bergmann
- Department of Biochemistry and Molecular Biology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Miller AC, Seymour H, King C, Herman TG. Loss of seven-up from Drosophila R1/R6 photoreceptors reveals a stochastic fate choice that is normally biased by Notch. Development 2008; 135:707-15. [PMID: 18199577 DOI: 10.1242/dev.016386] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent evidence suggests that stochasticism is important for generating cell type diversity. We have identified a novel stochastic fate choice as part of the mechanism by which Delta/Notch (Dl/N) signaling specifies R7 fate in the Drosophila eye. The equivalence of R1/R6/R7 precursors is normally broken by the activation of N, which specifies the R7 fate. The orphan nuclear hormone receptor Seven-up (Svp) is necessary and sufficient to direct R1/R6/R7 precursors to adopt the R1/R6 fate. A simple model, therefore, is that N represses Svp, which otherwise prevents adoption of the R7 fate. However, we have found that R1/R6s lacking svp stochastically adopt either the R7 or the R8 fate with equal likelihood. We show that N specifies the R7 fate by a novel branched pathway: N represses Svp expression, thereby exposing an underlying stochastic choice between the R7 and R8 fates, and then tips this choice towards the R7 fate.
Collapse
Affiliation(s)
- Adam C Miller
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Blvd, Eugene, OR 97403, USA
| | | | | | | |
Collapse
|
25
|
Copenhaver PF. How to innervate a simple gut: familiar themes and unique aspects in the formation of the insect enteric nervous system. Dev Dyn 2007; 236:1841-64. [PMID: 17420985 PMCID: PMC3097047 DOI: 10.1002/dvdy.21138] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Like the vertebrate enteric nervous system (ENS), the insect ENS consists of interconnected ganglia and nerve plexuses that control gut motility. However, the insect ENS lies superficially on the gut musculature, and its component cells can be individually imaged and manipulated within cultured embryos. Enteric neurons and glial precursors arise via epithelial-to-mesenchymal transitions that resemble the generation of neural crest cells and sensory placodes in vertebrates; most cells then migrate extensive distances before differentiating. A balance of proneural and neurogenic genes regulates the morphogenetic programs that produce distinct structures within the insect ENS. In vivo studies have also begun to decipher the mechanisms by which enteric neurons integrate multiple guidance cues to select their pathways. Despite important differences between the ENS of vertebrates and invertebrates, common features in their programs of neurogenesis, migration, and differentiation suggest that these relatively simple preparations may provide insights into similar developmental processes in more complex systems.
Collapse
Affiliation(s)
- Philip F Copenhaver
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239, USA.
| |
Collapse
|
26
|
Doroquez DB, Orr-Weaver TL, Rebay I. Split ends antagonizes the Notch and potentiates the EGFR signaling pathways during Drosophila eye development. Mech Dev 2007; 124:792-806. [PMID: 17588724 PMCID: PMC2231642 DOI: 10.1016/j.mod.2007.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Revised: 04/03/2007] [Accepted: 05/14/2007] [Indexed: 01/08/2023]
Abstract
The Notch and Epidermal Growth Factor Receptor (EGFR) signaling pathways interact cooperatively and antagonistically to regulate many aspects of Drosophila development, including the eye. How output from these two signaling networks is fine-tuned to achieve the precise balance needed for specific inductive interactions and patterning events remains an open and important question. Previously, we reported that the gene split ends (spen) functions within or parallel to the EGFR pathway during midline glial cell development in the embryonic central nervous system. Here, we report that the cellular defects caused by loss of spen function in the developing eye imaginal disc place spen as both an antagonist of the Notch pathway and a positive contributor to EGFR signaling during retinal cell differentiation. Specifically, loss of spen results in broadened expression of Scabrous, ectopic activation of Notch signaling, and a corresponding reduction in Atonal expression at the morphogenetic furrow. Consistent with Spen's role in antagonizing Notch signaling, reduction of spen levels is sufficient to suppress Notch-dependent phenotypes. At least in part due to loss of Spen-dependent down-regulation of Notch signaling, loss of spen also dampens EGFR signaling as evidenced by reduced activity of MAP kinase (MAPK). This reduced MAPK activity in turn leads to a failure to limit expression of the EGFR pathway antagonist and the ETS-domain transcriptional repressor Yan and to a corresponding loss of cell fate specification in spen mutant ommatidia. We propose that Spen plays a role in modulating output from the Notch and EGFR pathways to ensure appropriate patterning during eye development.
