1
|
Zhang Q, Chen HJ, Xie CZ, Qiu GF. Potential role for the germ cell-specific Rad21 in early meiosis of oocyte and spermatocyte in the Chinese mitten crab Eriocheir sinensis. Gene 2023; 862:147262. [PMID: 36764338 DOI: 10.1016/j.gene.2023.147262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Rad21/Rec8 family proteins are vital for sister chromatid segregation in mitosis and homologous recombination in meiosis, but no molecular data are available in crustacean species. In this study, a germ cell-specific Rad21 named EsRad21 was identified in the crab Eriocheir sinensis. EsRad21 mRNA has an open reading frame of 2310 base pairs (bp) encoding a 769 amino acids (aa) protein. RT-PCR showed that EsRad21 mRNA was particularly expressed in testis and ovary. The RT-qPCR results further revealed that the EsRad21 mRNA exhibited similar expression pattern in gonads at various developmental stages. EsRad21 mRNA expression level was the highest in testis at early spermatogenesis stage and ovaries at previtellogenesis stage, thereafter decreased significantly at middle spermatogenesis and vitellogenesis, and finally reach the lowest level at late spermatogenesis and vitellogenesis. In situ hybridization (ISH) analysis showed that EsRad21 mRNA was exclusively expressed in germline cells, but not in gonadal somatic cells. Notably, hybridized signal was detected on chromosomes of metaphase spermatocytes. EsRad21 is thus an underlying helpful indicator of the early phases of germ cell development. RNAi knockdown of EsRad21 downregulated the expression of other meiosis-related genes like Smc5-Smc6 and SPO11 and resulted in high mortality of individuals after 24 h post injection of EsRad21 dsRNA. Taken together, our results showed a potential role for EsRad21 in early meiosis of oocytes and spermatocytes in E. sinensis. This is the first report on the molecular characterization of the Rad21 transcript in a crustacean species.
Collapse
Affiliation(s)
- Qin Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Hong-Jun Chen
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Chi-Zhen Xie
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Gao-Feng Qiu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Cheng J, Xu L, Bergér V, Bruckmann A, Yang C, Schubert V, Grasser KD, Schnittger A, Zheng B, Jiang H. H3K9 demethylases IBM1 and JMJ27 are required for male meiosis in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 235:2252-2269. [PMID: 35638341 DOI: 10.1111/nph.18286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Dimethylation of histone H3 lysine 9 (H3K9me2), a crucial modification for heterochromatin formation and transcriptional silencing, is essential for proper meiotic prophase progression in mammals. We analyzed meiotic defects and generated genome-wide profiles of H3K9me2 and transcriptomes for the mutants of H3K9 demethylases. Moreover, we also identified proteins interacting with H3K9 demethylases. H3K9me2 is usually found at transposable elements and repetitive sequences but is absent from the bodies of protein-coding genes. In this study, we show that the Arabidopsis thaliana H3K9 demethylases IBM1 and JMJ27 cooperatively regulate crossover formation and chromosome segregation. They protect thousands of protein-coding genes from ectopic H3K9me2, including genes essential for meiotic prophase progression. In addition to removing H3K9me2, IBM1 and JMJ27 interact with the Precocious Dissociation of Sisters 5 (PDS5) cohesin complex cofactors. The pds5 mutant shared similar transcriptional alterations with ibm1 jmj27, including meiosis-essential genes, yet without affecting H3K9me2 levels. Hence, PDS5s, together with IBM1 and JMJ27, regulate male meiosis and gene expression independently of H3K9 demethylation. These findings uncover a novel role of H3K9me2 removal in meiosis and a new function of H3K9 demethylases and cohesin cofactors in meiotic transcriptional regulation.
Collapse
Affiliation(s)
- Jinping Cheng
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| | - Linhao Xu
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| | - Valentin Bergér
- Cell Biology & Plant Biochemistry, Biochemistry Center, University of Regensburg, Regensburg, 93053, Germany
| | - Astrid Bruckmann
- Department of Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Regensburg, 93053, Germany
| | - Chao Yang
- Department of Developmental Biology, University of Hamburg, Hamburg, 20146, Germany
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| | - Klaus D Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Center, University of Regensburg, Regensburg, 93053, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Hamburg, 20146, Germany
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hua Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| |
Collapse
|
3
|
Lafta IJ, Kudhair BK, Iyiola OA, Ahmed EA, Chou T. Evaluating Expression of the STAG1 Gene as a Potential Breast Cancer Biomarker. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.30539/ijvm.v45i2.1255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
STAG proteins, which are part of the cohesin complex and encoded by the STAG genes, are known as Irr1/Scc3 in yeast and as SA/STAG/stromalin in mammals. There are more variants as there are alternate splice sites, maybe three open reading frames (ORFs) code for three main proteins, including: SA1 (STAG1), SA2 (STAG2) and SA3 (STAG3). The cohesin protein complex has various essential roles in eukaryotic cell biology. This study compared the expression of the STAG1 gene in four different breast cancer cell lines, including: MCF-7, T-47D, MDA-MB-468, and MDA-MB-231 and normal breast tissue. RNA was extracted from these cell lines and mRNA was converted to cDNA, and then expression of the STAG1 gene was quantified by three sets of specific primer pairs using Real Time-quantitative PCR (RT-qPCR). The findings show significantly different over-expression of STAG1 in these cancer cell lines in comparison with the normal tissue, and the cell lines were different in their expression levels. In conclusion, the STAG1 gene can be postulated as a candidate breast cancer biomarker that needs to be further evaluated in breast tumor biopsies.
Collapse
|
4
|
Zhang N, Coutinho LE, Pati D. PDS5A and PDS5B in Cohesin Function and Human Disease. Int J Mol Sci 2021; 22:ijms22115868. [PMID: 34070827 PMCID: PMC8198109 DOI: 10.3390/ijms22115868] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Precocious dissociation of sisters 5 (PDS5) is an associate protein of cohesin that is conserved from yeast to humans. It acts as a regulator of the cohesin complex and plays important roles in various cellular processes, such as sister chromatid cohesion, DNA damage repair, gene transcription, and DNA replication. Vertebrates have two paralogs of PDS5, PDS5A and PDS5B, which have redundant and unique roles in regulating cohesin functions. Herein, we discuss the molecular characteristics and functions of PDS5, as well as the effects of its mutations in the development of diseases and their relevance for novel therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Debananda Pati
- Correspondence: ; Tel.: +1-832-824-4575; Fax: +1-832-825-4651
| |
Collapse
|
5
|
Umer Z, Akhtar J, Khan MHF, Shaheen N, Haseeb MA, Mazhar K, Mithani A, Anwar S, Tariq M. Genome-wide RNAi screen in Drosophila reveals Enok as a novel trithorax group regulator. Epigenetics Chromatin 2019; 12:55. [PMID: 31547845 PMCID: PMC6757429 DOI: 10.1186/s13072-019-0301-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
Background Polycomb group (PcG) and trithorax group (trxG) proteins contribute to the specialization of cell types by maintaining differential gene expression patterns. Initially discovered as positive regulators of HOX genes in forward genetic screens, trxG counteracts PcG-mediated repression of cell type-specific genes. Despite decades of extensive analysis, molecular understanding of trxG action and regulation are still punctuated by many unknowns. This study aimed at discovering novel factors that elicit an anti-silencing effect to facilitate trxG-mediated gene activation. Results We have developed a cell-based reporter system and performed a genome-wide RNAi screen to discover novel factors involved in trxG-mediated gene regulation in Drosophila. We identified more than 200 genes affecting the reporter in a manner similar to trxG genes. From the list of top candidates, we have characterized Enoki mushroom (Enok), a known histone acetyltransferase, as an important regulator of trxG in Drosophila. Mutants of enok strongly suppressed extra sex comb phenotype of Pc mutants and enhanced homeotic transformations associated with trx mutations. Enok colocalizes with both TRX and PC at chromatin. Moreover, depletion of Enok specifically resulted in an increased enrichment of PC and consequently silencing of trxG targets. This downregulation of trxG targets was also accompanied by a decreased occupancy of RNA-Pol-II in the gene body, correlating with an increased stalling at the transcription start sites of these genes. We propose that Enok facilitates trxG-mediated maintenance of gene activation by specifically counteracting PcG-mediated repression. Conclusion Our ex vivo approach led to identification of new trxG candidate genes that warrant further investigation. Presence of chromatin modifiers as well as known members of trxG and their interactors in the genome-wide RNAi screen validated our reverse genetics approach. Genetic and molecular characterization of Enok revealed a hitherto unknown interplay between Enok and PcG/trxG system. We conclude that histone acetylation by Enok positively impacts the maintenance of trxG-regulated gene activation by inhibiting PRC1-mediated transcriptional repression.
