1
|
Shaikh U, Sherlock K, Wilson J, Gilliland W, Lewellyn L. Lineage-based scaling of germline intercellular bridges during oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.18.553876. [PMID: 37645982 PMCID: PMC10462136 DOI: 10.1101/2023.08.18.553876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The size of subcellular structures must be tightly controlled to maintain normal cell function. Despite its importance, few studies have determined how the size of organelles or other structures is maintained during development, when cells are growing, dividing, and rearranging. The developing egg chamber is a powerful model in which to study the relative growth rates of subcellular structures. The egg chamber contains a cluster of sixteen germline cells, which are connected through intercellular bridges called ring canals. As the egg chamber grows, the germline cells and the ring canals that connect them increase in size. Here, we demonstrate that ring canal size scaling is related to lineage; the largest, "first born" ring canals increase in size at a relatively slower rate than ring canals derived from subsequent mitotic divisions. This lineage-based scaling relationship is maintained even if directed transport is reduced, ring canal size is altered, or in egg chambers with twice as many germline cells. Analysis of lines that produce larger or smaller mature eggs reveals different strategies could be used to alter final egg size. Summary Statement Using the fruit fly egg chamber as a model, this study demonstrates that the size and scaling of germline intercellular bridges vary based on lineage.
Collapse
|
2
|
Lepesant JA, Roland-Gosselin F, Guillemet C, Bernard F, Guichet A. The Importance of the Position of the Nucleus in Drosophila Oocyte Development. Cells 2024; 13:201. [PMID: 38275826 PMCID: PMC10814754 DOI: 10.3390/cells13020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Oogenesis is a developmental process leading to the formation of an oocyte, a haploid gamete, which upon fertilisation and sperm entry allows the male and the female pronuclei to fuse and give rise to a zygote. In addition to forming a haploid gamete, oogenesis builds up a store of proteins, mRNAs, and organelles in the oocyte needed for the development of the future embryo. In several species, such as Drosophila, the polarity axes determinants of the future embryo must be asymmetrically distributed prior to fertilisation. In the Drosophila oocyte, the correct positioning of the nucleus is essential for establishing the dorsoventral polarity axis of the future embryo and allowing the meiotic spindles to be positioned in close vicinity to the unique sperm entry point into the oocyte.
Collapse
Affiliation(s)
| | | | | | | | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; (J.-A.L.); (F.R.-G.); (C.G.); (F.B.)
| |
Collapse
|
3
|
Li L, Zhang N, Beati SAH, De Las Heras Chanes J, di Pietro F, Bellaiche Y, Müller HAJ, Großhans J. Kinesin-1 patterns Par-1 and Rho signaling at the cortex of syncytial embryos of Drosophila. J Cell Biol 2024; 223:e202206013. [PMID: 37955925 PMCID: PMC10641515 DOI: 10.1083/jcb.202206013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 03/23/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
The cell cortex of syncytial Drosophila embryos is patterned into cap and intercap regions by centrosomes, specific sets of proteins that are restricted to their respective regions by unknown mechanisms. Here, we found that Kinesin-1 is required for the restriction of plus- and minus-ends of centrosomal and non-centrosomal microtubules to the cap region, marked by EB1 and Patronin/Shot, respectively. Kinesin-1 also directly or indirectly restricts proteins and Rho signaling to the intercap, including the RhoGEF Pebble, Dia, Myosin II, Capping protein-α, and the polarity protein Par-1. Furthermore, we found that Par-1 is required for cap restriction of Patronin/Shot, and vice versa Patronin, for Par-1 enrichment at the intercap. In summary, our data support a model that Kinesin-1 would mediate the restriction of centrosomal and non-centrosomal microtubules to a region close to the centrosomes and exclude Rho signaling and Par-1. In addition, mutual antagonistic interactions would refine and maintain the boundary between cap and intercap and thus generate a distinct cortical pattern.
Collapse
Affiliation(s)
- Long Li
- Department of Biology, Philipps University, Marburg, Germany
| | - Na Zhang
- Department of Biology, Philipps University, Marburg, Germany
| | - Seyed Amir Hamze Beati
- Division of Developmental Genetics, Institute for Biology, University of Kassel, Kassel, Germany
| | - Jose De Las Heras Chanes
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Yohanns Bellaiche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology , Paris, France
| | - Hans-Arno J Müller
- Division of Developmental Genetics, Institute for Biology, University of Kassel, Kassel, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University, Marburg, Germany
| |
Collapse
|
4
|
Kotb NM, Ulukaya G, Chavan A, Nguyen SC, Proskauer L, Joyce E, Hasson D, Jagannathan M, Rangan P. Genome organization regulates nuclear pore complex formation and promotes differentiation during Drosophila oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567233. [PMID: 38014330 PMCID: PMC10680722 DOI: 10.1101/2023.11.15.567233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Genome organization can regulate gene expression and promote cell fate transitions. The differentiation of germline stem cells (GSCs) to oocytes in Drosophila involves changes in genome organization mediated by heterochromatin and the nuclear pore complex (NPC). Heterochromatin represses germ-cell genes during differentiation and NPCs anchor these silenced genes to the nuclear periphery, maintaining silencing to allow for oocyte development. Surprisingly, we find that genome organization also contributes to NPC formation, mediated by the transcription factor Stonewall (Stwl). As GSCs differentiate, Stwl accumulates at boundaries between silenced and active gene compartments. Stwl at these boundaries plays a pivotal role in transitioning germ-cell genes into a silenced state and activating a group of oocyte genes and Nucleoporins (Nups). The upregulation of these Nups during differentiation is crucial for NPC formation and further genome organization. Thus, crosstalk between genome architecture and NPCs is essential for successful cell fate transitions.
Collapse
Affiliation(s)
- Noor M. Kotb
- Department of Biomedical Sciences/Wadsworth Center, University at Albany SUNY, Albany, NY 12202
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Gulay Ulukaya
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core
| | - Ankita Chavan
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8092 Zurich
| | - Son C. Nguyen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104
| | - Lydia Proskauer
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202
- Current address: Biochemistry and Molecular Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Eric Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104
| | - Dan Hasson
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madhav Jagannathan
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8092 Zurich
| | - Prashanth Rangan
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
5
|
Lu W, Lakonishok M, Gelfand VI. The dynamic duo of microtubule polymerase Mini spindles/XMAP215 and cytoplasmic dynein is essential for maintaining Drosophila oocyte fate. Proc Natl Acad Sci U S A 2023; 120:e2303376120. [PMID: 37722034 PMCID: PMC10523470 DOI: 10.1073/pnas.2303376120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/11/2023] [Indexed: 09/20/2023] Open
Abstract
In many species, only one oocyte is specified among a group of interconnected germline sister cells. In Drosophila melanogaster, 16 interconnected cells form a germline cyst, where one cell differentiates into an oocyte, while the rest become nurse cells that supply the oocyte with mRNAs, proteins, and organelles through intercellular cytoplasmic bridges named ring canals via microtubule-based transport. In this study, we find that a microtubule polymerase Mini spindles (Msps), the Drosophila homolog of XMAP215, is essential for maintenance of the oocyte specification. mRNA encoding Msps is transported and concentrated in the oocyte by dynein-dependent transport along microtubules. Translated Msps stimulates microtubule polymerization in the oocyte, causing more microtubule plus ends to grow from the oocyte through the ring canals into nurse cells, further enhancing nurse cell-to-oocyte transport by dynein. Knockdown of msps blocks the oocyte growth and causes gradual loss of oocyte determinants. Thus, the Msps-dynein duo creates a positive feedback loop, ensuring oocyte fate maintenance by promoting high microtubule polymerization activity in the oocyte, and enhancing dynein-dependent nurse cell-to-oocyte transport.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
6
|
Lu W, Lakonishok M, Gelfand VI. Drosophila oocyte specification is maintained by the dynamic duo of microtubule polymerase Mini spindles/XMAP215 and dynein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531953. [PMID: 36945460 PMCID: PMC10028982 DOI: 10.1101/2023.03.09.531953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
In many species, only one oocyte is specified among a group of interconnected germline sister cells. In Drosophila melanogaster , 16-cell interconnected cells form a germline cyst, where one cell differentiates into an oocyte, while the rest become nurse cells that supply the oocyte with mRNAs, proteins, and organelles through intercellular cytoplasmic bridges named ring canals via microtubule-based transport. In this study, we find that a microtubule polymerase Mini spindles (Msps), the Drosophila homolog of XMAP215, is essential for the oocyte fate determination. mRNA encoding Msps is concentrated in the oocyte by dynein-dependent transport along microtubules. Translated Msps stimulates microtubule polymerization in the oocyte, causing more microtubule plus ends to grow from the oocyte through the ring canals into nurse cells, further enhancing nurse cell-to-oocyte transport by dynein. Knockdown of msps blocks the oocyte growth and causes gradual loss of oocyte determinants. Thus, the Msps-dynein duo creates a positive feedback loop, enhancing dynein-dependent nurse cell-to-oocyte transport and transforming a small stochastic difference in microtubule polarity among sister cells into a clear oocyte fate determination. Significance statement Oocyte determination in Drosophila melanogaster provides a valuable model for studying cell fate specification. We describe the crucial role of the duo of microtubule polymerase Mini spindles (Msps) and cytoplasmic dynein in this process. We show that Msps is essential for oocyte fate determination. Msps concentration in the oocyte is achieved through dynein-dependent transport of msps mRNA along microtubules. Translated Msps stimulates microtubule polymerization in the oocyte, further enhancing nurse cell-to-oocyte transport by dynein. This creates a positive feedback loop that transforms a small stochastic difference in microtubule polarity among sister cells into a clear oocyte fate determination. Our findings provide important insights into the mechanisms of oocyte specification and have implications for understanding the development of multicellular organisms.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
7
|
Qiu R, Zhang J, Xiang X. Kinesin-1 autoinhibition facilitates the initiation of dynein cargo transport. J Cell Biol 2023; 222:e202205136. [PMID: 36524956 PMCID: PMC9802684 DOI: 10.1083/jcb.202205136] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The functional significance of Kinesin-1 autoinhibition has been unclear. Kinesin-1 transports multiple cargoes including cytoplasmic dynein to microtubule plus ends. From a genetic screen for Aspergillus mutants defective in dynein-mediated early endosome transport, we identified a kinesin-1 mutation kinAK895* at the C-terminal IAK motif involved in autoinhibition. The kinA∆IAK and kinAK895E mutants exhibited a similar defect in dynein-mediated early endosome transport, verifying the importance of kinesin-1 autoinhibition in dynein-mediated transport. Kinesin-1 autoinhibition is not critical for dynein accumulation at microtubule plus ends or for the secretory vesicle cargoes of kinesin-1 to reach the hyphal tip. However, it facilitates dynein to initiate early endosome transport. This is unrelated to a direct competition between dynein and kinesin-1 on early endosomes because kinesin-3 rather than kinesin-1 drives the plus-end-directed early endosome movement. This effect of kinesin-1 autoinhibition on dynein-mediated early endosome transport is related to cargo adapter-mediated dynein activation but at a step beyond the switching of dynein from its autoinhibited conformation.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| |
Collapse
|
8
|
Remsburg CM, Konrad KD, Song JL. RNA localization to the mitotic spindle is essential for early development and is regulated by kinesin-1 and dynein. J Cell Sci 2023; 136:jcs260528. [PMID: 36751992 PMCID: PMC10038151 DOI: 10.1242/jcs.260528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Mitosis is a fundamental and highly regulated process that acts to faithfully segregate chromosomes into two identical daughter cells. Localization of gene transcripts involved in mitosis to the mitotic spindle might be an evolutionarily conserved mechanism to ensure that mitosis occurs in a timely manner. We identified many RNA transcripts that encode proteins involved in mitosis localized at the mitotic spindles in dividing sea urchin embryos and mammalian cells. Disruption of microtubule polymerization, kinesin-1 or dynein results in lack of spindle localization of these transcripts in the sea urchin embryo. Furthermore, results indicate that the cytoplasmic polyadenylation element (CPE) within the 3'UTR of the Aurora B transcript, a recognition sequence for CPEB, is essential for RNA localization to the mitotic spindle in the sea urchin embryo. Blocking this sequence results in arrested development during early cleavage stages, suggesting that RNA localization to the mitotic spindle might be a regulatory mechanism of cell division that is important for early development.