Collapse
Affiliation(s)
- David B. Doroquez
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142 USA
| | - Terry L. Orr-Weaver
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142 USA
| | - Ilaria Rebay
- Ben May Institute for Cancer Research, University of Chicago, 929 E. 57 St., Chicago, IL 60637 USA
| |
Collapse
|
27
|
Abstract
One of the challenges of modern biology is to understand how cells within a developing organism generate, integrate, and respond to dynamic informational cues. Based on over two decades of intensive research, many parts and subroutines of the responsible signal transduction networks have been identified and functionally characterized. From this work, it has become evident that a complicated interplay between signaling pathways, involving extensive feedback regulation and multiple levels of cross-talk, underlies even the "simplest" developmental decision. Thus a signaling pathway can no longer be thought of as a rigid linear process, but rather must be considered a dynamic, self-interacting, and self-adjusting network. The Epidermal Growth Factor Receptor tyrosine kinase signaling pathway provides a prime vantage point from which to explore emerging principles in developmental signal transduction.
Collapse
Affiliation(s)
- Pavithra Vivekanand
- Ben May Institute for Cancer Research, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
28
|
Hurlbut GD, Kankel MW, Lake RJ, Artavanis-Tsakonas S. Crossing paths with Notch in the hyper-network. Curr Opin Cell Biol 2007; 19:166-75. [PMID: 17317139 DOI: 10.1016/j.ceb.2007.02.012] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 02/09/2007] [Indexed: 12/31/2022]
Abstract
The development of complex and diverse metazoan morphologies is coordinated by a surprisingly small number of evolutionarily conserved signaling mechanisms. These signals can act in parallel but often appear to function as an integrated hyper-network. The nodes defining this complex molecular circuitry are poorly understood, but the biological significance of pathway cross-talk is profound. The importance of such large-scale signal integration is exemplified by Notch and its ability to cross-talk with all the major pathways to influence cell differentiation, proliferation, survival and migration. The Notch pathway is, thus, a useful paradigm to illustrate the complexity of pathway cross-talk: its pervasiveness, context dependency, and importance in development and disease.
Collapse
Affiliation(s)
- Gregory D Hurlbut
- Department of Cell Biology, Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, USA
| | | | | | | |
Collapse
|
29
|
Doroquez DB, Rebay I. Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit Rev Biochem Mol Biol 2007; 41:339-85. [PMID: 17092823 DOI: 10.1080/10409230600914344] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metazoan development relies on a highly regulated network of interactions between conserved signal transduction pathways to coordinate all aspects of cell fate specification, differentiation, and growth. In this review, we discuss the intricate interplay between the epidermal growth factor receptor (EGFR; Drosophila EGFR/DER) and the Notch signaling pathways as a paradigm for signal integration during development. First, we describe the current state of understanding of the molecular architecture of the EGFR and Notch signaling pathways that has resulted from synergistic studies in vertebrate, invertebrate, and cultured cell model systems. Then, focusing specifically on the Drosophila eye, we discuss how cooperative, sequential, and antagonistic relationships between these pathways mediate the spatially and temporally regulated processes that generate this sensory organ. The common themes underlying the coordination of the EGFR and Notch pathways appear to be broadly conserved and should, therefore, be directly applicable to elucidating mechanisms of information integration and signaling specificity in vertebrate systems.
Collapse
Affiliation(s)
- David B Doroquez
- Department of Biology, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
30
|
Carmena A, Speicher S, Baylies M. The PDZ protein Canoe/AF-6 links Ras-MAPK, Notch and Wingless/Wnt signaling pathways by directly interacting with Ras, Notch and Dishevelled. PLoS One 2006; 1:e66. [PMID: 17183697 PMCID: PMC1762375 DOI: 10.1371/journal.pone.0000066] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 10/31/2006] [Indexed: 01/22/2023] Open
Abstract
Over the past few years, it has become increasingly apparent that signal transduction pathways are not merely linear cascades; they are organized into complex signaling networks that require high levels of regulation to generate precise and unique cell responses. However, the underlying regulatory mechanisms by which signaling pathways cross-communicate remain poorly understood. Here we show that the Ras-binding protein Canoe (Cno)/AF-6, a PDZ protein normally associated with cellular junctions, is a key modulator of Wingless (Wg)/Wnt, Ras-Mitogen Activated Protein Kinase (MAPK) and Notch (N) signaling pathways cross-communication. Our data show a repressive effect of Cno/AF-6 on these three signaling pathways through physical interactions with Ras, N and the cytoplasmic protein Dishevelled (Dsh), a key Wg effector. We propose a model in which Cno, through those interactions, actively coordinates, at the membrane level, Ras-MAPK, N and Wg signaling pathways during progenitor specification.