Collapse
Affiliation(s)
- Zain Umer
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Jawad Akhtar
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Haider Farooq Khan
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Najma Shaheen
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Abdul Haseeb
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Khalida Mazhar
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Aziz Mithani
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Saima Anwar
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.,Biomedical Engineering Centre, University of Engineering and Technology Lahore, KSK Campus, Lahore, Pakistan
| | - Muhammad Tariq
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| |
Collapse
|
6
|
Mirkovic M, Oliveira RA. Centromeric Cohesin: Molecular Glue and Much More. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:485-513. [PMID: 28840250 DOI: 10.1007/978-3-319-58592-5_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sister chromatid cohesion, mediated by the cohesin complex, is a prerequisite for faithful chromosome segregation during mitosis. Premature release of sister chromatid cohesion leads to random segregation of the genetic material and consequent aneuploidy. Multiple regulatory mechanisms ensure proper timing for cohesion establishment, concomitant with DNA replication, and cohesion release during the subsequent mitosis. Here we summarize the most important phases of the cohesin cycle and the coordination of cohesion release with the progression through mitosis. We further discuss recent evidence that has revealed additional functions for centromeric localization of cohesin in the fidelity of mitosis in metazoans. Beyond its well-established role as "molecular glue", centromeric cohesin complexes are now emerging as a scaffold for multiple fundamental processes during mitosis, including the formation of correct chromosome and kinetochore architecture, force balance with the mitotic spindle, and the association with key molecules that regulate mitotic fidelity, particularly at the chromosomal inner centromere. Centromeric chromatin may be thus seen as a dynamic place where cohesin ensures mitotic fidelity by multiple means.
Collapse
Affiliation(s)
- Mihailo Mirkovic
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156, Oeiras, Portugal
| | - Raquel A Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156, Oeiras, Portugal.
| |
Collapse
|
7
|
Kim LH, Hong ST, Choi KW. Protein phosphatase 2A interacts with Verthandi/Rad21 to regulate mitosis and organ development in Drosophila. Sci Rep 2019; 9:7624. [PMID: 31110215 PMCID: PMC6527568 DOI: 10.1038/s41598-019-44027-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022] Open
Abstract
Rad21/Scc1 is a subunit of the cohesin complex implicated in gene regulation as well as sister chromatid cohesion. The level of Rad21/Scc1 must be controlled for proper mitosis and gene expression during development. Here, we identify the PP2A catalytic subunit encoded by microtubule star (mts) as a regulator of Drosophila Rad21/Verthandi (Vtd). Mutations in mts and vtd cause synergistic mitotic defects, including abnormal spindles and loss of nuclei during nuclear division in early embryo. Depletion of Mts and Vtd in developing wing synergistically reduces the Cut protein level, causing severe defects in wing growth. Mts and PP2A subunit Twins (Tws) interact with Vtd protein. Loss of Mts or Tws reduces Vtd protein level. Reduced proteasome function suppresses mitotic defects caused by mutations in mts and vtd. Taken together, this work provides evidence that PP2A is required for mitosis and wing growth by regulating the Vtd level through the proteasomal pathway.
Collapse
Affiliation(s)
- Lee-Hyang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Genetic and Molecular Analysis of Essential Genes in Centromeric Heterochromatin of the Left Arm of Chromosome 3 in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2019; 9:1581-1595. [PMID: 30948422 PMCID: PMC6505167 DOI: 10.1534/g3.119.0003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A large portion of the Drosophila melanogaster genome is contained within heterochromatic regions of chromosomes, predominantly at centromeres and telomeres. The remaining euchromatic portions of the genome have been extensively characterized with respect to gene organization, function and regulation. However, it has been difficult to derive similar data for sequences within centromeric (centric) heterochromatin because these regions have not been as amenable to analysis by standard genetic and molecular tools. Here we present an updated genetic and molecular analysis of chromosome 3L centric heterochromatin (3L Het). We have generated and characterized a number of new, overlapping deficiencies (Dfs) which remove regions of 3L Het. These Dfs were critically important reagents in our subsequent genetic analysis for the isolation and characterization of lethal point mutations in the region. The assignment of these mutations to genetically-defined essential loci was followed by matching them to gene models derived from genome sequence data: this was done by using molecular mapping plus sequence analysis of mutant alleles, thereby aligning genetic and physical maps of the region. We also identified putative essential gene sequences in 3L Het by using RNA interference to target candidate gene sequences. We report that at least 25, or just under 2/3 of loci in 3L Het, are essential for viability and/or fertility. This work contributes to the functional annotation of centric heterochromatin in Drosophila, and the genetic and molecular tools generated should help to provide important insights into the organization and functions of gene sequences in 3L Het.
Collapse
|
9
|
Yang Y, Wang W, Li M, Gao Y, Zhang W, Huang Y, Zhuo W, Yan X, Liu W, Wang F, Chen D, Zhou T. NudCL2 is an Hsp90 cochaperone to regulate sister chromatid cohesion by stabilizing cohesin subunits. Cell Mol Life Sci 2019; 76:381-395. [PMID: 30368549 PMCID: PMC6339671 DOI: 10.1007/s00018-018-2957-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 11/26/2022]
Abstract
Sister chromatid cohesion plays a key role in ensuring precise chromosome segregation during mitosis, which is mediated by the multisubunit cohesin complex. However, the molecular regulation of cohesin subunits stability remains unclear. Here, we show that NudCL2 (NudC-like protein 2) is essential for the stability of cohesin subunits by regulating Hsp90 ATPase activity in mammalian cells. Depletion of NudCL2 induces mitotic defects and premature sister chromatid separation and destabilizes cohesin subunits that interact with NudCL2. Similar defects are also observed upon inhibition of Hsp90 ATPase activity. Interestingly, ectopic expression of Hsp90 efficiently rescues the protein instability and functional deficiency of cohesin induced by NudCL2 depletion, but not vice versa. Moreover, NudCL2 not only binds to Hsp90, but also significantly modulates Hsp90 ATPase activity and promotes the chaperone function of Hsp90. Taken together, these data suggest that NudCL2 is a previously undescribed Hsp90 cochaperone to modulate sister chromatid cohesion by stabilizing cohesin subunits, providing a hitherto unrecognized mechanism that is crucial for faithful chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Yuehong Yang
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
| | - Wei Wang
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Min Li
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Ya Gao
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Wen Zhang
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yuliang Huang
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Wei Zhuo
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xiaoyi Yan
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Wei Liu
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Fangwei Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Dingwei Chen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China.
| | - Tianhua Zhou
- Department of Cell Biology and the Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.
- Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, 310058, Zhejiang, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
10
|
Abstract
The cohesin protein complex regulates multiple cellular events including sister chromatid cohesion and gene expression. Several distinct human diseases called cohesinopathies have been associated with genetic mutations in cohesin subunit genes or genes encoding regulators of cohesin function. Studies in different model systems, from yeast to mouse have provided insights into the molecular mechanisms of action of cohesin/cohesin regulators and their implications in the pathogenesis of cohesinopathies. The zebrafish has unique advantages for embryonic analyses and quantitative gene knockdown with morpholinos during the first few days of development, in contrast to knockouts of cohesin regulators in flies or mammals, which are either lethal as homozygotes or dramatically compensated for in heterozygotes. This has been particularly informative for Rad21, where a role in gene expression was first shown in zebrafish, and Nipbl, where the fish work revealed tissue-specific functions in heart, gut, and limbs, and long-range enhancer-promoter interactions that control Hox gene expression in vivo. Here we discuss the utility of the zebrafish in studying the developmental and pathogenic roles of cohesin.
Collapse
Affiliation(s)
- Akihiko Muto
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
11
|
Abstract
Cohesin is a large ring-shaped protein complex, conserved from yeast to human, which participates in most DNA transactions that take place in the nucleus. It mediates sister chromatid cohesion, which is essential for chromosome segregation and homologous recombination (HR)-mediated DNA repair. Together with architectural proteins and transcriptional regulators, such as CTCF and Mediator, respectively, it contributes to genome organization at different scales and thereby affects transcription, DNA replication, and locus rearrangement. Although cohesin is essential for cell viability, partial loss of function can affect these processes differently in distinct cell types. Mutations in genes encoding cohesin subunits and regulators of the complex have been identified in several cancers. Understanding the functional significance of these alterations may have relevant implications for patient classification, risk prediction, and choice of treatment. Moreover, identification of vulnerabilities in cancer cells harboring cohesin mutations may provide new therapeutic opportunities and guide the design of personalized treatments.
Collapse
Affiliation(s)
- Magali De Koninck
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| |
Collapse
|
12
|
Liu D, Shaukat Z, Saint RB, Gregory SL. Chromosomal instability triggers cell death via local signalling through the innate immune receptor Toll. Oncotarget 2016; 6:38552-65. [PMID: 26462024 PMCID: PMC4770720 DOI: 10.18632/oncotarget.6035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/08/2015] [Indexed: 01/29/2023] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and has been implicated in cancer initiation, progression and the development of resistance to traditional cancer therapy. Here we identify a new property of CIN cells, showing that inducing CIN in proliferating Drosophila larval tissue leads to the activation of innate immune signalling in CIN cells. Manipulation of this immune pathway strongly affects the survival of CIN cells, primarily via JNK, which responds to both Toll and TNFα/Eiger. This pathway also activates Mmp1, which recruits hemocytes to the CIN tissue to provide local amplification of the immune response that is needed for effective elimination of CIN cells.
Collapse
Affiliation(s)
- Dawei Liu
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Zeeshan Shaukat
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Robert B Saint
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Stephen L Gregory
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
13
|
Investigating the Interplay between Sister Chromatid Cohesion and Homolog Pairing in Drosophila Nuclei. PLoS Genet 2016; 12:e1006169. [PMID: 27541002 PMCID: PMC4991795 DOI: 10.1371/journal.pgen.1006169] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
Following DNA replication, sister chromatids must stay connected for the remainder of the cell cycle in order to ensure accurate segregation in the subsequent cell division. This important function involves an evolutionarily conserved protein complex known as cohesin; any loss of cohesin causes premature sister chromatid separation in mitosis. Here, we examined the role of cohesin in sister chromatid cohesion prior to mitosis, using fluorescence in situ hybridization (FISH) to assay the alignment of sister chromatids in interphase Drosophila cells. Surprisingly, we found that sister chromatid cohesion can be maintained in G2 with little to no cohesin. This capacity to maintain cohesion is widespread in Drosophila, unlike in other systems where a reduced dependence on cohesin for sister chromatid segregation has been observed only at specific chromosomal regions, such as the rDNA locus in budding yeast. Additionally, we show that condensin II antagonizes the alignment of sister chromatids in interphase, supporting a model wherein cohesin and condensin II oppose each other’s functions in the alignment of sister chromatids. Finally, because the maternal and paternal homologs are paired in the somatic cells of Drosophila, and because condensin II has been shown to antagonize this pairing, we consider the possibility that condensin II-regulated mechanisms for aligning homologous chromosomes may also contribute to sister chromatid cohesion. As cells grow, they replicate their DNA to give rise to two copies of each chromosome, known as sister chromatids, which separate from each other once the cell divides. To ensure that sister chromatids end up in different daughter cells, they are kept together from DNA replication until mitosis via a connection known as cohesion. A protein complex known as cohesin is essential for this process. Our work in Drosophila cells suggests that factors other than cohesin also contribute to sister chromatid cohesion in interphase. Additionally, we observed that the alignment of sister chromatids is regulated by condensin II, a protein complex involved in the compaction of chromosomes prior to division as well as the regulation of inter-chromosomal associations. These findings highlight that, in addition to their important individual functions, cohesin and condensin II proteins may interact to organize chromosomes over the course of the cell cycle. Finally, building on prior observations that condensin II is involved in the regulation of somatic homolog pairing in Drosophila, our work suggests that the mechanisms underlying homolog pairing may also contribute to sister chromatid cohesion.
Collapse
|
14
|
Hill VK, Kim JS, Waldman T. Cohesin mutations in human cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1866:1-11. [PMID: 27207471 PMCID: PMC4980180 DOI: 10.1016/j.bbcan.2016.05.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/12/2016] [Accepted: 05/14/2016] [Indexed: 12/19/2022]
Abstract
Cohesin is a highly-conserved protein complex that plays important roles in sister chromatid cohesion, chromatin structure, gene expression, and DNA repair. In humans, cohesin is a ubiquitously expressed, multi-subunit protein complex composed of core subunits SMC1A, SMC3, RAD21, STAG1/2 and regulatory subunits WAPL, PDS5A/B, CDCA5, NIPBL, and MAU2. Recent studies have demonstrated that genes encoding cohesin subunits are somatically mutated in a wide range of human cancers. STAG2 is the most commonly mutated subunit, and in a recent analysis was identified as one of only 12 genes that are significantly mutated in four or more cancer types. In this review we summarize the findings reported to date and comment on potential functional implications of cohesin mutation in the pathogenesis of human cancer.