Collapse
Affiliation(s)
- Carolyn M. Remsburg
- University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| | - Kalin D. Konrad
- University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| | - Jia L. Song
- University of Delaware, Department of Biological Sciences, Newark, DE 19716, USA
| |
Collapse
|
9
|
Abstract
By the time a Drosophila egg is laid, both major body axes have already been defined and it contains all the nutrients needed to develop into a free-living larva in 24 h. By contrast, it takes almost a week to make an egg from a female germline stem cell, during the complex process of oogenesis. This review will discuss key symmetry-breaking steps in Drosophila oogenesis that lead to the polarisation of both body axes: the asymmetric divisions of the germline stem cells; the selection of the oocyte from the 16-cell germline cyst; the positioning of the oocyte at the posterior of the cyst; Gurken signalling from the oocyte to polarise the anterior-posterior axis of the somatic follicle cell epithelium around the developing germline cyst; the signalling back from the posterior follicle cells to polarise the anterior-posterior axis of the oocyte; and the migration of the oocyte nucleus that specifies the dorsal-ventral axis. Since each event creates the preconditions for the next, I will focus on the mechanisms that drive these symmetry-breaking steps, how they are linked and the outstanding questions that remain to be answered.
Collapse
|
10
|
Milas A, Telley IA. Polarity Events in the Drosophila melanogaster Oocyte. Front Cell Dev Biol 2022; 10:895876. [PMID: 35602591 PMCID: PMC9117655 DOI: 10.3389/fcell.2022.895876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Cell polarity is a pre-requirement for many fundamental processes in animal cells, such as asymmetric cell division, axon specification, morphogenesis and epithelial tissue formation. For all these different processes, polarization is established by the same set of proteins, called partitioning defective (Par) proteins. During development in Drosophila melanogaster, decision making on the cellular and organism level is achieved with temporally controlled cell polarization events. The initial polarization of Par proteins occurs as early as in the germline cyst, when one of the 16 cells becomes the oocyte. Another marked event occurs when the anterior–posterior axis of the future organism is defined by Par redistribution in the oocyte, requiring external signaling from somatic cells. Here, we review the current literature on cell polarity events that constitute the oogenesis from the stem cell to the mature egg.
Collapse
Affiliation(s)
- Ana Milas
- *Correspondence: Ana Milas, ; Ivo A. Telley,
| | | |
Collapse
|
11
|
Lu W, Lakonishok M, Serpinskaya AS, Gelfand VI. A novel mechanism of bulk cytoplasmic transport by cortical dynein in Drosophila ovary. eLife 2022; 11:e75538. [PMID: 35170428 PMCID: PMC8896832 DOI: 10.7554/elife.75538] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
Cytoplasmic dynein, a major minus-end directed microtubule motor, plays essential roles in eukaryotic cells. Drosophila oocyte growth is mainly dependent on the contribution of cytoplasmic contents from the interconnected sister cells, nurse cells. We have previously shown that cytoplasmic dynein is required for Drosophila oocyte growth and assumed that it simply transports cargoes along microtubule tracks from nurse cells to the oocyte. Here, we report that instead of transporting individual cargoes along stationary microtubules into the oocyte, cortical dynein actively moves microtubules within nurse cells and from nurse cells to the oocyte via the cytoplasmic bridges, the ring canals. This robust microtubule movement is sufficient to drag even inert cytoplasmic particles through the ring canals to the oocyte. Furthermore, replacing dynein with a minus-end directed plant kinesin linked to the actin cortex is sufficient for transporting organelles and cytoplasm to the oocyte and driving its growth. These experiments show that cortical dynein performs bulk cytoplasmic transport by gliding microtubules along the cell cortex and through the ring canals to the oocyte. We propose that the dynein-driven microtubule flow could serve as a novel mode of fast cytoplasmic transport.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Anna S Serpinskaya
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
12
|
Baker FC, Neiswender H, Veeranan-Karmegam R, Gonsalvez GB. In vivo proximity biotin ligation identifies the interactome of Egalitarian, a Dynein cargo adaptor. Development 2021; 148:dev199935. [PMID: 35020877 PMCID: PMC8645207 DOI: 10.1242/dev.199935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/18/2021] [Indexed: 06/21/2024]
Abstract
Numerous motors of the Kinesin family contribute to plus-end-directed microtubule transport. However, almost all transport towards the minus-end of microtubules involves Dynein. Understanding the mechanism by which Dynein transports this vast diversity of cargo is the focus of intense research. In selected cases, adaptors that link a particular cargo with Dynein have been identified. However, the sheer diversity of cargo suggests that additional adaptors must exist. We used the Drosophila egg chamber as a model to address this issue. Within egg chambers, Egalitarian is required for linking mRNA with Dynein. However, in the absence of Egalitarian, Dynein transport into the oocyte is severely compromised. This suggests that additional cargoes might be linked to Dynein in an Egalitarian-dependent manner. We therefore used proximity biotin ligation to define the interactome of Egalitarian. This approach yielded several novel interacting partners, including P body components and proteins that associate with Dynein in mammalian cells. We also devised and validated a nanobody-based proximity biotinylation strategy that can be used to define the interactome of any GFP-tagged protein.
Collapse
Affiliation(s)
| | | | | | - Graydon B. Gonsalvez
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| |
Collapse
|
13
|
Bernard F, Jouette J, Durieu C, Le Borgne R, Guichet A, Claret S. GFP-Tagged Protein Detection by Electron Microscopy Using a GBP-APEX Tool in Drosophila. Front Cell Dev Biol 2021; 9:719582. [PMID: 34476234 PMCID: PMC8406855 DOI: 10.3389/fcell.2021.719582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022] Open
Abstract
In cell biology, detection of protein subcellular localizations is often achieved by optical microscopy techniques and more rarely by electron microscopy (EM) despite the greater resolution offered by EM. One of the possible reasons was that protein detection by EM required specific antibodies whereas this need could be circumvented by using fluorescently-tagged proteins in optical microscopy approaches. Recently, the description of a genetically encodable EM tag, the engineered ascorbate peroxidase (APEX), whose activity can be monitored by electron-dense DAB precipitates, has widened the possibilities of specific protein detection in EM. However, this technique still requires the generation of new molecular constructions. Thus, we decided to develop a versatile method that would take advantage of the numerous GFP-tagged proteins already existing and create a tool combining a nanobody anti-GFP (GBP) with APEX. This GBP-APEX tool allows a simple and efficient detection of any GFP fusion proteins without the needs of specific antibodies nor the generation of additional constructions. We have shown the feasibility and efficiency of this method to detect various proteins in Drosophila ovarian follicles such as nuclear proteins, proteins associated with endocytic vesicles, plasma membranes or nuclear envelopes. Lastly, we expressed this tool in Drosophila with the UAS/GAL4 system that enables spatiotemporal control of the protein detection.