Collapse
Affiliation(s)
- Ana Carmena
- Program in Developmental Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America; Instituto de Neurosciencias de Alicante, Consejo Superior de Investigaciones Científicas/University Miguel Hernandez, Unidad de Neurobiología del Desarrollo, Alicante, Spain.
| | | | | |
Collapse
|
31
|
Li X, Carthew RW. A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 2006; 123:1267-77. [PMID: 16377567 DOI: 10.1016/j.cell.2005.10.040] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/07/2005] [Accepted: 10/31/2005] [Indexed: 12/27/2022]
Abstract
A critical question about signal transduction is how weak or transient activation of signaling pathways achieves a robust and long-term switch in gene expression. We report that a microRNA is part of a mechanism that makes cells sensitive to signals in the Drosophila eye. Expression of miR-7 is activated in cells as they begin differentiating into photoreceptors. This is dependent on EGF receptor (EGFR) signaling that triggers ERK-mediated degradation of the transcription factor Yan. In nonstimulated cells, Yan represses miR-7 transcription, whereas miR-7 RNA represses Yan protein expression in photoreceptors, by binding to sequences within its mRNA 3'UTR. We propose that reciprocal negative feedback between Yan and miR-7 ensures mutually exclusive expression, with Yan in progenitor cells and miR-7 in photoreceptor cells. Expression is switched when EGFR signaling transiently triggers Yan degradation. This two-tiered mechanism explains how signal transduction activity can robustly generate a stable change in gene-expression patterns.
Collapse
Affiliation(s)
- Xin Li
- Department of Biochemistry, Molecular Biology and Cell Biology, 2205 Tech Drive, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
32
|
Schober M, Rebay I, Perrimon N. Function of the ETS transcription factor Yan in border cell migration. Development 2005; 132:3493-504. [PMID: 16014514 DOI: 10.1242/dev.01911] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Invasive cell migration in both normal development and metastatic cancer is regulated by various signaling pathways, transcription factors and cell-adhesion molecules. The coordination between these activities in the context of cell migration is poorly understood. During Drosophila oogenesis, a small group of cells called border cells exit the follicular epithelium to perform a stereotypic, invasive migration. We find that the ETS transcription factor Yan is required for border cell migration and that Yan expression is spatiotemporally regulated as border cells migrate from the anterior pole of the egg chamber towards the nurse cell-oocyte boundary. Yan expression is dependent on inputs from the JAK/STAT, Notch and Receptor Tyrosine Kinase pathways in border cells. Mechanistically, Yan functions to modulate the turnover of DE-Cadherin-dependent adhesive complexes to facilitate border cell migration. Our results suggest that Yan acts as a pivotal link between signal transduction, cell adhesion and invasive cell migration in Drosophila border cells.