Collapse
Affiliation(s)
- Victoria K Hill
- Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, 3970 Reservoir Road, NW, NRB E304, Washington, DC 20057, USA
| | - Jung-Sik Kim
- Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, 3970 Reservoir Road, NW, NRB E304, Washington, DC 20057, USA
| | - Todd Waldman
- Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, 3970 Reservoir Road, NW, NRB E304, Washington, DC 20057, USA
| |
Collapse
|
15
|
Galeev R, Baudet A, Kumar P, Rundberg Nilsson A, Nilsson B, Soneji S, Törngren T, Borg Å, Kvist A, Larsson J. Genome-wide RNAi Screen Identifies Cohesin Genes as Modifiers of Renewal and Differentiation in Human HSCs. Cell Rep 2016; 14:2988-3000. [PMID: 26997282 DOI: 10.1016/j.celrep.2016.02.082] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/04/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
Abstract
To gain insights into the regulatory mechanisms of hematopoietic stem cells (HSCs), we employed a genome-wide RNAi screen in human cord-blood derived cells and identified candidate genes whose knockdown maintained the HSC phenotype during culture. A striking finding was the identification of members of the cohesin complex (STAG2, RAD21, STAG1, and SMC3) among the top 20 genes from the screen. Upon individual validation of these cohesin genes, we found that their knockdown led to an immediate expansion of cells with an HSC phenotype in vitro. A similar expansion was observed in vivo following transplantation to immunodeficient mice. Transcriptome analysis of cohesin-deficient CD34(+) cells showed an upregulation of HSC-specific genes, demonstrating an immediate shift toward a more stem-cell-like gene expression signature upon cohesin deficiency. Our findings implicate cohesin as a major regulator of HSCs and illustrate the power of global RNAi screens to identify modifiers of cell fate.
Collapse
Affiliation(s)
- Roman Galeev
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Aurélie Baudet
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Praveen Kumar
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | | | - Björn Nilsson
- Division of Hematology and Transfusion Medicine, Lund University, 221 84 Lund, Sweden
| | - Shamit Soneji
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Therese Törngren
- Division of Oncology and Pathology, Lund University, 223 63 Lund, Sweden
| | - Åke Borg
- Division of Oncology and Pathology, Lund University, 223 63 Lund, Sweden
| | - Anders Kvist
- Division of Oncology and Pathology, Lund University, 223 63 Lund, Sweden
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
16
|
Mullenders J, Aranda-Orgilles B, Lhoumaud P, Keller M, Pae J, Wang K, Kayembe C, Rocha PP, Raviram R, Gong Y, Premsrirut PK, Tsirigos A, Bonneau R, Skok JA, Cimmino L, Hoehn D, Aifantis I. Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms. J Exp Med 2015; 212:1833-50. [PMID: 26438359 PMCID: PMC4612095 DOI: 10.1084/jem.20151323] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/04/2015] [Indexed: 12/22/2022] Open
Abstract
The cohesin complex (consisting of Rad21, Smc1a, Smc3, and Stag2 proteins) is critically important for proper sister chromatid separation during mitosis. Mutations in the cohesin complex were recently identified in a variety of human malignancies including acute myeloid leukemia (AML). To address the potential tumor-suppressive function of cohesin in vivo, we generated a series of shRNA mouse models in which endogenous cohesin can be silenced inducibly. Notably, silencing of cohesin complex members did not have a deleterious effect on cell viability. Furthermore, knockdown of cohesin led to gain of replating capacity of mouse hematopoietic progenitor cells. However, cohesin silencing in vivo rapidly altered stem cells homeostasis and myelopoiesis. Likewise, we found widespread changes in chromatin accessibility and expression of genes involved in myelomonocytic maturation and differentiation. Finally, aged cohesin knockdown mice developed a clinical picture closely resembling myeloproliferative disorders/neoplasms (MPNs), including varying degrees of extramedullary hematopoiesis (myeloid metaplasia) and splenomegaly. Our results represent the first successful demonstration of a tumor suppressor function for the cohesin complex, while also confirming that cohesin mutations occur as an early event in leukemogenesis, facilitating the potential development of a myeloid malignancy.
Collapse
Affiliation(s)
- Jasper Mullenders
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Beatriz Aranda-Orgilles
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Priscillia Lhoumaud
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Matthew Keller
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Juhee Pae
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Kun Wang
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Clarisse Kayembe
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Pedro P Rocha
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Ramya Raviram
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Yixiao Gong
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | | | - Aristotelis Tsirigos
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Richard Bonneau
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Jane A Skok
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Luisa Cimmino
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| | - Daniela Hoehn
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032
| | - Iannis Aifantis
- Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016 Howard Hughes Medical Institute, Department of Pathology, and Center for Health Informatics and Bioinformatics, School of Medicine and Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10016
| |
Collapse
|
17
|
Abstract
Meiosis entails sorting and separating both homologous and sister chromatids. The mechanisms for connecting sister chromatids and homologs during meiosis are highly conserved and include specialized forms of the cohesin complex and a tightly regulated homolog synapsis/recombination pathway designed to yield regular crossovers between homologous chromatids. Drosophila male meiosis is of special interest because it dispenses with large segments of the standard meiotic script, particularly recombination, synapsis and the associated structures. Instead, Drosophila relies on a unique protein complex composed of at least two novel proteins, SNM and MNM, to provide stable connections between homologs during meiosis I. Sister chromatid cohesion in Drosophila is mediated by cohesins, ring-shaped complexes that entrap sister chromatids. However, unlike other eukaryotes Drosophila does not rely on the highly conserved Rec8 cohesin in meiosis, but instead utilizes two novel cohesion proteins, ORD and SOLO, which interact with the SMC1/3 cohesin components in providing meiotic cohesion.
Collapse
Affiliation(s)
- Bruce D McKee
- Department of Biochemistry, Cellular & Molecular Biology; University of Tennessee; Knoxville TN USA ; Genome Science and Technology Program; University of Tennessee; Knoxville TN USA
| | | | | |
Collapse
|
18
|
Cohesin mutations in myeloid malignancies: underlying mechanisms. Exp Hematol Oncol 2014; 3:13. [PMID: 24904756 PMCID: PMC4046106 DOI: 10.1186/2162-3619-3-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 01/09/2023] Open
Abstract
Recently, whole genome sequencing approaches have pinpointed mutations in genes that were previously not associated with cancer. For Acute Myeloid Leukaemia (AML), and other myeloid disorders, these approaches revealed a high prevalence of mutations in genes encoding the chromosome cohesion complex, cohesin. Cohesin mutations represent a novel genetic pathway for AML, but how AML arises from these mutations is unknown. This review will explore the potential mechanisms by which cohesin mutations contribute to AML and other myeloid malignancies.
Collapse
|
19
|
Abstract
Mitosis and meiosis are essential processes that occur during development. Throughout these processes, cohesion is required to keep the sister chromatids together until their separation at anaphase. Cohesion is created by multiprotein subunit complexes called cohesins. Although the subunits differ slightly in mitosis and meiosis, the canonical cohesin complex is composed of four subunits that are quite diverse. The cohesin complexes are also important for DNA repair, gene expression, development, and genome integrity. Here we provide an overview of the roles of cohesins during these different events as well as their roles in human health and disease, including the cohesinopathies. Although the exact roles and mechanisms of these proteins are still being elucidated, this review serves as a guide for the current knowledge of cohesins.