Collapse
Affiliation(s)
- Fred Bernard
- Polarity and Morphogenesis Team, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Julie Jouette
- Polarity and Morphogenesis Team, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Catherine Durieu
- Imagoseine Platform, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Rémi Le Borgne
- Imagoseine Platform, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Antoine Guichet
- Polarity and Morphogenesis Team, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Sandra Claret
- Polarity and Morphogenesis Team, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| |
Collapse
|
14
|
Shlemov A, Alexandrov T, Golyandina N, Holloway D, Baumgartner S, Spirov AV. Quantification reveals early dynamics in Drosophila maternal gradients. PLoS One 2021; 16:e0244701. [PMID: 34411119 PMCID: PMC8376041 DOI: 10.1371/journal.pone.0244701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/16/2021] [Indexed: 11/18/2022] Open
Abstract
The Bicoid (Bcd) protein is a primary determinant of early anterior-posterior (AP) axis specification in Drosophila embryogenesis. This morphogen is spatially distributed in an anterior-high gradient, and affects particular AP cell fates in a concentration-dependent manner. The early distribution and dynamics of the bicoid (bcd) mRNA, the source for the Bcd protein gradient, is not well understood, leaving a number of open questions for how Bcd positional information develops and is regulated. Confocal microscope images of whole early embryos, stained for bcd mRNA or the Staufen (Stau) protein involved in its transport, were processed to extract quantitative AP intensity profiles at two depths (apical-under the embryo surface but above the nuclear layer; and basal-below the nuclei). Each profile was quantified by a two- (or three-) exponential equation. The parameters of these equations were used to analyze the early developmental dynamics of bcd. Analysis of 1D profiles was compared with 2D intensity surfaces from the same images. This approach reveals strong early changes in bcd and Stau, which appear to be coordinated. We can unambiguously discriminate three stages in early development using the exponential parameters: pre-blastoderm (1-9 cleavage cycle, cc), syncytial blastoderm (10-13 cc) and cellularization (from 14A cc). Key features which differ in this period are how fast the first exponential (anterior component) of the apical profile drops with distance and whether it is higher or lower than the basal first exponential. We can further discriminate early and late embryos within the pre-blastoderm stage, depending on how quickly the anterior exponential drops. This relates to the posterior-wards spread of bcd in the first hour of development. Both bcd and Stau show several redistributions in the head cytoplasm, quite probably related to nuclear activity: first shifting inwards towards the core plasm, forming either protrusions (early pre-blastoderm) or round aggregations (early nuclear cleavage cycles, cc, 13 and 14), then moving to the embryo surface and spreading posteriorly. These movements are seen both with the 2D surface study and the 1D profile analysis. The continued spreading of bcd can be tracked from the time of nuclear layer formation (later pre-blastoderm) to the later syncytial blastoderm stages by the progressive loss of steepness of the apical anterior exponential (for both bcd and Stau). Finally, at the beginning of cc14 (cellularization stage) we see a distinctive flip from the basal anterior gradient being higher to the apical gradient being higher (for both bcd and Stau). Quantitative analysis reveals substantial (and correlated) bcd and Stau redistributions during early development, supporting that the distribution and dynamics of bcd mRNA are key factors in the formation and maintenance of the Bcd protein morphogenetic gradient. This analysis reveals the complex and dynamic nature of bcd redistribution, particularly in the head cytoplasm. These resemble observations in oogenesis; their role and significance have yet to be clarified. The observed co-localization during redistribution of bcd and Stau may indicate the involvement of active transport.
Collapse
Affiliation(s)
- Alex Shlemov
- Laboratory for Algorithmic Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Nina Golyandina
- Faculty of Mathematics and Mechanics, St. Petersburg State University, St. Petersburg, Russia
| | - David Holloway
- Mathematics Department, British Columbia Institute of Technology, Burnaby, British Columbia, Canada
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexander V. Spirov
- Computer Science and CEWIT, SUNY Stony Brook, Stony Brook, New York, United States of America
- Lab Modelling Evolution, The I.M. Sechenov Institute of Evolutionary Physiology & Biochemistry, St. Petersburg, Russia
- * E-mail:
| |
Collapse
|
15
|
Pinheiro H, Pimentel MR, Sequeira C, Oliveira LM, Pezzarossa A, Roman W, Gomes ER. mRNA distribution in skeletal muscle is associated with mRNA size. J Cell Sci 2021; 134:jcs256388. [PMID: 34297126 PMCID: PMC7611476 DOI: 10.1242/jcs.256388] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle myofibers are large and elongated cells with multiple and evenly distributed nuclei. Nuclear distribution suggests that each nucleus influences a specific compartment within the myofiber and implies a functional role for nuclear positioning. Compartmentalization of specific mRNAs and proteins has been reported at the neuromuscular and myotendinous junctions, but mRNA distribution in non-specialized regions of the myofibers remains largely unexplored. We report that the bulk of mRNAs are enriched around the nucleus of origin and that this perinuclear accumulation depends on recently transcribed mRNAs. Surprisingly, mRNAs encoding large proteins - giant mRNAs - are spread throughout the cell and do not exhibit perinuclear accumulation. Furthermore, by expressing exogenous transcripts with different sizes we found that size contributes to mRNA spreading independently of mRNA sequence. Both these mRNA distribution patterns depend on microtubules and are independent of nuclear dispersion, mRNA expression level and stability, and the characteristics of the encoded protein. Thus, we propose that mRNA distribution in non-specialized regions of skeletal muscle is size selective to ensure cellular compartmentalization and simultaneous long-range distribution of giant mRNAs.
Collapse
Affiliation(s)
- Helena Pinheiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Mafalda Ramos Pimentel
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Catarina Sequeira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Luís Manuel Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Anna Pezzarossa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - William Roman
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Experimental and Health Sciences (DCEXS), Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Edgar R. Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa. Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
16
|
Goldman CH, Neiswender H, Baker F, Veeranan-Karmegam R, Misra S, Gonsalvez GB. Optimal RNA binding by Egalitarian, a Dynein cargo adaptor, is critical for maintaining oocyte fate in Drosophila. RNA Biol 2021; 18:2376-2389. [PMID: 33904382 DOI: 10.1080/15476286.2021.1914422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Dynein motor is responsible for the localization of numerous mRNAs within Drosophila oocytes and embryos. The RNA binding protein, Egalitarian (Egl), is thought to link these various RNA cargoes with Dynein. Although numerous studies have shown that Egl is able to specifically associate with these RNAs, the nature of these interactions has remained elusive. Egl contains a central RNA binding domain that shares limited homology with an exonuclease, yet Egl binds to RNA without degrading it. Mutations have been identified within Egl that disrupt its association with its protein interaction partners, BicaudalD (BicD) and Dynein light chain (Dlc), but no mutants have been described that are specifically defective for RNA binding. In this report, we identified a series of positively charged residues within Egl that are required for RNA binding. Using corresponding RNA binding mutants, we demonstrate that specific RNA cargoes are more reliant on maximal Egl RNA biding activity for their correct localization in comparison to others. We also demonstrate that specification and maintenance of oocyte fate requires maximal Egl RNA binding activity. Even a subtle reduction in Egl's RNA binding activity completely disrupts this process. Our results show that efficient RNA localization at the earliest stages of oogenesis is required for specification of the oocyte and restriction of meiosis to a single cell.
Collapse
Affiliation(s)
- Chandler H Goldman
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Department of Genetics, Davidson Life Sciences Complex, University of Georgia, Athens, GA, USA
| | - Hannah Neiswender
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Frederick Baker
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | | - Saurav Misra
- Dept. Of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS,USA
| | - Graydon B Gonsalvez
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
17
|
Xiang X, Qiu R. Cargo-Mediated Activation of Cytoplasmic Dynein in vivo. Front Cell Dev Biol 2020; 8:598952. [PMID: 33195284 PMCID: PMC7649786 DOI: 10.3389/fcell.2020.598952] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic dynein-1 is a minus-end-directed microtubule motor that transports a variety of cargoes including early endosomes, late endosomes and other organelles. In many cell types, dynein accumulates at the microtubule plus end, where it interacts with its cargo to be moved toward the minus end. Dynein binds to its various cargoes via the dynactin complex and specific cargo adapters. Dynactin and some of the coiled-coil-domain-containing cargo adapters not only link dynein to cargo but also activate dynein motility, which implies that dynein is activated by its cellular cargo. Structural studies indicate that a dynein dimer switches between the autoinhibited phi state and an open state; and the binding of dynactin and a cargo adapter to the dynein tails causes the dynein motor domains to have a parallel configuration, allowing dynein to walk processively along a microtubule. Recently, the dynein regulator LIS1 has been shown to be required for dynein activation in vivo, and its mechanism of action involves preventing dynein from switching back to the autoinhibited state. In this review, we will discuss our current understanding of dynein activation and point out the gaps of knowledge on the spatial regulation of dynein in live cells. In addition, we will emphasize the importance of studying a complete set of dynein regulators for a better understanding of dynein regulation in vivo.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States
| | | |
Collapse
|
18
|
Lasko P. Patterning the Drosophila embryo: A paradigm for RNA-based developmental genetic regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1610. [PMID: 32543002 PMCID: PMC7583483 DOI: 10.1002/wrna.1610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022]
Abstract
Embryonic anterior–posterior patterning is established in Drosophila melanogaster by maternally expressed genes. The mRNAs of several of these genes accumulate at either the anterior or posterior pole of the oocyte via a number of mechanisms. Many of these mRNAs are also under elaborate translational regulation. Asymmetric RNA localization coupled with spatially restricted translation ensures that their proteins are restricted to the position necessary for the developmental process that they drive. Bicoid (Bcd), the anterior determinant, and Oskar (Osk), the determinant for primordial germ cells and posterior patterning, have been studied particularly closely. In early embryos an anterior–posterior gradient of Bcd is established, activating transcription of different sets of zygotic genes depending on local Bcd concentration. At the posterior pole, Osk seeds formation of polar granules, ribonucleoprotein complexes that accumulate further mRNAs and proteins involved in posterior patterning and germ cell specification. After fertilization, polar granules associate with posterior nuclei and mature into nuclear germ granules. Osk accumulates in these granules, and either by itself or as part of the granules, stimulates germ cell division. This article is categorized under:RNA Export and Localization > RNA Localization Translation > Translation Regulation RNA in Disease and Development > RNA in Development
Collapse
Affiliation(s)
- Paul Lasko
- Department of Biology, McGill University, Montréal, Québec, Canada.,Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|
19
|
Tung A, Levin M. Extra-genomic instructive influences in morphogenesis: A review of external signals that regulate growth and form. Dev Biol 2020; 461:1-12. [PMID: 31981561 DOI: 10.1016/j.ydbio.2020.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
Embryonic development and regeneration accomplish a remarkable feat: individual cells work together to create or repair complex anatomical structures. What is the source of the instructive signals that specify these invariant and robust organ-level outcomes? The most frequently studied source of morphogenetic control is the host genome and its transcriptional circuits. However, it is now apparent that significant information affecting patterning also arrives from outside of the body. Both biotic and physical factors, including temperature and various molecular signals emanating from pathogens, commensals, and conspecific organisms, affect developmental outcomes. Here, we review examples in which anatomical patterning decisions are strongly impacted by lateral signals that originate from outside of the zygotic genome. The endogenous pathways targeted by these influences often show transgenerational effects, enabling them to shape the evolution of anatomies even faster than traditional Baldwin-type assimilation. We also discuss recent advances in the biophysics of morphogenetic controls and speculate on additional sources of important patterning information which could be exploited to better understand the evolution of bodies and to design novel approaches for regenerative medicine.