Collapse
Affiliation(s)
- Markus Schober
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
33
|
Abstract
The Ras and Notch signaling pathways are used over and over again during development to control many different biological processes. Frequently, these two signaling pathways intersect to influence common processes, but sometimes they cooperate and sometimes they antagonize each other. The Caenorhabditis elegans vulva and the Drosophila eye are two classic paradigms for understanding how Ras and Notch affect cell fates, and how the two pathways work together to control biological pattern. Recent advances in these systems reveal some of the mechanisms by which Ras and Notch can interact. Similar types of interactions in mammals may be important for determining whether and how alterations in Ras or Notch lead to cancer.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania, Philadelphia, 19104, USA
| |
Collapse
|
34
|
Armstrong JA, Sperling AS, Deuring R, Manning L, Moseley SL, Papoulas O, Piatek CI, Doe CQ, Tamkun JW. Genetic screens for enhancers of brahma reveal functional interactions between the BRM chromatin-remodeling complex and the delta-notch signal transduction pathway in Drosophila. Genetics 2005; 170:1761-74. [PMID: 15944353 PMCID: PMC1449748 DOI: 10.1534/genetics.105.041327] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Drosophila trithorax group gene brahma (brm) encodes the ATPase subunit of a 2-MDa chromatin-remodeling complex. brm was identified in a screen for transcriptional activators of homeotic genes and subsequently shown to play a global role in transcription by RNA polymerase II. To gain insight into the targeting, function, and regulation of the BRM complex, we screened for mutations that genetically interact with a dominant-negative allele of brm (brm(K804R)). We first screened for dominant mutations that are lethal in combination with a brm(K804R) transgene under control of the brm promoter. In a distinct but related screen, we identified dominant mutations that modify eye defects resulting from expression of brm(K804R) in the eye-antennal imaginal disc. Mutations in three classes of genes were identified in our screens: genes encoding subunits of the BRM complex (brm, moira, and osa), other proteins directly involved in transcription (zerknullt and RpII140), and signaling molecules (Delta and vein). Expression of brm(K804R) in the adult sense organ precursor lineage causes phenotypes similar to those resulting from impaired Delta-Notch signaling. Our results suggest that signaling pathways may regulate the transcription of target genes by regulating the activity of the BRM complex.
Collapse
Affiliation(s)
- Jennifer A Armstrong
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vivekanand P, Tootle TL, Rebay I. MAE, a dual regulator of the EGFR signaling pathway, is a target of the Ets transcription factors PNT and YAN. Mech Dev 2005; 121:1469-79. [PMID: 15511639 DOI: 10.1016/j.mod.2004.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 07/23/2004] [Accepted: 07/26/2004] [Indexed: 11/16/2022]
Abstract
Ets transcription factors play crucial roles in regulating diverse cellular processes including cell proliferation, differentiation and survival. Coordinated regulation of the Drosophila Ets transcription factors YAN and POINTED is required for eliciting appropriate responses to Receptor Tyrosine Kinase (RTK) signaling. YAN, a transcriptional repressor, and POINTED, a transcriptional activator, compete for regulatory regions of common target genes, with the ultimate outcome likely influenced by context-specific interactions with binding partners such as MAE. Previous work in cultured cells has led us to propose that MAE attenuates the transcriptional activity of both YAN and POINTED, although its effects on POINTED remain controversial. Here we describe a new layer of complexity to this regulatory hierarchy whereby mae expression is itself directly regulated by the opposing action of YAN and POINTED. In addition, we report that MAE can antagonize POINTED function during eye development; a finding that suggests MAE operates as a dual positive and negative regulator of RTK-mediated signaling in vivo. Together our results lead us to propose that a combination of protein-protein and transcriptional interactions between MAE, YAN and POINTED establishes a complex regulatory circuit that ensures that both down-regulation and activation of the RTK pathway occur appropriately according to specific developmental context.
Collapse
Affiliation(s)
- Pavithra Vivekanand
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
36
|
Marinescu VD, Kohane IS, Riva A. MAPPER: a search engine for the computational identification of putative transcription factor binding sites in multiple genomes. BMC Bioinformatics 2005; 6:79. [PMID: 15799782 PMCID: PMC1131891 DOI: 10.1186/1471-2105-6-79] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Accepted: 03/30/2005] [Indexed: 12/19/2022] Open
Abstract
Background Cis-regulatory modules are combinations of regulatory elements occurring in close proximity to each other that control the spatial and temporal expression of genes. The ability to identify them in a genome-wide manner depends on the availability of accurate models and of search methods able to detect putative regulatory elements with enhanced sensitivity and specificity. Results We describe the implementation of a search method for putative transcription factor binding sites (TFBSs) based on hidden Markov models built from alignments of known sites. We built 1,079 models of TFBSs using experimentally determined sequence alignments of sites provided by the TRANSFAC and JASPAR databases and used them to scan sequences of the human, mouse, fly, worm and yeast genomes. In several cases tested the method identified correctly experimentally characterized sites, with better specificity and sensitivity than other similar computational methods. Moreover, a large-scale comparison using synthetic data showed that in the majority of cases our method performed significantly better than a nucleotide weight matrix-based method. Conclusion The search engine, available at , allows the identification, visualization and selection of putative TFBSs occurring in the promoter or other regions of a gene from the human, mouse, fly, worm and yeast genomes. In addition it allows the user to upload a sequence to query and to build a model by supplying a multiple sequence alignment of binding sites for a transcription factor of interest. Due to its extensive database of models, powerful search engine and flexible interface, MAPPER represents an effective resource for the large-scale computational analysis of transcriptional regulation.