Collapse
Affiliation(s)
- Amanda S Brooker
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, MS 497, Philadelphia, PA, 19102, USA
| | | |
Collapse
|
20
|
Kulemzina I, Schumacher MR, Verma V, Reiter J, Metzler J, Failla AV, Lanz C, Sreedharan VT, Rätsch G, Ivanov D. Cohesin rings devoid of Scc3 and Pds5 maintain their stable association with the DNA. PLoS Genet 2012; 8:e1002856. [PMID: 22912589 PMCID: PMC3415457 DOI: 10.1371/journal.pgen.1002856] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 06/11/2012] [Indexed: 01/01/2023] Open
Abstract
Cohesin is a protein complex that forms a ring around sister chromatids thus holding them together. The ring is composed of three proteins: Smc1, Smc3 and Scc1. The roles of three additional proteins that associate with the ring, Scc3, Pds5 and Wpl1, are not well understood. It has been proposed that these three factors form a complex that stabilizes the ring and prevents it from opening. This activity promotes sister chromatid cohesion but at the same time poses an obstacle for the initial entrapment of sister DNAs. This hindrance to cohesion establishment is overcome during DNA replication via acetylation of the Smc3 subunit by the Eco1 acetyltransferase. However, the full mechanistic consequences of Smc3 acetylation remain unknown. In the current work, we test the requirement of Scc3 and Pds5 for the stable association of cohesin with DNA. We investigated the consequences of Scc3 and Pds5 depletion in vivo using degron tagging in budding yeast. The previously described DHFR-based N-terminal degron as well as a novel Eco1-derived C-terminal degron were employed in our study. Scc3 and Pds5 associate with cohesin complexes independently of each other and require the Scc1 "core" subunit for their association with chromosomes. Contrary to previous data for Scc1 downregulation, depletion of either Scc3 or Pds5 had a strong effect on sister chromatid cohesion but not on cohesin binding to DNA. Quantity, stability and genome-wide distribution of cohesin complexes remained mostly unchanged after the depletion of Scc3 and Pds5. Our findings are inconsistent with a previously proposed model that Scc3 and Pds5 are cohesin maintenance factors required for cohesin ring stability or for maintaining its association with DNA. We propose that Scc3 and Pds5 specifically function during cohesion establishment in S phase.
Collapse
Affiliation(s)
- Irina Kulemzina
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | | | - Vikash Verma
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Jochen Reiter
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Janina Metzler
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | | | - Christa Lanz
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Gunnar Rätsch
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Dmitri Ivanov
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| |
Collapse
|
21
|
Gutiérrez-Caballero C, Cebollero LR, Pendás AM. Shugoshins: from protectors of cohesion to versatile adaptors at the centromere. Trends Genet 2012; 28:351-60. [PMID: 22542109 DOI: 10.1016/j.tig.2012.03.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 03/07/2012] [Accepted: 03/07/2012] [Indexed: 11/20/2022]
Abstract
Sister chromatids are held together by a protein complex named cohesin. Shugoshin proteins protect cohesin from cleavage by separase during meiosis I in eukaryotes and from phosphorylation-mediated removal during mitosis in vertebrates. This protection is crucial for chromosome segregation during mitosis and meiosis. Mechanistically, shugoshins shield cohesin by forming a complex with the phosphatase PP2A, which dephosphorylates cohesin, leading to its retention at centromeres during the onset of meiotic anaphase and vertebrate mitotic prophase I. In addition to this canonical function, shugoshins have evolved novel, species-specific cellular functions, the mechanisms of which remain a subject of intense debate, but are likely to involve spatio-temporally coordinated interactions with the chromosome passenger complex, the spindle checkpoint and the anaphase promoting complex. Here, we compare and contrast these remarkable features of shugoshins in model organisms and humans.
Collapse
Affiliation(s)
- Cristina Gutiérrez-Caballero
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-USAL), Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | |
Collapse
|
22
|
Deardorff M, Wilde J, Albrecht M, Dickinson E, Tennstedt S, Braunholz D, Mönnich M, Yan Y, Xu W, Gil-Rodríguez M, Clark D, Hakonarson H, Halbach S, Michelis L, Rampuria A, Rossier E, Spranger S, Van Maldergem L, Lynch S, Gillessen-Kaesbach G, Lüdecke HJ, Ramsay R, McKay M, Krantz I, Xu H, Horsfield J, Kaiser F. RAD21 mutations cause a human cohesinopathy. Am J Hum Genet 2012; 90:1014-27. [PMID: 22633399 PMCID: PMC3370273 DOI: 10.1016/j.ajhg.2012.04.019] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/03/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022] Open
Abstract
The evolutionarily conserved cohesin complex was originally described for its role in regulating sister-chromatid cohesion during mitosis and meiosis. Cohesin and its regulatory proteins have been implicated in several human developmental disorders, including Cornelia de Lange (CdLS) and Roberts syndromes. Here we show that human mutations in the integral cohesin structural protein RAD21 result in a congenital phenotype consistent with a "cohesinopathy." Children with RAD21 mutations display growth retardation, minor skeletal anomalies, and facial features that overlap findings in individuals with CdLS. Notably, unlike children with mutations in NIPBL, SMC1A, or SMC3, these individuals have much milder cognitive impairment than those with classical CdLS. Mechanistically, these mutations act at the RAD21 interface with the other cohesin proteins STAG2 and SMC1A, impair cellular DNA damage response, and disrupt transcription in a zebrafish model. Our data suggest that, compared to loss-of-function mutations, dominant missense mutations result in more severe functional defects and cause worse structural and cognitive clinical findings. These results underscore the essential role of RAD21 in eukaryotes and emphasize the need for further understanding of the role of cohesin in human development.
Collapse
Affiliation(s)
- Matthew A. Deardorff
- Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | - Jonathan J. Wilde
- Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | - Melanie Albrecht
- Institut für Humangenetik Lübeck, Universität zu Lübeck, 23538 Lübeck, Germany
| | - Emma Dickinson
- Department of Pathology, Dunedin School of Medicine, The University of Otago, Dunedin 9054, New Zealand
| | | | - Diana Braunholz
- Institut für Humangenetik Lübeck, Universität zu Lübeck, 23538 Lübeck, Germany
| | - Maren Mönnich
- Department of Pathology, Dunedin School of Medicine, The University of Otago, Dunedin 9054, New Zealand
| | - Yuqian Yan
- Research Division, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia
| | - Weizhen Xu
- Institut für Humangenetik Lübeck, Universität zu Lübeck, 23538 Lübeck, Germany
- Zhejiang Cancer Research Institute, Hangzhou 310058, China
| | - María Concepcion Gil-Rodríguez
- Institut für Humangenetik Lübeck, Universität zu Lübeck, 23538 Lübeck, Germany
- Unit of Clinical Genetics and Functional Genomics. Medical School, University of Zaragoza, Zaragoza 50009, Spain
| | - Dinah Clark
- Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | - Hakon Hakonarson
- Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104 USA
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sara Halbach
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Laura Daniela Michelis
- Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | - Abhinav Rampuria
- Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | | | | | - Lionel Van Maldergem
- Centre de Génétique Humaine, Université de Franche-Comté, Besançon 25030, France
| | - Sally Ann Lynch
- Our Lady's Children's Hospital, National Centre for Medical Genetics, Dublin 12, Ireland
| | | | | | - Robert G. Ramsay
- Research Division, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia
- Sir Peter MacCallum Department of Oncology and Department of Pathology, Faculty of Medicine and Dental Sciences, The University of Melbourne, Elizabeth Street, Parkville, Victoria 3000, Australia
| | - Michael J. McKay
- North Coast Cancer Institute, Lismore, New South Wales 2480, Australia
- The University of Sydney Medical School, Sydney, New South Wales 2006, Australia
| | - Ian D. Krantz
- Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | - Huiling Xu
- Research Division, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia
- Sir Peter MacCallum Department of Oncology and Department of Pathology, Faculty of Medicine and Dental Sciences, The University of Melbourne, Elizabeth Street, Parkville, Victoria 3000, Australia
| | - Julia A. Horsfield
- Department of Pathology, Dunedin School of Medicine, The University of Otago, Dunedin 9054, New Zealand
| | - Frank J. Kaiser
- Institut für Humangenetik Lübeck, Universität zu Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
23
|
Mouri K, Horiuchi SY, Uemura T. Cohesin controls planar cell polarity by regulating the level of the seven-pass transmembrane cadherin Flamingo. Genes Cells 2012; 17:509-24. [PMID: 22563761 DOI: 10.1111/j.1365-2443.2012.01604.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Planar cell polarity (PCP) refers to the coordination of global organ axes and individual cell polarity in vertebrate and invertebrate epithelia. Mechanisms of PCP have been best studied in the Drosophila wing, in which each epidermal cell produces a single wing hair at the distal cell edge, and this spatial specification is mediated by redistribution of the core group proteins, including the seven-pass transmembrane cadherin Flamingo/Starry night (Fmi/Stan), to selective plasma membrane domains. Through genetic screening, we found that a mutation of the SMC3 gene caused dramatic misspecification of wing hair positions. SMC3 protein is one subunit of the cohesin complex, which regulates sister chromatid cohesion and also plays a role in transcriptional control of gene expression. In the SMC3 mutant cells, Fmi appeared to be upregulated by a posttranscriptional mechanism(s), and this elevation of Fmi was at least one cause of the PCP defect. In addition to the PCP phenotype, the loss of the cohesin function affected wing morphogenesis at multiple levels: one malformation was loss of the wing margin, and this was most likely a result of downregulation of the homeodomain protein Cut. At the cellular level, apical cell size and hexagonal packing were affected in the mutant wing. Dysfunction of cohesin in humans results in Cornelia de Lange syndrome (CdLS), which is characterized by various developmental abnormalities and mental retardation. Our analysis of cohesin in epithelia may provide new insight into cellular and molecular mechanisms of CdLS.