Collapse
Affiliation(s)
- Angela Tung
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Michael Levin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
20
|
Drechsler M, Lang LF, Al-Khatib L, Dirks H, Burger M, Schönlieb CB, Palacios IM. Optical flow analysis reveals that Kinesin-mediated advection impacts the orientation of microtubules in the Drosophila oocyte. Mol Biol Cell 2020; 31:1246-1258. [PMID: 32267197 PMCID: PMC7353148 DOI: 10.1091/mbc.e19-08-0440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The orientation of microtubule (MT) networks is exploited by motors to deliver cargoes to specific intracellular destinations and is thus essential for cell polarity and function. Reconstituted in vitro systems have largely contributed to understanding the molecular framework regulating the behavior of MT filaments. In cells, however, MTs are exposed to various biomechanical forces that might impact on their orientation, but little is known about it. Oocytes, which display forceful cytoplasmic streaming, are excellent model systems to study the impact of motion forces on cytoskeletons in vivo. Here we implement variational optical flow analysis as a new approach to analyze the polarity of MTs in the Drosophila oocyte, a cell that displays distinct Kinesin-dependent streaming. After validating the method as robust for describing MT orientation from confocal movies, we find that increasing the speed of flows results in aberrant plus end growth direction. Furthermore, we find that in oocytes where Kinesin is unable to induce cytoplasmic streaming, the growth direction of MT plus ends is also altered. These findings lead us to propose that cytoplasmic streaming - and thus motion by advection – contributes to the correct orientation of MTs in vivo. Finally, we propose a possible mechanism for a specialized cytoplasmic actin network (the actin mesh) to act as a regulator of flow speeds to counteract the recruitment of Kinesin to MTs.
Collapse
Affiliation(s)
- Maik Drechsler
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom.,Department of Zoology and Developmental Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Lukas F Lang
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Layla Al-Khatib
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Hendrik Dirks
- Institute for Computational and Applied Mathematics, University of Münster, 48149 Münster, Germany
| | - Martin Burger
- Department of Mathematics, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Carola-Bibiane Schönlieb
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Isabel M Palacios
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| |
Collapse
|
21
|
Abstract
RNA localization is a key biological strategy for organizing the cytoplasm and generating both cellular and developmental polarity. During RNA localization, RNAs are targeted asymmetrically to specific subcellular destinations, resulting in spatially and temporally restricted gene expression through local protein synthesis. First discovered in oocytes and embryos, RNA localization is now recognized as a significant regulatory strategy for diverse RNAs, both coding and non-coding, in a wide range of cell types. Yet, the highly polarized cytoplasm of the oocyte remains a leading model to understand not only the principles and mechanisms underlying RNA localization, but also links to the formation of biomolecular condensates through phase separation. Here, we discuss both RNA localization and biomolecular condensates in oocytes with a particular focus on the oocyte of the frog, Xenopus laevis.
Collapse
Affiliation(s)
- Sarah E Cabral
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
22
|
Westerich KJ, Chandrasekaran KS, Gross-Thebing T, Kueck N, Raz E, Rentmeister A. Bioorthogonal mRNA labeling at the poly(A) tail for imaging localization and dynamics in live zebrafish embryos. Chem Sci 2020; 11:3089-3095. [PMID: 33623655 PMCID: PMC7879197 DOI: 10.1039/c9sc05981d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Live imaging of mRNA in cells and organisms is important for understanding the dynamic aspects underlying its function.
Live imaging of mRNA in cells and organisms is important for understanding the dynamic aspects underlying its function. Ideally, labeling of mRNA should not alter its structure or function, nor affect the biological system. However, most methods applied in vivo make use of genetically encoded tags and reporters that significantly enhance the size of the mRNA of interest. Alternately, we utilize the 3′ poly(A) tail as a non-coding repetitive hallmark to covalently label mRNAs via bioorthogonal chemistry with different fluorophores from a wide range of spectra without significantly changing the size. We demonstrate that the labeled mRNAs can be visualized in cells and zebrafish embryos, and that they are efficiently translated. Importantly, the labeled mRNAs acquired the proper subcellular localization in developing zebrafish embryos and their dynamics could be tracked in vivo.
Collapse
Affiliation(s)
- Kim J Westerich
- Institute of Cell Biology Center for Molecular Biology of Inflammation , University of Münster , D-48149 Münster , Germany .
| | - Karthik S Chandrasekaran
- Institut für Biochemie , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Theresa Gross-Thebing
- Institute of Cell Biology Center for Molecular Biology of Inflammation , University of Münster , D-48149 Münster , Germany .
| | - Nadine Kueck
- Institut für Biochemie , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Erez Raz
- Cells in Motion Interfaculty Centre (CiMIC) , Waldeyerstraße 15 , D-48149 Münster , Germany.,Institute of Cell Biology Center for Molecular Biology of Inflammation , University of Münster , D-48149 Münster , Germany .
| | - Andrea Rentmeister
- Cells in Motion Interfaculty Centre (CiMIC) , Waldeyerstraße 15 , D-48149 Münster , Germany.,Institut für Biochemie , Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| |
Collapse
|
23
|
Hinnant TD, Merkle JA, Ables ET. Coordinating Proliferation, Polarity, and Cell Fate in the Drosophila Female Germline. Front Cell Dev Biol 2020; 8:19. [PMID: 32117961 PMCID: PMC7010594 DOI: 10.3389/fcell.2020.00019] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023] Open
Abstract
Gametes are highly specialized cell types produced by a complex differentiation process. Production of viable oocytes requires a series of precise and coordinated molecular events. Early in their development, germ cells are an interconnected group of mitotically dividing cells. Key regulatory events lead to the specification of mature oocytes and initiate a switch to the meiotic cell cycle program. Though the chromosomal events of meiosis have been extensively studied, it is unclear how other aspects of oocyte specification are temporally coordinated. The fruit fly, Drosophila melanogaster, has long been at the forefront as a model system for genetics and cell biology research. The adult Drosophila ovary continuously produces germ cells throughout the organism’s lifetime, and many of the cellular processes that occur to establish oocyte fate are conserved with mammalian gamete development. Here, we review recent discoveries from Drosophila that advance our understanding of how early germ cells balance mitotic exit with meiotic initiation. We discuss cell cycle control and establishment of cell polarity as major themes in oocyte specification. We also highlight a germline-specific organelle, the fusome, as integral to the coordination of cell division, cell polarity, and cell fate in ovarian germ cells. Finally, we discuss how the molecular controls of the cell cycle might be integrated with cell polarity and cell fate to maintain oocyte production.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
24
|
Modulation of Cell-Cell Interactions in Drosophila Oocyte Development. Cells 2020; 9:cells9020274. [PMID: 31979180 PMCID: PMC7072342 DOI: 10.3390/cells9020274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
The Drosophila ovary offers a suitable model system to study the mechanisms that orchestrate diverse cellular processes. Oogenesis starts from asymmetric stem cell division, proper differentiation and the production of fully patterned oocytes equipped with all the maternal information required for embryogenesis. Spatial and temporal regulation of cell-cell interaction is particularly important to fulfill accurate biological outcomes at each step of oocyte development. Progress has been made in understanding diverse cell physiological regulation of signaling. Here we review the roles of specialized cellular machinery in cell-cell communication in different stages of oogenesis.
Collapse
|
25
|
Métivier M, Monroy BY, Gallaud E, Caous R, Pascal A, Richard-Parpaillon L, Guichet A, Ori-McKenney KM, Giet R. Dual control of Kinesin-1 recruitment to microtubules by Ensconsin in Drosophila neuroblasts and oocytes. Development 2019; 146:dev.171579. [PMID: 30936181 DOI: 10.1242/dev.171579] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/25/2019] [Indexed: 01/02/2023]
Abstract
Drosophila Ensconsin (also known as MAP7) controls spindle length, centrosome separation in brain neuroblasts (NBs) and asymmetric transport in oocytes. The control of spindle length by Ensconsin is Kinesin-1 independent but centrosome separation and oocyte transport require targeting of Kinesin-1 to microtubules by Ensconsin. However, the molecular mechanism used for this targeting remains unclear. Ensconsin contains a microtubule (MT)-binding domain (MBD) and a Kinesin-binding domain (KBD). Rescue experiments show that only full-length Ensconsin restores the spindle length phenotype. KBD expression rescues ensc centrosome separation defects in NBs, but not the fast oocyte streaming and the localization of Staufen and Gurken. Interestingly, the KBD can stimulate Kinesin-1 targeting to MTs in vivo and in vitro We propose that a KBD and Kinesin-1 complex is a minimal activation module that increases Kinesin-1 affinity for MTs. Addition of the MBD present in full-length Ensconsin allows this process to occur directly on the MT and triggers higher Kinesin-1 targeting. This dual regulation by Ensconsin is essential for optimal Kinesin-1 targeting to MTs in oocytes, but not in NBs, illustrating the importance of adapting Kinesin-1 recruitment to different biological contexts.