Collapse
Affiliation(s)
- Voichita D Marinescu
- Children's Hospital Informatics Program, Children's Hospital Boston, Harvard Medical School,300 Longwood Avenue, Boston, MA 02115, USA
| | - Isaac S Kohane
- Children's Hospital Informatics Program, Children's Hospital Boston, Harvard Medical School,300 Longwood Avenue, Boston, MA 02115, USA
| | - Alberto Riva
- Children's Hospital Informatics Program, Children's Hospital Boston, Harvard Medical School,300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
37
|
Hasson P, Egoz N, Winkler C, Volohonsky G, Jia S, Dinur T, Volk T, Courey AJ, Paroush Z. EGFR signaling attenuates Groucho-dependent repression to antagonize Notch transcriptional output. Nat Genet 2004; 37:101-5. [PMID: 15592470 DOI: 10.1038/ng1486] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 11/18/2004] [Indexed: 11/09/2022]
Abstract
Crosstalk between signaling pathways is crucial for the generation of complex and varied transcriptional networks. Antagonism between the EGF-receptor (EGFR) and Notch pathways in particular is well documented, although the underlying mechanism is poorly understood. The global corepressor Groucho (Gro) and its transducin-like Enhancer-of-split (TLE) mammalian homologs mediate repression by a myriad of repressors, including effectors of the Notch, Wnt (Wg) and TGF-beta (Dpp) signaling cascades. Given that there are genetic interactions between gro and components of the EGFR pathway (ref. 9 and P.H. et al., unpublished results), we tested whether Gro is at a crossroad between this and other pathways. Here we show that phosphorylation of Gro in response to MAPK activation weakens its repressor capacity, attenuating Gro-dependent transcriptional silencing by the Enhancer-of-split proteins, effectors of the Notch cascade. Thus, Gro is a new junction between signaling pathways, enabling EGFR signaling to antagonize transcriptional output by Notch and potentially other Gro-dependent pathways.
Collapse
Affiliation(s)
- Peleg Hasson
- Department of Biochemistry, Faculty of Medicine, The Hebrew University, PO Box 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Beverly LJ, Capobianco AJ. Targeting promiscuous signaling pathways in cancer: another Notch in the bedpost. Trends Mol Med 2004; 10:591-8. [PMID: 15567329 DOI: 10.1016/j.molmed.2004.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The chromosomal translocation t(7;9)(q34;q34.3) in human T-cell acute lymphoblastic leukemia results in the constitutive activation of Notch (Nic). Reported mutations in Ikaros cause the loss of DNA-binding, which in turn leads to a loss of repressive activity. Recently, these two mutations have been shown to cooperate in leukemogenesis. The current model proposes that the combination of the loss of Ikaros activity and the gain of constitutive Notch activity disrupts the normal balance between repression and activation at common regulatory elements. Furthermore, the model is extended to suggest that multiple transcription factors coordinate transcriptional repression and activation through these common regulatory elements. In leukemogenesis, the breakdown of this coordinate regulation underlies one of the pathophysiological mechanisms. Finally, using Notch as a template, potential points of interdiction by designer therapeutics are discussed.
Collapse
Affiliation(s)
- Levi J Beverly
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
39
|
zur Lage PI, Powell LM, Prentice DRA, McLaughlin P, Jarman AP. EGF Receptor Signaling Triggers Recruitment of Drosophila Sense Organ Precursors by Stimulating Proneural Gene Autoregulation. Dev Cell 2004; 7:687-96. [PMID: 15525530 DOI: 10.1016/j.devcel.2004.09.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 08/04/2004] [Accepted: 09/14/2004] [Indexed: 11/27/2022]
Abstract
In Drosophila, commitment of a cell to a sense organ precursor (SOP) fate requires bHLH proneural transcription factor upregulation, a process that depends in most cases on the interplay of proneural gene autoregulation and inhibitory Notch signaling. A subset of SOPs are selected by a recruitment pathway involving EGFR signaling to ectodermal cells expressing the proneural gene atonal. We show that EGFR signaling drives recruitment by directly facilitating atonal autoregulation. Pointed, the transcription factor that mediates EGFR signaling, and Atonal protein itself bind cooperatively to adjacent conserved binding sites in an atonal enhancer. Recruitment is therefore contingent on the combined presence of Atonal protein (providing competence) and EGFR signaling (triggering recruitment). Thus, autoregulation is the nodal control point targeted by signaling. This exemplifies a simple and general mechanism for regulating the transition from competence to cell fate commitment whereby a cell signal directly targets the autoregulation of a selector gene.