Collapse
Affiliation(s)
- Kousuke Mouri
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
24
|
Joyce EF, Williams BR, Xie T, Wu CT. Identification of genes that promote or antagonize somatic homolog pairing using a high-throughput FISH-based screen. PLoS Genet 2012; 8:e1002667. [PMID: 22589731 PMCID: PMC3349724 DOI: 10.1371/journal.pgen.1002667] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/07/2012] [Indexed: 12/22/2022] Open
Abstract
The pairing of homologous chromosomes is a fundamental feature of the meiotic cell. In addition, a number of species exhibit homolog pairing in nonmeiotic, somatic cells as well, with evidence for its impact on both gene regulation and double-strand break (DSB) repair. An extreme example of somatic pairing can be observed in Drosophila melanogaster, where homologous chromosomes remain aligned throughout most of development. However, our understanding of the mechanism of somatic homolog pairing remains unclear, as only a few genes have been implicated in this process. In this study, we introduce a novel high-throughput fluorescent in situ hybridization (FISH) technology that enabled us to conduct a genome-wide RNAi screen for factors involved in the robust somatic pairing observed in Drosophila. We identified both candidate "pairing promoting genes" and candidate "anti-pairing genes," providing evidence that pairing is a dynamic process that can be both enhanced and antagonized. Many of the genes found to be important for promoting pairing are highly enriched for functions associated with mitotic cell division, suggesting a genetic framework for a long-standing link between chromosome dynamics during mitosis and nuclear organization during interphase. In contrast, several of the candidate anti-pairing genes have known interphase functions associated with S-phase progression, DNA replication, and chromatin compaction, including several components of the condensin II complex. In combination with a variety of secondary assays, these results provide insights into the mechanism and dynamics of somatic pairing.
Collapse
Affiliation(s)
- Eric F. Joyce
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin R. Williams
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tiao Xie
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Image and Data Analysis Core, Harvard Medical School, Boston, Massachusetts, United States of America
| | - C.-ting Wu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
25
|
Dupont C, Harvey AJ, Armant DR, Zelinski MB, Brenner CA. Expression profiles of cohesins, shugoshins and spindle assembly checkpoint genes in rhesus macaque oocytes predict their susceptibility for aneuploidy during embryonic development. Cell Cycle 2012; 11:740-8. [PMID: 22327397 PMCID: PMC3318107 DOI: 10.4161/cc.11.4.19207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/23/2011] [Accepted: 12/29/2011] [Indexed: 01/09/2023] Open
Abstract
High frequencies of chromosomal anomalies are reported in human and non-human primate in vitro-produced preimplantation embryos. It is unclear why certain embryos develop aneuploidies while others remain euploid. A differential susceptibility to aneuploidy is most likely a consequence of events that occur before oocyte collection. One hypothesis is that the relative transcript levels of cohesins, shugoshins and spindle assembly checkpoint genes are correlated with the occurrence of chromosomal anomalies. Transcript levels of these genes were quantified in individual oocytes that were either mature (group 1, low aneuploidy rate) or immature (group 2, high aneuploidy rate) at retrieval, utilizing TaqMan-based real-time PCR. The transcript level in each oocyte was categorized as absent, below the median or above the median in order to conduct comparisons. Statistically significant differences were observed between group 1 and group 2 for SGOL1 and BUB1. There were more oocytes with SGOL1 expression levels above the median in group 1, while oocytes lacking BUB1 were only observed in group 1. These findings suggest that higher SGOL1 levels in group 1 oocytes could better protect against a premature separation of sister chromatids than in embryos derived from group 2 oocytes. The absence of BUB1 transcripts in group 1 was frequently associated with reduced expression of either mitotic cohesins or shugoshins. We hypothesize that ablation of BUB1 could induce mitotic arrest in oocytes that fail to express a complete complement of cohesins and shugoshins, thereby reducing the number of developing aneuploid preimplantation embryos.
Collapse
Affiliation(s)
- Catherine Dupont
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
26
|
Guacci V, Koshland D. Cohesin-independent segregation of sister chromatids in budding yeast. Mol Biol Cell 2012; 23:729-39. [PMID: 22190734 PMCID: PMC3279399 DOI: 10.1091/mbc.e11-08-0696] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/01/2011] [Accepted: 12/12/2011] [Indexed: 12/02/2022] Open
Abstract
Cohesin generates cohesion between sister chromatids, which enables chromosomes to form bipolar attachments to the mitotic spindle and segregate. Cohesin also functions in chromosome condensation, transcriptional regulation, and DNA damage repair. Here we analyze the role of acetylation in modulating cohesin functions and how it affects budding yeast viability. Previous studies show that cohesion establishment requires Eco1p-mediated acetylation of the cohesin subunit Smc3p at residue K113. Smc3p acetylation was proposed to promote establishment by merely relieving Wpl1p inhibition because deletion of WPL1 bypasses the lethality of an ECO1 deletion (eco1Δ wpl1Δ). We find that little, if any, cohesion is established in eco1Δ wpl1Δ cells, indicating that Eco1p performs a function beyond antagonizing Wpl1p. Cohesion also fails to be established when SMC3 acetyl-mimics (K113Q or K112R,K113Q) are the sole functional SMC3s in cells. These results suggest that Smc3p acetylation levels affect establishment. It is remarkable that, despite their severe cohesion defect, eco1Δ wpl1Δ and smc3-K112R,K113Q strains are viable because a cohesin-independent mechanism enables bipolar attachment and segregation. This alternative mechanism is insufficient for smc3-K113Q strain viability. Smc3-K113Q is defective for condensation, whereas eco1Δ wpl1Δ and smc3-K112R,K113Q strains are competent for condensation. We suggest that Smc3p acetylation and Wpl1p antagonistically regulate cohesin's essential role in condensation.