Collapse
Affiliation(s)
- Mathieu Métivier
- Univ. Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Brigette Y Monroy
- University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Emmanuel Gallaud
- Univ. Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Renaud Caous
- Univ. Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Aude Pascal
- Univ. Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Laurent Richard-Parpaillon
- Univ. Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Antoine Guichet
- Institut Jacques Monod-Université Paris Diderot-Paris 7, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | - Régis Giet
- Univ. Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
26
|
Jouette J, Guichet A, Claret SB. Dynein-mediated transport and membrane trafficking control PAR3 polarised distribution. eLife 2019; 8:40212. [PMID: 30672465 PMCID: PMC6358217 DOI: 10.7554/elife.40212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
The scaffold protein PAR3 and the kinase PAR1 are essential proteins that control cell polarity. Their precise opposite localisations define plasma membrane domains with specific functions. PAR3 and PAR1 are mutually inhibited by direct or indirect phosphorylations, but their fates once phosphorylated are poorly known. Through precise spatiotemporal quantification of PAR3 localisation in the Drosophila oocyte, we identify several mechanisms responsible for its anterior cortex accumulation and its posterior exclusion. We show that PAR3 posterior plasma membrane exclusion depends on PAR1 and an endocytic mechanism relying on RAB5 and PI(4,5)P2. In a second phase, microtubules and the dynein motor, in connection with vesicular trafficking involving RAB11 and IKK-related kinase, IKKε, are required for PAR3 transport towards the anterior cortex. Altogether, our results point to a connection between membrane trafficking and dynein-mediated transport to sustain PAR3 asymmetry.
Collapse
Affiliation(s)
- Julie Jouette
- Institut Jacques Monod, CNRS, UMR 7592, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Antoine Guichet
- Institut Jacques Monod, CNRS, UMR 7592, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Sandra B Claret
- Institut Jacques Monod, CNRS, UMR 7592, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
27
|
Ciocanel MV, Sandstede B, Jeschonek SP, Mowry KL. Modeling microtubule-based transport and anchoring of mRNA. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS 2018; 17:2855-2881. [PMID: 34135697 PMCID: PMC8205424 DOI: 10.1137/18m1186083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Localization of messenger RNA (mRNA) at the vegetal cortex plays an important role in the early development of Xenopus laevis oocytes. While it is known that molecular motors are responsible for the transport of mRNA cargo along microtubules to the cortex, the mechanisms of localization remain unclear. We model cargo transport along microtubules using partial differential equations with spatially-dependent rates. A theoretical analysis of reduced versions of our model predicts effective velocity and diffusion rates for the cargo and shows that randomness of microtubule networks enhances effective transport. A more complex model using parameters estimated from fluorescence microscopy data reproduces the spatial and timescales of mRNA localization observed in Xenopus oocytes, corroborates experimental hypotheses that anchoring may be necessary to achieve complete localization, and shows that anchoring of mRNA complexes actively transported to the cortex is most effective in achieving robust accumulation at the cortex.
Collapse
Affiliation(s)
| | - Björn Sandstede
- Division of Applied Mathematics, Brown University, Providence, RI
| | - Samantha P Jeschonek
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI
| |
Collapse
|
28
|
Yang Z, Xu B, Hu X, Yao X, Tang Y, Qian C, Wang S, Chen H, Bai X, Wu J. Dynein axonemal intermediate chain 2 plays a role in gametogenesis by activation of Stat3. J Cell Mol Med 2018; 23:417-425. [PMID: 30387321 PMCID: PMC6307815 DOI: 10.1111/jcmm.13945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/10/2018] [Indexed: 01/12/2023] Open
Abstract
We previously identified the mouse dynein axonemal intermediate chain 2 (Dnaic2) gene. This gene expresses a component of the axonemal dynein complex that functions in cilia or flagella. We found that overexpression of Dnaic2 results in female subfertility and male infertility. In this study, we generated Dnaic2 knockdown (KD) mice and identified the potential regulatory mechanisms involved in Dnaic2 function. For phenotype analysis, we found that body weight was lighter and size was smaller in Dnaic2 KD mice than in wild‐type mice. A total of 45% of these Dnaic2 KD mice were infertile due to sperm abnormalities in males, or had oocyte abnormalities and pathological changes in the tunica mucosa in the oviduct of females. Moreover, Dnaic2 overexpression enhanced the expression of proliferating cell nuclear antigen (PCNA) in the ovaries, which suggested that Dnaic2 stimulated proliferation of cells in the ovaries. However, PCNA expression in the testis of Dnaic2‐overexpressed mice was lower than that in controls. Additionally, the ratio of Bax/B‐cell lymphoma‐2(Bcl‐2) in the testis of Dnaic2‐overexpressed mice was higher than that in controls, which suggested that Dnaic2 inhibited cellular proliferation in the testis. To examine the molecular action of Dnaic2, immunoprecipitation analysis was used and showed that Dnaic2 protein interacted with signal transducer and activator of transcription 3 (Stat3). Molecular modelling analysis showed that Dnaic2 bound with the linker and SH2 domains of Stat3. Furthermore, overexpression of Dnaic2 promoted phosphorylation of Stat3. In conclusion, our study suggests that Dnaic2 plays a role in oogenesis and spermatogenesis by activation of Stat3.
Collapse
Affiliation(s)
- Zhaojuan Yang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Xu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaopeng Hu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoying Yao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yunhui Tang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Cuifeng Qian
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Shuzeng Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Haifeng Chen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Bai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai, China
| |
Collapse
|
29
|
Subcellular Specialization and Organelle Behavior in Germ Cells. Genetics 2018; 208:19-51. [PMID: 29301947 DOI: 10.1534/genetics.117.300184] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
Gametes, eggs and sperm, are the highly specialized cell types on which the development of new life solely depends. Although all cells share essential organelles, such as the ER (endoplasmic reticulum), Golgi, mitochondria, and centrosomes, germ cells display unique regulation and behavior of organelles during gametogenesis. These germ cell-specific functions of organelles serve critical roles in successful gamete production. In this chapter, I will review the behaviors and roles of organelles during germ cell differentiation.
Collapse
|
30
|
Abstract
Gametogenesis represents the most dramatic cellular differentiation pathways in both female and male flies. At the genome level, meiosis ensures that diploid germ cells become haploid gametes. At the epigenome level, extensive changes are required to turn on and shut off gene expression in a precise spatiotemporally controlled manner. Research applying conventional molecular genetics and cell biology, in combination with rapidly advancing genomic tools have helped us to investigate (1) how germ cells maintain lineage specificity throughout their adult reproductive lifetime; (2) what molecular mechanisms ensure proper oogenesis and spermatogenesis, as well as protect genome integrity of the germline; (3) how signaling pathways contribute to germline-soma communication; and (4) if such communication is important. In this chapter, we highlight recent discoveries that have improved our understanding of these questions. On the other hand, restarting a new life cycle upon fertilization is a unique challenge faced by gametes, raising questions that involve intergenerational and transgenerational epigenetic inheritance. Therefore, we also discuss new developments that link changes during gametogenesis to early embryonic development-a rapidly growing field that promises to bring more understanding to some fundamental questions regarding metazoan development.
Collapse
|
31
|
Requirement of the Dynein-Adaptor Spindly for Mitotic and Post-Mitotic Functions in Drosophila. J Dev Biol 2018; 6:jdb6020009. [PMID: 29615558 PMCID: PMC6027351 DOI: 10.3390/jdb6020009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 11/17/2022] Open
Abstract
Spindly was originally identified as a specific regulator of Dynein activity at the kinetochore. In early prometaphase, Spindly recruits the Dynein/Dynactin complex, promoting the establishment of stable kinetochore-microtubule interactions and progression into anaphase. While details of Spindly function in mitosis have been worked out in cultured human cells and in the C. elegans zygote, the function of Spindly within the context of an organism has not yet been addressed. Here, we present loss- and gain-of-function studies of Spindly using transgenic RNAi in Drosophila. Knock-down of Spindly in the female germ line results in mitotic arrest during embryonic cleavage divisions. We investigated the requirements of Spindly protein domains for its localisation and function, and found that the carboxy-terminal region controls Spindly localisation in a cell-type specific manner. Overexpression of Spindly in the female germ line is embryonic lethal and results in altered egg morphology. To determine whether Spindly plays a role in post-mitotic cells, we altered Spindly protein levels in migrating cells and found that ovarian border cell migration is sensitive to the levels of Spindly protein. Our study uncovers novel functions of Spindly and a differential, functional requirement for its carboxy-terminal region in Drosophila.
Collapse
|
32
|
Kreitzer G, Myat MM. Microtubule Motors in Establishment of Epithelial Cell Polarity. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a027896. [PMID: 28264820 DOI: 10.1101/cshperspect.a027896] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epithelial cells play a key role in insuring physiological homeostasis by acting as a barrier between the outside environment and internal organs. They are also responsible for the vectorial transport of ions and fluid essential to the function of many organs. To accomplish these tasks, epithelial cells must generate an asymmetrically organized plasma membrane comprised of structurally and functionally distinct apical and basolateral membranes. Adherent and occluding junctions, respectively, anchor cells within a layer and prevent lateral diffusion of proteins in the outer leaflet of the plasma membrane and restrict passage of proteins and solutes through intercellular spaces. At a fundamental level, the establishment and maintenance of epithelial polarity requires that signals initiated at cell-substratum and cell-cell adhesions are transmitted appropriately and dynamically to the cytoskeleton, to the membrane-trafficking machinery, and to the regulation of occluding and adherent junctions. Rigorous descriptive and mechanistic studies published over the last 50 years have provided great detail to our understanding of epithelial polarization. Yet still, critical early steps in morphogenesis are not yet fully appreciated. In this review, we discuss how cytoskeletal motor proteins, primarily kinesins, contribute to coordinated modification of microtubule and actin arrays, formation and remodeling of cell adhesions to targeted membrane trafficking, and to initiating the formation and expansion of an apical lumen.
Collapse
Affiliation(s)
- Geri Kreitzer
- Department of Pathobiology, Sophie Davis School of Biomedical Education, City College of New York, The City University of New York School of Medicine, New York, New York 10031
| | - Monn Monn Myat
- Department of Biology, Medgar Evers College, Brooklyn, New York 11225.,The Graduate Center, The City University of New York, New York, New York 10016
| |
Collapse
|
33
|
Enzymatic Modification of 5'-Capped RNA and Subsequent Labeling by Click Chemistry. Methods Mol Biol 2017; 1428:45-60. [PMID: 27236791 DOI: 10.1007/978-1-4939-3625-0_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The combination of enzymatic modification and bioorthogonal click chemistry provides a powerful approach for site-specific labeling of different classes of biomolecules in vitro and even in cellular environments. Herein, we describe a chemoenzymatic method to site specifically label 5'-capped model mRNAs independent of their sequence. A trimethylguanosine synthase was engineered to introduce alkyne, azido, or 4-vinylbenzyl moieties to the 5'-cap. These functional groups were then used for labeling using typical click reactions, such as the azide-alkyne cycloaddition or the tetrazine ligation.