Collapse
Affiliation(s)
- Petra I zur Lage
- Division of Biomedical Sciences, Centre for Neuroscience Research, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | | | | | | | | |
Collapse
|
40
|
Eyquem S, Chemin K, Fasseu M, Bories JC. The Ets-1 transcription factor is required for complete pre-T cell receptor function and allelic exclusion at the T cell receptor beta locus. Proc Natl Acad Sci U S A 2004; 101:15712-7. [PMID: 15496469 PMCID: PMC524847 DOI: 10.1073/pnas.0405546101] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pre-T cell receptor (TCR) functions as a critical checkpoint during alphabeta T cell development. Signaling through the pre-TCR controls the differentiation of immature CD4(-)CD8(-)CD25(+)CD44(-) [double-negative (DN)3] thymocytes into CD4(+)CD8(+) double-positive (DP) cells through the CD4(-)CD8(-)CD25(-)CD44(-)(DN4) stage. In addition, pre-TCR activity triggers expansion and survival of thymocytes and inhibits TCRbeta gene rearrangement through a process referred to as allelic exclusion. Whereas many proteins involved in the pre-TCR transduction cascade have been identified, little is known about the nuclear factors associated with receptor function. Here, we use gene targeting to inactivate the Ets-1 transcription factor in mice and analyze pre-TCR function in developing Ets-1-deficient (Ets-1(-/-)) thymocytes. We find that inactivation of Ets-1 impairs the development of DN3 into DP thymocytes and induces an elevated rate of cell death in the DN4 subset. This defect appears specific to the alphabeta lineage because gammadelta T cells maturate efficiently. Finally, the percentage of thymocytes coexpressing two different TCRbeta chains is increased in the Ets-1(-/-) background and, in contrast with wild type, forced activation of pre-TCR signaling does not block endogenous TCRbeta gene rearrangement. These data identify Ets-1 as a critical transcription factor for pre-TCR functioning and for allelic exclusion at the TCRbeta locus.
Collapse
MESH Headings
- Alleles
- Animals
- Apoptosis
- Cell Cycle
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Proto-Oncogene Protein c-ets-1
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-ets
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Stéphanie Eyquem
- Institut National de la Santé et de la Recherche Médicale Unité 462, Institut Universitaire d'Hématologie, 1 avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | | | | | | |
Collapse
|
41
|
Abstract
The Drosophila eye is a highly ordered epithelial tissue composed of approximately 750 subunits called ommatidia arranged in a reiterated hexagonal pattern. At higher resolution, observation of the constituent photoreceptors, cone cells, and pigment cells of the eye reveals a highly ordered mosaic of amazing regularity. This relatively simple organization belies the repeated requirement for spatially and temporally coordinated inputs from the Hedgehog (Hh), Wingless (Wg), Decapentaplegic (Dpp), JAK-STAT, Notch, and receptor tyrosine kinase (RTK) signaling pathways. This review will discuss how signaling inputs from the Notch and RTK pathways, superimposed on the developmental history of a cell, facilitate context-specific and appropriate cell fate specification decisions in the developing fly eye. Lessons learned from investigating the combinatorial signal integration strategies underlying Drosophila eye development will likely reveal cell-cell communication paradigms relevant to many aspects of invertebrate and mammalian development. Developmental Dynamics 229:162-175, 2004.