Collapse
Affiliation(s)
- Vincent Guacci
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
27
|
Bolukbasi E, Vass S, Cobbe N, Nelson B, Simossis V, Dunbar DR, Heck MMS. Drosophila poly suggests a novel role for the Elongator complex in insulin receptor-target of rapamycin signalling. Open Biol 2012; 2:110031. [PMID: 22645656 PMCID: PMC3352090 DOI: 10.1098/rsob.110031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 12/21/2011] [Indexed: 01/06/2023] Open
Abstract
Multi-cellular organisms need to successfully link cell growth and metabolism to environmental cues during development. Insulin receptor-target of rapamycin (InR-TOR) signalling is a highly conserved pathway that mediates this link. Herein, we describe poly, an essential gene in Drosophila that mediates InR-TOR signalling. Loss of poly results in lethality at the third instar larval stage, but only after a stage of extreme larval longevity. Analysis in Drosophila demonstrates that Poly and InR interact and that poly mutants show an overall decrease in InR-TOR signalling, as evidenced by decreased phosphorylation of Akt, S6K and 4E-BP. Metabolism is altered in poly mutants, as revealed by microarray expression analysis and a decreased triglyceride : protein ratio in mutant animals. Intriguingly, the cellular distribution of Poly is dependent on insulin stimulation in both Drosophila and human cells, moving to the nucleus with insulin treatment, consistent with a role in InR-TOR signalling. Together, these data reveal that Poly is a novel, conserved (from flies to humans) mediator of InR signalling that promotes an increase in cell growth and metabolism. Furthermore, homology to small subunits of Elongator demonstrates a novel, unexpected role for this complex in insulin signalling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Margarete M. S. Heck
- University of Edinburgh, Queen's Medical
Research Institute, University/BHF Centre for
Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16
4TJ, UK
| |
Collapse
|
28
|
Abstract
Sister-chromatid cohesion, thought to be primarily mediated by the cohesin complex, is essential for chromosome segregation. The forces holding the two sisters resist the tendency of microtubules to prematurely pull sister DNAs apart and thereby prevent random segregation of the genome during mitosis, and consequent aneuploidy. By counteracting the spindle pulling forces, cohesion between the two sisters generates the tension necessary to stabilize microtubule–kinetochore attachments. Upon entry into anaphase, however, the linkages that hold the two sister DNAs must be rapidly destroyed to allow physical separation of chromatids. Anaphase cells must therefore possess mechanisms that ensure faithful segregation of single chromatids that are now attached stably to the spindle in a manner no longer dependent on tension. In the present review, we discuss the nature of the cohesive forces that hold sister chromatids together, the mechanisms that trigger their physical separation, and the anaphase-specific changes that ensure proper segregation of single chromatids during the later stages of mitosis.
Collapse
|
29
|
Tachibana-Konwalski K, Godwin J, van der Weyden L, Champion L, Kudo NR, Adams DJ, Nasmyth K. Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev 2010; 24:2505-16. [PMID: 20971813 PMCID: PMC2975927 DOI: 10.1101/gad.605910] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 09/23/2010] [Indexed: 12/13/2022]
Abstract
During female meiosis, bivalent chromosomes are thought to be held together from birth until ovulation by sister chromatid cohesion mediated by cohesin complexes whose ring structure depends on kleisin subunits, either Rec8 or Scc1. Because cohesion is established at DNA replication in the embryo, its maintenance for such a long time may require cohesin turnover. To address whether Rec8- or Scc1-containing cohesin holds bivalents together and whether it turns over, we created mice whose kleisin subunits can be cleaved by TEV protease. We show by microinjection experiments and confocal live-cell imaging that Rec8 cleavage triggers chiasmata resolution during meiosis I and sister centromere disjunction during meiosis II, while Scc1 cleavage triggers sister chromatid disjunction in the first embryonic mitosis, demonstrating a dramatic transition from Rec8- to Scc1-containing cohesin at fertilization. Crucially, activation of an ectopic Rec8 transgene during the growing phase of Rec8(TEV)(/TEV) oocytes does not prevent TEV-mediated bivalent destruction, implying little or no cohesin turnover for ≥2 wk during oocyte growth. We suggest that the inability of oocytes to regenerate cohesion may contribute to age-related meiosis I errors.
Collapse
Affiliation(s)
| | - Jonathan Godwin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | - Lysie Champion
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Nobuaki R. Kudo
- Institute of Reproductive and Developmental Biology, Imperial College London, London W12 0NN, United Kingdom
| | - David J. Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Kim Nasmyth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
30
|
Oliveira RA, Hamilton RS, Pauli A, Davis I, Nasmyth K. Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat Cell Biol 2010; 12:185-92. [PMID: 20081838 PMCID: PMC3284228 DOI: 10.1038/ncb2018] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 11/20/2009] [Indexed: 12/15/2022]
Abstract
The metaphase-anaphase transition is orchestrated through proteolysis of numerous proteins by a ubiquitin protein ligase called the anaphase-promoting complex or cyclosome (APC/C). A crucial aspect of this process is sister chromatid separation, which is thought to be mediated by separase, a thiol protease activated by the APC/C. Separase cleaves cohesin, a ring-shaped complex that entraps sister DNAs. It is a matter of debate whether cohesin-independent forces also contribute to sister chromatid cohesion. Using 4D live-cell imaging of Drosophila melanogaster syncytial embryos blocked in metaphase (via APC/C inhibition), we show that artificial cohesin cleavage is sufficient to trigger chromosome disjunction. This is nevertheless insufficient for correct chromosome segregation. Kinetochore-microtubule attachments are rapidly destabilized by the loss of tension caused by cohesin cleavage in the presence of high Cdk1 (cyclin-dependent kinase 1) activity, as occurs when the APC/C cannot destroy mitotic cyclins. Metaphase chromosomes undergo a bona fide anaphase when cohesin cleavage is combined with Cdk1 inhibition. We conclude that only two key events, opening of cohesin rings and downregulation of Cdk1, are sufficient to drive proper segregation of chromosomes in anaphase.