Collapse
|
34
|
Bernard F, Lepesant JA, Guichet A. Nucleus positioning within Drosophila egg chamber. Semin Cell Dev Biol 2017; 82:25-33. [PMID: 29056490 DOI: 10.1016/j.semcdb.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Both types of Drosophila egg chamber germ cells, i.e. oocyte and nurse cells, have to control their nucleus positions in order to produce a viable gamete. Interestingly, while actin microfilaments are crucial to position the nuclei in nurse cells, these are the microtubules that are important for oocyte nucleus to migrate and adopt the correct position. In this review, we discuss the mechanisms underlying these positioning processes in the two cell types with respect to the organization and dynamics of the actin and microtubule skeleton. In the nurse cells it is essential to keep firmly the nuclei in a central position to prevent them from obstructing the ring canals when the cytoplasmic content of the cells is dumped into the oocyte cells toward the end of oogenesis. This is achieved by the assembly of thick filopodia-like actin cables anchored to the plasma membrane, which grow inwardly and eventually encase tightly the nuclei in a cage-like structure. In the oocyte, the migration at an early stage of oogenesis of the nucleus from a posterior location to an anchorage site at an asymmetric anterior position, is an essential step in the setting up of the dorsoventral polarity axis of the future embryo. This process is controlled by an interplay between MT networks that just start to be untangled. Although both mechanisms have evolved to fulfill cell-type specific cell processes in the context of fly oogenesis, interesting parallels can be drawn with other nuclear positioning mechanisms in the mouse oocyte and the developing muscle respectively.
Collapse
Affiliation(s)
- Fred Bernard
- Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex, France.
| | - Jean-Antoine Lepesant
- Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex, France.
| | - Antoine Guichet
- Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex, France.
| |
Collapse
|
35
|
Distinct molecular cues ensure a robust microtubule-dependent nuclear positioning in the Drosophila oocyte. Nat Commun 2017; 8:15168. [PMID: 28447612 PMCID: PMC5414183 DOI: 10.1038/ncomms15168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/02/2017] [Indexed: 11/08/2022] Open
Abstract
Controlling nucleus localization is crucial for a variety of cellular functions. In the Drosophila oocyte, nuclear asymmetric positioning is essential for the reorganization of the microtubule (MT) network that controls the polarized transport of axis determinants. A combination of quantitative three-dimensional live imaging and laser ablation-mediated force analysis reveal that nuclear positioning is ensured with an unexpected level of robustness. We show that the nucleus is pushed to the oocyte antero-dorsal cortex by MTs and that its migration can proceed through distinct tracks. Centrosome-associated MTs favour one migratory route. In addition, the MT-associated protein Mud/NuMA that is asymmetrically localized in an Asp-dependent manner at the nuclear envelope hemisphere where MT nucleation is higher promotes a separate route. Our results demonstrate that centrosomes do not provide an obligatory driving force for nuclear movement, but together with Mud, contribute to the mechanisms that ensure the robustness of asymmetric nuclear positioning. Asymmetric nuclear positioning in the fruit fly oocyte is essential for the correct localization of axis determinants. Here, the authors show that different microtubule-dependent mechanisms contribute to nuclear transport and ensure the robustness of nuclear positioning.
Collapse
|
36
|
Goldman CH, Gonsalvez GB. The Role of Microtubule Motors in mRNA Localization and Patterning Within the Drosophila Oocyte. Results Probl Cell Differ 2017; 63:149-168. [PMID: 28779317 DOI: 10.1007/978-3-319-60855-6_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Messenger RNA (mRNA) localization is a powerful and prevalent mechanism of post-transcriptional gene regulation, enabling the cell to produce protein at the exact location at which it is needed. The phenomenon of mRNA localization has been observed in many types of cells in organisms ranging from yeast to man. Thus, the process appears to be widespread and highly conserved. Several model systems have been used to understand the mechanism by which mRNAs are localized. One such model, and the focus of this chapter, is the egg chamber of the female Drosophila melanogaster. The polarity of the developing Drosophila oocyte and resulting embryo relies on the specific localization of three critical mRNAs: gurken, bicoid, and oskar. If these mRNAs are not localized during oogenesis, the resulting progeny will not survive. The study of these mRNAs has served as a model for understanding the general mechanisms by which mRNAs are sorted. In this chapter, we will discuss how the localization of these mRNAs enables polarity establishment. We will also discuss the role of motor proteins in the localization pathway. Finally, we will consider potential mechanisms by which mRNAs can be anchored at their site of localization. It is likely that the lessons learned using the Drosophila oocyte model system will be applicable to mRNAs that are localized in other organisms as well.
Collapse
Affiliation(s)
- Chandler H Goldman
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd., CB2917, Augusta, GA, 30912, USA
| | - Graydon B Gonsalvez
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd., CB2917, Augusta, GA, 30912, USA.
| |
Collapse
|
37
|
Nieuwburg R, Nashchekin D, Jakobs M, Carter AP, Khuc Trong P, Goldstein RE, St Johnston D. Localised dynactin protects growing microtubules to deliver oskar mRNA to the posterior cortex of the Drosophila oocyte. eLife 2017; 6:e27237. [PMID: 29035202 PMCID: PMC5643094 DOI: 10.7554/elife.27237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
The localisation of oskar mRNA to the posterior of the Drosophila oocyte defines where the abdomen and germ cells form in the embryo. Kinesin 1 transports oskar mRNA to the oocyte posterior along a polarised microtubule cytoskeleton that grows from non-centrosomal microtubule organising centres (ncMTOCs) along the anterior/lateral cortex. Here, we show that the formation of this polarised microtubule network also requires the posterior regulation of microtubule growth. A missense mutation in the dynactin Arp1 subunit causes most oskar mRNA to localise in the posterior cytoplasm rather than cortically. oskar mRNA transport and anchoring are normal in this mutant, but the microtubules fail to reach the posterior pole. Thus, dynactin acts as an anti-catastrophe factor that extends microtubule growth posteriorly. Kinesin 1 transports dynactin to the oocyte posterior, creating a positive feedback loop that increases the length and persistence of the posterior microtubules that deliver oskar mRNA to the cortex.
Collapse
Affiliation(s)
- Ross Nieuwburg
- The Gurdon Institute and the Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Dmitry Nashchekin
- The Gurdon Institute and the Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Maximilian Jakobs
- The Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Andrew P Carter
- Division of Structural StudiesMedical Research Council, Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Philipp Khuc Trong
- Department of Applied Mathematics and Theoretical PhysicsUniversity of Cambridge, Centre for Mathematical SciencesCambridgeUnited Kingdom
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical PhysicsUniversity of Cambridge, Centre for Mathematical SciencesCambridgeUnited Kingdom
| | - Daniel St Johnston
- The Gurdon Institute and the Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
38
|
Gáspár I, Sysoev V, Komissarov A, Ephrussi A. An RNA-binding atypical tropomyosin recruits kinesin-1 dynamically to oskar mRNPs. EMBO J 2016; 36:319-333. [PMID: 28028052 PMCID: PMC5286366 DOI: 10.15252/embj.201696038] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 11/14/2022] Open
Abstract
Localization and local translation of oskar mRNA at the posterior pole of the Drosophila oocyte directs abdominal patterning and germline formation in the embryo. The process requires recruitment and precise regulation of motor proteins to form transport‐competent mRNPs. We show that the posterior‐targeting kinesin‐1 is loaded upon nuclear export of oskar mRNPs, prior to their dynein‐dependent transport from the nurse cells into the oocyte. We demonstrate that kinesin‐1 recruitment requires the DmTropomyosin1‐I/C isoform, an atypical RNA‐binding tropomyosin that binds directly to dimerizing oskar 3′UTRs. Finally, we show that a small but dynamically changing subset of oskar mRNPs gets loaded with inactive kinesin‐1 and that the motor is activated during mid‐oogenesis by the functionalized spliced oskar RNA localization element. This inefficient, dynamic recruitment of Khc decoupled from cargo‐dependent motor activation constitutes an optimized, coordinated mechanism of mRNP transport, by minimizing interference with other cargo‐transport processes and between the cargo‐associated dynein and kinesin‐1.
Collapse
Affiliation(s)
- Imre Gáspár
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vasiliy Sysoev
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Artem Komissarov
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
39
|
Abstract
PAR-1/MARK kinases are conserved serine/threonine kinases that are essential regulators of cell polarity. PAR-1/MARK kinases localize and function in opposition to the anterior PAR proteins to control the asymmetric distribution of factors in a wide variety polarized cells. In this review, we discuss the mechanisms that control the localization and activity of PAR-1/MARK kinases, including their antagonistic interactions with the anterior PAR proteins. We focus on the role PAR-1 plays in the asymmetric division of the Caenorhabditis elegans zygote, in the establishment of the anterior/posterior axis in the Drosophila oocyte and in the control of microtubule dynamics in mammalian neurons. In addition to conserved aspects of PAR-1 biology, we highlight the unique ways in which PAR-1 acts in these distinct cell types to orchestrate their polarization. Finally, we review the connections between disruptions in PAR-1/MARK function and Alzheimer's disease and cancer.