Collapse
Affiliation(s)
- Matthew G Voas
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | |
Collapse
|
42
|
MacDougall LK, Gagou ME, Leevers SJ, Hafen E, Waterfield MD. Targeted expression of the class II phosphoinositide 3-kinase in Drosophila melanogaster reveals lipid kinase-dependent effects on patterning and interactions with receptor signaling pathways. Mol Cell Biol 2004; 24:796-808. [PMID: 14701751 PMCID: PMC343800 DOI: 10.1128/mcb.24.2.796-808.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) can be divided into three distinct classes (I, II, and III) on the basis of their domain structures and the lipid signals that they generate. Functions have been assigned to the class I and class III enzymes but have not been established for the class II PI3Ks. We have obtained the first evidence for a biological function for a class II PI3K by expressing this enzyme during Drosophila melanogaster development and by using deficiencies that remove the endogenous gene. Wild-type and catalytically inactive PI3K_68D transgenes have opposite effects on the number of sensory bristles and on wing venation phenotypes induced by modified epidermal growth factor (EGF) receptor signaling. These results indicate that the endogenous PI3K_68D may act antagonistically to the EGF receptor-stimulated Ras-mitogen-activated protein kinase pathway and downstream of, or parallel to, the Notch receptor. A class II polyproline motif in PI3K_68D can bind the Drk adaptor protein in vitro, primarily via the N-terminal SH3 domain of Drk. Drk may thus be important for the localization of PI3K_68D, allowing it to modify signaling pathways downstream of cell surface receptors. The phenotypes obtained are markedly distinct from those generated by expression of the Drosophila class I PI3K, which affects growth but not pattern formation.
Collapse
Affiliation(s)
- Lindsay K MacDougall
- Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, UK.
| | | | | | | | | |
Collapse
|
43
|
Jones C, Moses K. Cell-cycle regulation and cell-type specification in the developing Drosophila compound eye. Semin Cell Dev Biol 2004; 15:75-81. [PMID: 15036210 DOI: 10.1016/j.semcdb.2003.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During nervous system development stem cell daughters must exit the proliferative cycle to adopt specific neural and glial fates and they must do so in the correct positions. Cell proliferation in the central nervous system occurs in neuroepithelia such as the neural retina and the ventricular zones. As cells are assigned specific fates they migrate out of the plane of the epithelium to form higher layers. Recent evidence from the Drosophila compound eye suggests that a novel mode of Ras pathway regulation may be crucial in both cell-cycle exit and neural patterning: "MAP Kinase cytoplasmic hold".
Collapse
Affiliation(s)
- Chonnettia Jones
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street NE, 1648 Pierce Drive, Atlanta, GA 30322-3030, USA
| | | |
Collapse
|
44
|
Beverly LJ, Capobianco AJ. Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in Notch(IC)-induced T cell leukemogenesis. Cancer Cell 2003; 3:551-64. [PMID: 12842084 DOI: 10.1016/s1535-6108(03)00137-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The chromosomal translocation t(7;9)(q34;q34.3) in human T cell acute lymphoblastic leukemia (T-ALL) results in the aberrant expression of the intracellular domain of Notch (N(ic)). Consistent with the current multistep model for tumorigenesis, mice that express N(ic) in T cell progenitors develop a T-ALL-like disease with a lengthened latency. Proviral insertional mutagenesis greatly accelerated the onset of leukemia in N(ic) transgenic mice. We demonstrate that the Ikaros (Ik) locus is a common target of proviral integration in N(ic) transgenic mice, which results in the loss of Ik DNA binding activity through altered isoform expression. We propose that cooperative leukemogenesis occurs in cells that have constitutive N(ic) and altered Ik isoform expression because genes normally repressed by Ik become activated by N(ic)/CSL.
Collapse
MESH Headings
- Acute Disease
- Animals
- Cell Transformation, Neoplastic
- DNA Primers/chemistry
- DNA, Viral/genetics
- DNA-Binding Proteins
- Gene Expression Regulation, Neoplastic
- Humans
- Ikaros Transcription Factor
- Leukemia Virus, Murine/genetics
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Leukemia-Lymphoma, Adult T-Cell/virology
- Membrane Glycoproteins/metabolism
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Protein Isoforms
- RNA, Neoplasm/genetics
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Notch
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured/transplantation
- Virus Integration
- Zinc Fingers
Collapse
Affiliation(s)
- Levi J Beverly
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | |
Collapse
|
45
|
Ramos E, Price M, Rohrbaugh M, Lai ZC. Identifying functional cis-acting regulatory modules of the yan gene in Drosophila melanogaster. Dev Genes Evol 2003; 213:83-9. [PMID: 12632177 DOI: 10.1007/s00427-003-0297-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Accepted: 12/10/2002] [Indexed: 11/27/2022]
Abstract
Yan is a nuclear DNA-binding protein that acts as a general inhibitor of cellular differentiation and proliferation in Drosophila melanogaster. The genetic and biochemical mechanisms required for regulating Yan protein function are well understood, however, the molecular mechanism of yan gene transcriptional regulation has not been fully elucidated. Here we show that the dynamic expression of the yan gene is specified by distinct spatial and temporal cis-acting regulatory elements in embryos and larval tissues. Each of these distinct elements is thus capable of replicating vital aspects of endogenous yan gene expression.