Collapse
Affiliation(s)
- Youjun Wu
- Dartmouth College, Hanover, NH, United States
| | | |
Collapse
|
40
|
Trovisco V, Belaya K, Nashchekin D, Irion U, Sirinakis G, Butler R, Lee JJ, Gavis ER, St Johnston D. bicoid mRNA localises to the Drosophila oocyte anterior by random Dynein-mediated transport and anchoring. eLife 2016; 5. [PMID: 27791980 PMCID: PMC5125753 DOI: 10.7554/elife.17537] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/25/2016] [Indexed: 01/17/2023] Open
Abstract
bicoid mRNA localises to the Drosophila oocyte anterior from stage 9 of oogenesis onwards to provide a local source for Bicoid protein for embryonic patterning. Live imaging at stage 9 reveals that bicoid mRNA particles undergo rapid Dynein-dependent movements near the oocyte anterior, but with no directional bias. Furthermore, bicoid mRNA localises normally in shot2A2, which abolishes the polarised microtubule organisation. FRAP and photo-conversion experiments demonstrate that the RNA is stably anchored at the anterior, independently of microtubules. Thus, bicoid mRNA is localised by random active transport and anterior anchoring. Super-resolution imaging reveals that bicoid mRNA forms 110-120 nm particles with variable RNA content, but constant size. These particles appear to be well-defined structures that package the RNA for transport and anchoring.
Collapse
Affiliation(s)
- Vítor Trovisco
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Katsiaryna Belaya
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Dmitry Nashchekin
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Uwe Irion
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - George Sirinakis
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Richard Butler
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jack J Lee
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Daniel St Johnston
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
41
|
Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors. Proc Natl Acad Sci U S A 2016; 113:E6823-E6830. [PMID: 27791141 DOI: 10.1073/pnas.1612047113] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In humans, errors in meiotic chromosome segregation that produce aneuploid gametes increase dramatically as women age, a phenomenon termed the "maternal age effect." During meiosis, cohesion between sister chromatids keeps recombinant homologs physically attached and premature loss of cohesion can lead to missegregation of homologs during meiosis I. A growing body of evidence suggests that meiotic cohesion deteriorates as oocytes age and contributes to the maternal age effect. One hallmark of aging cells is an increase in oxidative damage caused by reactive oxygen species (ROS). Therefore, increased oxidative damage in older oocytes may be one of the factors that leads to premature loss of cohesion and segregation errors. To test this hypothesis, we used an RNAi strategy to induce oxidative stress in Drosophila oocytes and measured the fidelity of chromosome segregation during meiosis. Knockdown of either the cytoplasmic or mitochondrial ROS scavenger superoxide dismutase (SOD) caused a significant increase in segregation errors, and heterozygosity for an smc1 deletion enhanced this phenotype. FISH analysis indicated that SOD knockdown moderately increased the percentage of oocytes with arm cohesion defects. Consistent with premature loss of arm cohesion and destabilization of chiasmata, the frequency at which recombinant homologs missegregate during meiosis I is significantly greater in SOD knockdown oocytes than in controls. Together these results provide an in vivo demonstration that oxidative stress during meiotic prophase induces chromosome segregation errors and support the model that accelerated loss of cohesion in aging human oocytes is caused, at least in part, by oxidative damage.
Collapse
|
42
|
Veeranan-Karmegam R, Boggupalli DP, Liu G, Gonsalvez GB. A new isoform of Drosophila non-muscle Tropomyosin 1 interacts with Kinesin-1 and functions in oskar mRNA localization. J Cell Sci 2016; 129:4252-4264. [PMID: 27802167 DOI: 10.1242/jcs.194332] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/05/2016] [Indexed: 12/16/2022] Open
Abstract
Recent studies have revealed that diverse cell types use mRNA localization as a means to establish polarity. Despite the prevalence of this phenomenon, much less is known regarding the mechanism by which mRNAs are localized. The Drosophila melanogaster oocyte provides a useful model for examining the process of mRNA localization. oskar (osk) mRNA is localized at the posterior of the oocyte, thus restricting the expression of Oskar protein to this site. The localization of osk mRNA is microtubule dependent and requires the plus-end-directed motor Kinesin-1. Unlike most Kinesin-1 cargoes, localization of osk mRNA requires the Kinesin heavy chain (Khc) motor subunit, but not the Kinesin light chain (Klc) adaptor. In this report, we demonstrate that a newly discovered isoform of Tropomyosin 1, referred to as Tm1C, directly interacts with Khc and functions in concert with this microtubule motor to localize osk mRNA. Apart from osk mRNA localization, several additional Khc-dependent processes in the oocyte are unaffected upon loss of Tm1C. Our results therefore suggest that the Tm1C-Khc interaction is specific for the osk localization pathway.
Collapse
Affiliation(s)
- Rajalakshmi Veeranan-Karmegam
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Devi Prasad Boggupalli
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Guojun Liu
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Graydon B Gonsalvez
- Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1459 Laney Walker Blvd, Augusta, GA 30912, USA
| |
Collapse
|
43
|
Ma J, He F, Xie G, Deng WM. Maternal AP determinants in the Drosophila oocyte and embryo. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:562-81. [PMID: 27253156 DOI: 10.1002/wdev.235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/24/2016] [Accepted: 03/13/2016] [Indexed: 12/12/2022]
Abstract
An animal embryo cannot initiate its journey of forming a new life on its own. It must rely on maternally provided resources and inputs to kick-start its developmental process. In Drosophila, the initial polarities of the embryo along both the anterior-posterior (AP) and dorsal-ventral (DV) axes are also specified by maternal determinants. Over the past several decades, genetic and molecular studies have identified and characterized such determinants, as well as the zygotic genetic regulatory networks that control patterning in the early embryo. Extensive studies of oogenesis have also led to a detailed knowledge of the cellular and molecular interactions that control the formation of a mature egg. Despite these efforts, oogenesis and embryogenesis have been studied largely as separate problems, except for qualitative aspects with regard to maternal regulation of the asymmetric localization of maternal determinants. Can oogenesis and embryogenesis be viewed from a unified perspective at a quantitative level, and can that improve our understanding of how robust embryonic patterning is achieved? Here, we discuss the basic knowledge of the regulatory mechanisms controlling oogenesis and embryonic patterning along the AP axis. We explore properties of the maternal Bicoid gradient in relation to embryo size in search for a unified framework for robust AP patterning. WIREs Dev Biol 2016, 5:562-581. doi: 10.1002/wdev.235 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jun Ma
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.,Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Feng He
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
44
|
Winkler F, Gummalla M, Künneke L, Lv Z, Zippelius A, Aspelmeier T, Grosshans J. Fluctuation Analysis of Centrosomes Reveals a Cortical Function of Kinesin-1. Biophys J 2016; 109:856-68. [PMID: 26331244 PMCID: PMC4564942 DOI: 10.1016/j.bpj.2015.07.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 07/20/2015] [Accepted: 07/31/2015] [Indexed: 01/28/2023] Open
Abstract
The actin and microtubule networks form the dynamic cytoskeleton. Network dynamics is driven by molecular motors applying force onto the networks and the interactions between the networks. Here we assay the dynamics of centrosomes in the scale of seconds as a proxy for the movement of microtubule asters. With this assay we want to detect the role of specific motors and of network interaction. During interphase of syncytial embryos of Drosophila, cortical actin and the microtubule network depend on each other. Centrosomes induce cortical actin to form caps, whereas F-actin anchors microtubules to the cortex. In addition, lateral interactions between microtubule asters are assumed to be important for regular spatial organization of the syncytial embryo. The functional interaction between the microtubule asters and cortical actin has been largely analyzed in a static manner, so far. We recorded the movement of centrosomes at 1 Hz and analyzed their fluctuations for two processes—pair separation and individual movement. We found that F-actin is required for directional movements during initial centrosome pair separation, because separation proceeds in a diffusive manner in latrunculin-injected embryos. For assaying individual movement, we established a fluctuation parameter as the deviation from temporally and spatially slowly varying drift movements. By analysis of mutant and drug-injected embryos, we found that the fluctuations were suppressed by both cortical actin and microtubules. Surprisingly, the microtubule motor Kinesin-1 also suppressed fluctuations to a similar degree as F-actin. Kinesin-1 may mediate linkage of the microtubule (+)-ends to the actin cortex. Consistent with this model is our finding that Kinesin-1-GFP accumulates at the cortical actin caps.
Collapse
Affiliation(s)
- Franziska Winkler
- Institute for Developmental Biochemistry, Medical School, Georg-August-University Göttingen, Göttingen, Germany
| | - Maheshwar Gummalla
- Institute for Developmental Biochemistry, Medical School, Georg-August-University Göttingen, Göttingen, Germany
| | - Lutz Künneke
- Institute for Theoretical Physics, Georg-August-University Göttingen, Göttingen, Germany
| | - Zhiyi Lv
- Institute for Developmental Biochemistry, Medical School, Georg-August-University Göttingen, Göttingen, Germany
| | - Annette Zippelius
- Institute for Theoretical Physics, Georg-August-University Göttingen, Göttingen, Germany
| | - Timo Aspelmeier
- Institute for Mathematical Stochastics, Georg-August-University Göttingen, Göttingen, Germany; Felix Bernstein Institute for Statistics in the Biosciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Jörg Grosshans
- Institute for Developmental Biochemistry, Medical School, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
45
|
Multiple Roles for Egalitarian in Polarization of the Drosophila Egg Chamber. Genetics 2016; 203:415-32. [PMID: 27017624 DOI: 10.1534/genetics.115.184622] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/20/2016] [Indexed: 01/08/2023] Open
Abstract
The Drosophila egg chamber provides a useful model for examining mechanisms by which cell fates are specified and maintained in the context of a complex tissue. The egg chamber is also an excellent model for understanding the mechanism by which cytoskeletal filaments are organized and the critical interplay between cytoskeletal organization, polarity establishment, and cell fate specification. Previous work has shown that Egalitarian (Egl) is required for specification and maintenance of oocyte fate. Mutants in egl either completely fail to specify an oocyte, or if specified, the oocyte eventually reverts back to nurse cell fate. Due to this very early role for Egl in egg chamber maturation, it is unclear whether later stages of egg chamber development also require Egl function. In this report, we have depleted Egl at specific stages of egg chamber development. We demonstrate that in early-stage egg chambers, Egl has an additional role in organization of oocyte microtubules. In the absence of Egl function, oocyte microtubules completely fail to reorganize. As such, the localization of microtubule motors and their cargo is disrupted. In addition, Egl also appears to function in regulating the translation of critical polarity determining messenger RNAs (mRNAs). Finally, we demonstrate that in midstage egg chambers, Egl does not appear to be required for microtubule organization, but rather for the correct spatial localization of oskar, bicoid, and gurken mRNAs.
Collapse
|
46
|
Heterochromatin-Associated Proteins HP1a and Piwi Collaborate to Maintain the Association of Achiasmate Homologs in Drosophila Oocytes. Genetics 2016; 203:173-89. [PMID: 26984058 DOI: 10.1534/genetics.115.186460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
Accurate segregation of homologous chromosomes during meiosis depends on their ability to remain physically connected throughout prophase I. For homologs that achieve a crossover, sister chromatid cohesion distal to the chiasma keeps them attached until anaphase I. However, in Drosophila melanogaster wild-type oocytes, chromosome 4 never recombines, and the X chromosome fails to cross over in 6-10% of oocytes. Proper segregation of these achiasmate homologs relies on their pericentric heterochromatin-mediated association, but the mechanism(s) underlying this attachment remains poorly understood. Using an inducible RNA interference (RNAi) strategy combined with fluorescence in situ hybridization (FISH) to monitor centromere proximal association of the achiasmate FM7a/X homolog pair, we asked whether specific heterochromatin-associated proteins are required for the association and proper segregation of achiasmate homologs in Drosophila oocytes. When we knock down HP1a, H3K9 methytransferases, or the HP1a binding partner Piwi during mid-prophase, we observe significant disruption of pericentric heterochromatin-mediated association of FM7a/X homologs. Furthermore, for both HP1a and Piwi knockdown oocytes, transgenic coexpression of the corresponding wild-type protein is able to rescue RNAi-induced defects, but expression of a mutant protein with a single amino acid change that disrupts the HP1a-Piwi interaction is unable to do so. We show that Piwi is stably bound to numerous sites along the meiotic chromosomes, including centromere proximal regions. In addition, reduction of HP1a or Piwi during meiotic prophase induces a significant increase in FM7a/X segregation errors. We present a speculative model outlining how HP1a and Piwi could collaborate to keep achiasmate chromosomes associated in a homology-dependent manner.
Collapse
|
47
|
Khuc Trong P, Doerflinger H, Dunkel J, St Johnston D, Goldstein RE. Cortical microtubule nucleation can organise the cytoskeleton of Drosophila oocytes to define the anteroposterior axis. eLife 2015; 4. [PMID: 26406117 PMCID: PMC4580948 DOI: 10.7554/elife.06088] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 08/14/2015] [Indexed: 02/02/2023] Open
Abstract
Many cells contain non-centrosomal arrays of microtubules (MTs), but the assembly, organisation and function of these arrays are poorly understood. We present the first theoretical model for the non-centrosomal MT cytoskeleton in Drosophila oocytes, in which bicoid and oskar mRNAs become localised to establish the anterior-posterior body axis. Constrained by experimental measurements, the model shows that a simple gradient of cortical MT nucleation is sufficient to reproduce the observed MT distribution, cytoplasmic flow patterns and localisation of oskar and naive bicoid mRNAs. Our simulations exclude a major role for cytoplasmic flows in localisation and reveal an organisation of the MT cytoskeleton that is more ordered than previously thought. Furthermore, modulating cortical MT nucleation induces a bifurcation in cytoskeletal organisation that accounts for the phenotypes of polarity mutants. Thus, our three-dimensional model explains many features of the MT network and highlights the importance of differential cortical MT nucleation for axis formation. DOI:http://dx.doi.org/10.7554/eLife.06088.001 Cells contain a network of filaments known as microtubules that serve as tracks along which proteins and other materials can be moved from one location to another. For example, molecules called messenger ribonucleic acids (or mRNAs for short) are made in the nucleus and are then moved to various locations around the cell. Each mRNA molecule encodes the instructions needed to make a particular protein and the network of microtubules allows these molecules to be directed to wherever these proteins are needed. In female fruit flies, an mRNA called bicoid is moved to one end (called the anterior end) of a developing egg cell, while another mRNA called oskar is moved to the opposite (posterior) end. These mRNAs determine which ends of the cell will give rise to the head and the abdomen if the egg is fertilized. The microtubules start to form at sites near the inner face of the membrane that surrounds the cell, known as the cortex. From there, the microtubules grow towards the interior of the egg cell. However, it is not clear how this allows bicoid, oskar and other mRNAs to be moved to the correct locations. Khuc Trong et al. used a combination of computational and experimental techniques to develop a model of how microtubules form in the egg cells of fruit flies. The model produces a very similar arrangement of microtubules as observed in living cells and can reproduce the patterns of bicoid and oskar RNA movements. This study suggests that microtubules are more highly organised than previously thought. Furthermore, Khuc Trong et al.'s findings indicate that the anchoring of microtubules in the cortex is sufficient to direct bicoid and oskar RNAs to the opposite ends of the cell. The next challenge will be to find out how the microtubules are linked to the cortex and how this is regulated. DOI:http://dx.doi.org/10.7554/eLife.06088.002
Collapse
Affiliation(s)
- Philipp Khuc Trong
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Hélène Doerflinger
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | - Jörn Dunkel
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Daniel St Johnston
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
48
|
Efficient Endocytic Uptake and Maturation in Drosophila Oocytes Requires Dynamitin/p50. Genetics 2015; 201:631-49. [PMID: 26265702 DOI: 10.1534/genetics.115.180018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/06/2015] [Indexed: 01/27/2023] Open
Abstract
Dynactin is a multi-subunit complex that functions as a regulator of the Dynein motor. A central component of this complex is Dynamitin/p50 (Dmn). Dmn is required for endosome motility in mammalian cell lines. However, the extent to which Dmn participates in the sorting of cargo via the endosomal system is unknown. In this study, we examined the endocytic role of Dmn using the Drosophila melanogaster oocyte as a model. Yolk proteins are internalized into the oocyte via clathrin-mediated endocytosis, trafficked through the endocytic pathway, and stored in condensed yolk granules. Oocytes that were depleted of Dmn contained fewer yolk granules than controls. In addition, these oocytes accumulated numerous endocytic intermediate structures. Particularly prominent were enlarged endosomes that were relatively devoid of Yolk proteins. Ultrastructural and genetic analyses indicate that the endocytic intermediates are produced downstream of Rab5. Similar phenotypes were observed upon depleting Dynein heavy chain (Dhc) or Lis1. Dhc is the motor subunit of the Dynein complex and Lis1 is a regulator of Dynein activity. We therefore propose that Dmn performs its function in endocytosis via the Dynein motor. Consistent with a role for Dynein in endocytosis, the motor colocalized with the endocytic machinery at the oocyte cortex in an endocytosis-dependent manner. Our results suggest a model whereby endocytic activity recruits Dynein to the oocyte cortex. The motor along with its regulators, Dynactin and Lis1, functions to ensure efficient endocytic uptake and maturation.
Collapse
|
49
|
Song T, Zheng Y, Wang Y, Katz Z, Liu X, Chen S, Singer RH, Gu W. Specific interaction of KIF11 with ZBP1 regulates the transport of β-actin mRNA and cell motility. J Cell Sci 2015; 128:1001-10. [PMID: 25588836 PMCID: PMC4342582 DOI: 10.1242/jcs.161679] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/27/2014] [Indexed: 02/05/2023] Open
Abstract
ZBP1-modulated localization of β-actin mRNA enables a cell to establish polarity and structural asymmetry. Although the mechanism of β-actin mRNA localization has been well established, the underlying mechanism of how a specific molecular motor contributes to the transport of the ZBP1 (also known as IGF2BP1) complex in non-neuronal cells remains elusive. In this study, we report the isolation and identification of KIF11, a microtubule motor, which physically interacts with ZBP1 and is a component of β-actin messenger ribonucleoprotein particles (mRNPs). We show that KIF11 colocalizes with the β-actin mRNA, and the ability of KIF11 to transport β-actin mRNA is dependent on ZBP1. We characterize the corresponding regions of ZBP1 and KIF11 that mediate the interaction of the two proteins in vitro and in vivo. Disruption of the in vivo interaction of KIF11 with ZBP1 delocalizes β-actin mRNA and affects cell migration. Our study reveals a molecular mechanism by which a particular microtubule motor mediates the transport of an mRNP through direct interaction with an mRNA-binding protein.
Collapse
Affiliation(s)
- Tingting Song
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Yi Zheng
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx NY 10461, USA
| | - Zachary Katz
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx NY 10461, USA
| | - Xin Liu
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Shaoying Chen
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx NY 10461, USA
| | - Wei Gu
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| |
Collapse
|
50
|
Legent K, Tissot N, Guichet A. Visualizing Microtubule Networks During Drosophila Oogenesis Using Fixed and Live Imaging. Methods Mol Biol 2015; 1328:99-112. [PMID: 26324432 DOI: 10.1007/978-1-4939-2851-4_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The microtubule cytoskeleton is a plastic network of polarized cables. These polymers of tubulin provide orientated routes for the dynamic transport of cytoplasmic molecules and organelles, through which cell polarity is established and maintained. The role of microtubule-mediated transport in the asymmetric localization of axis polarity determinants, in the Drosophila oocyte, has been the subject of extensive studies in the past years. However, imaging the distribution of microtubule fibers in a large cell, where vitellogenesis ensures the uptake of a thick and hazy yolk, presents a series of technical challenges. This chapter briefly reviews some of these aspects and describes two methods designed to circumvent these difficulties. We provide a detailed protocol for the visualization by immunohistochemistry of the three-dimensional organization of tubulin cables in the oocyte. Additionally, we detail the stepwise procedure for the live imaging of microtubule dynamics and network remodeling, using fluorescently labeled microtubule-associated proteins.
Collapse
Affiliation(s)
- Kevin Legent
- Institut Jacques Monod, UMR 7592 - CNRS, Université Paris Diderot, 15 rue Hélène Brion, Bât Buffon, 75205, Paris, France
| | | | | |
Collapse
|