Collapse
Affiliation(s)
- Edward Ramos
- Intercollege Graduate Degree Program in Genetics, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
46
|
Yang L, Baker NE. Cell cycle withdrawal, progression, and cell survival regulation by EGFR and its effectors in the differentiating Drosophila eye. Dev Cell 2003; 4:359-69. [PMID: 12636917 DOI: 10.1016/s1534-5807(03)00059-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Receptor tyrosine kinases such as the EGF receptor transduce extracellular signals into multiple cellular responses. In the developing Drosophila eye, EGFR activity triggers cell differentiation. Here we focus on three additional cell autonomous aspects of EGFR function and their coordination with differentiation, namely, withdrawal from the cell cycle, mitosis, and cell survival. We find that, whereas differentiation requires intense signaling, dependent on multiple reinforcing ligands, lesser EGFR activity maintains cell cycle arrest, promotes mitosis, and protects against cell death. Each response requires the same Ras, Raf, MAPK, and Pnt signal transduction pathway. Mitotic and survival responses also involve Pnt-independent branches, perhaps explaining how survival and mitosis can occur independently. Our results suggest that, rather than triggering all or none responses, EGFR coordinates partially independent processes as the eye differentiates.
Collapse
Affiliation(s)
- Lihui Yang
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
47
|
Abstract
Immature double positive (DP) thymocytes bearing a T cell receptor (TCR) that interacts with self-major histocompatibility complex (MHC) molecules receive signals that induce either their differentiation (positive selection) or apoptosis (negative selection). Furthermore, those cells that are positively selected develop into two different lineages, CD4 or CD8, depending on whether their TCRs bind to MHC class II or I, respectively. Positive selection therefore involves rescue from the default fate (death), lineage commitment, and progression to the single positive (SP) stage. These are probably temporally distinct events that may require both unique and overlapping signals. Work in the past several years has started to unravel the signaling networks that control these processes. One of the first pathways identified as important for positive selection was Ras and its downstream effector, the Erk mitogen-activated protein kinase (MAPK) cascade. In this review we examine the factors that connect the TCR to the Ras/Erk cascade in DP thymocytes, as well as what we know about the downstream effectors of the Ras/Erk cascade important for positive selection. We also consider the possible role of this cascade in CD4/CD8 lineage development, and the possible interactions of the Ras/Erk cascade with Notch during these cell fate determination processes.
Collapse
Affiliation(s)
- José Alberola-Ila
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
48
|
Abstract
The receptor tyrosine kinase (RTK) signaling network plays a central role in regulating cellular differentiation, proliferation, and survival in all metazoan animals. Excessive or continuous activation of the RTK pathway has been linked to carcinogenesis in mammals, underscoring the importance of preventing uncontrolled signaling. This review will focus on the inhibitory mechanisms that keep RTK-mediated signals in check, with emphasis on conserved principles discerned from studies using Drosophila as a model system. Two general strategies of inhibition will be discussed. The first, threshold regulation, postulates that an effective way of antagonizing RTK signaling is to erect and maintain high threshold barriers that prevent inappropriate responses to moderate signaling levels. Activation of the pathway above this level overcomes the inhibitory blocks and shifts the balance to allow a positive flow of inductive information. A second layer of negative regulation involving induction of negative feedback loops that limit the extent, strength, or duration of the signal prevents runaway signaling in response to the high levels of activation required to surmount the threshold barriers. Such autoinhibitory mechanisms attenuate signaling at critical points throughout the network, from the receptor to the downstream effectors.
Collapse
Affiliation(s)
- Ilaria Rebay
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, USA.
| |
Collapse
|
49
|
Abstract
EGF receptor and Notch signaling are involved in a wide variety of developmental processes. A new study has revealed a serial linkage between them, via Ebi and Strawberry Notch, which is important in determining the cone cell fate in the Drosophila eye.
Collapse
Affiliation(s)
- Eric C Lai
- 545 Life Sciences Addition, University of California, Department of Molecular and Cell Biology, Berkeley, CA 947200-3200, USA.
| |
Collapse
|