Collapse
Affiliation(s)
- Raquel A Oliveira
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | | | | | | |
Collapse
|
31
|
Schubert V, Weissleder A, Ali H, Fuchs J, Lermontova I, Meister A, Schubert I. Cohesin gene defects may impair sister chromatid alignment and genome stability in Arabidopsis thaliana. Chromosoma 2009; 118:591-605. [PMID: 19533160 DOI: 10.1007/s00412-009-0220-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 05/22/2009] [Indexed: 12/19/2022]
Abstract
In contrast to yeast, plant interphase nuclei often display incomplete alignment (cohesion) along sister chromatid arms. Sister chromatid cohesion mediated by the multi-subunit cohesin complex is essential for correct chromosome segregation during nuclear divisions and for DNA recombination repair. The cohesin complex consists of the conserved proteins SMC1, SMC3, SCC3, and an alpha-kleisin subunit. Viable homozygous mutants could be selected for the Arabidopsis thaliana alpha-kleisins SYN1, SYN2, and SYN4, which can partially compensate each other. For the kleisin SYN3 and for the single-copy genes SMC1, SMC3, and SCC3, only heterozygous mutants were obtained that displayed between 77% and 97% of the wild-type transcript level. Compared to wild-type nuclei, sister chromatid alignment was significantly decreased along arms in 4C nuclei of the homozygous syn1 and syn4 and even of the heterozygous smc1, smc3, scc3, and syn3 mutants. Knocking out SYN1 and SYN4 additionally impaired sister centromere cohesion. Homozygous mutants of SWITCH1 (required for meiotic sister chromatid alignment) displayed sterility and decreased sister arm alignment. For the cohesin loading complex subunit SCC2, only heterozygous mutants affecting sister centromere alignment were obtained. Defects of the alpha-kleisin SYN4, which impair sister chromatid alignment in 4C differentiated nuclei, do apparently not disturb alignment during prometaphase nor cause aneuploidy in meristematic cells. The syn2, 3, 4 scc3 and swi1 mutants display a high frequency of anaphases with bridges (~10% to >20% compared to 2.6% in wild type). Our results suggest that (a) already a slight reduction of the average transcript level in heterozygous cohesin mutants may cause perturbation of cohesion, at least in some leaf cells at distinct loci; (b) the decreased sister chromatid alignment in cohesin mutants can obviously not fully be compensated by other cohesion mechanisms such as DNA concatenation; (c) some cohesin genes, in addition to cohesion, might have further essential functions (e.g., for genome stability, apparently by facilitating correct recombination repair of double-strand breaks).
Collapse
Affiliation(s)
- Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Schaaf CA, Misulovin Z, Sahota G, Siddiqui AM, Schwartz YB, Kahn TG, Pirrotta V, Gause M, Dorsett D. Regulation of the Drosophila Enhancer of split and invected-engrailed gene complexes by sister chromatid cohesion proteins. PLoS One 2009; 4:e6202. [PMID: 19587787 PMCID: PMC2703808 DOI: 10.1371/journal.pone.0006202] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/16/2009] [Indexed: 01/14/2023] Open
Abstract
The cohesin protein complex was first recognized for holding sister chromatids together and ensuring proper chromosome segregation. Cohesin also regulates gene expression, but the mechanisms are unknown. Cohesin associates preferentially with active genes, and is generally absent from regions in which histone H3 is methylated by the Enhancer of zeste [E(z)] Polycomb group silencing protein. Here we show that transcription is hypersensitive to cohesin levels in two exceptional cases where cohesin and the E(z)-mediated histone methylation simultaneously coat the entire Enhancer of split and invected-engrailed gene complexes in cells derived from Drosophila central nervous system. These gene complexes are modestly transcribed, and produce seven of the twelve transcripts that increase the most with cohesin knockdown genome-wide. Cohesin mutations alter eye development in the same manner as increased Enhancer of split activity, suggesting that similar regulation occurs in vivo. We propose that cohesin helps restrain transcription of these gene complexes, and that deregulation of similarly cohesin-hypersensitive genes may underlie developmental deficits in Cornelia de Lange syndrome.
Collapse
Affiliation(s)
- Cheri A. Schaaf
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Gurmukh Sahota
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Akbar M. Siddiqui
- Microarray Core Facility, Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Yuri B. Schwartz
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Tatyana G. Kahn
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Vincenzo Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
33
|
Rivera T, Losada A. Shugoshin regulates cohesion by driving relocalization of PP2A in Xenopus extracts. Chromosoma 2009; 118:223-33. [PMID: 18987869 DOI: 10.1007/s00412-008-0190-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 10/13/2008] [Accepted: 10/15/2008] [Indexed: 01/20/2023]
Abstract
Sister chromatid cohesion is mediated by cohesin. At the onset of mitosis, most cohesin dissociates from chromatin with the exception of a small population, present along chromosome arms and enriched at centromeres. A protein known as shugoshin (Sgo) is essential to maintain arm and centromeric cohesion until the onset of anaphase in transformed human cells, but not in other organisms like Drosophila or mouse. We have used Xenopus egg extracts to further explore this issue. Chromosomes assembled in extracts depleted of Sgo have little or no cohesin at centromeres and display centromeric cohesion defects. Unlike transformed human cells, however, arm cohesion is maintained in the absence of Sgo. Furthermore, Sgo depletion impairs the prophase dissociation of cohesin. This phenotype can be rescued by inhibition of PP2A. The protein phosphatase interacts with Sgo and accumulates at centromeres in mitosis in a Sgo-dependent manner. We propose that Sgo drives relocalization of PP2A from arms to centromeres and, in this way, coordinates release of arm cohesin with protection of centromeric cohesin in mitosis.
Collapse
Affiliation(s)
- Teresa Rivera
- Spanish National Cancer Research Centre, Madrid, Spain
| | | |
Collapse
|
34
|
Kong X, Ball AR, Sonoda E, Feng J, Takeda S, Fukagawa T, Yen TJ, Yokomori K. Cohesin associates with spindle poles in a mitosis-specific manner and functions in spindle assembly in vertebrate cells. Mol Biol Cell 2009; 20:1289-301. [PMID: 19116315 PMCID: PMC2649254 DOI: 10.1091/mbc.e08-04-0419] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 12/11/2008] [Accepted: 12/19/2008] [Indexed: 12/16/2022] Open
Abstract
Cohesin is an essential protein complex required for sister chromatid cohesion. Cohesin associates with chromosomes and establishes sister chromatid cohesion during interphase. During metaphase, a small amount of cohesin remains at the chromosome-pairing domain, mainly at the centromeres, whereas the majority of cohesin resides in the cytoplasm, where its functions remain unclear. We describe the mitosis-specific recruitment of cohesin to the spindle poles through its association with centrosomes and interaction with nuclear mitotic apparatus protein (NuMA). Overexpression of NuMA enhances cohesin accumulation at spindle poles. Although transient cohesin depletion does not lead to visible impairment of normal spindle formation, recovery from nocodazole-induced spindle disruption was significantly impaired. Importantly, selective blocking of cohesin localization to centromeres, which disrupts centromeric sister chromatid cohesion, had no effect on this spindle reassembly process, clearly separating the roles of cohesin at kinetochores and spindle poles. In vitro, chromosome-independent spindle assembly using mitotic extracts was compromised by cohesin depletion, and it was rescued by addition of cohesin that was isolated from mitotic, but not S phase, cells. The combined results identify a novel spindle-associated role for human cohesin during mitosis, in addition to its function at the centromere/kinetochore regions.
Collapse
Affiliation(s)
- Xiangduo Kong
- *Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700
| | - Alexander R. Ball
- *Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700
| | - Eiichiro Sonoda
- CREST Research Project, Japan Science and Technology, Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jie Feng
- Fox Chase Cancer Center, Philadelphia, PA 19111; and
| | - Shunichi Takeda
- CREST Research Project, Japan Science and Technology, Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics and SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Tim J. Yen
- Fox Chase Cancer Center, Philadelphia, PA 19111; and
| | - Kyoko Yokomori
- *Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700
| |
Collapse
|
35
|
Abstract
High fidelity chromosome transmission requires the pairing of sister chromatids by a group of conserved proteins called cohesins during S-phase. Sister chromatid cohesion is maintained until anaphase onset. Presently, there are two sets of models of cohesin complex popular in the cohesin biology field: one model predicts that single cohesin rings entrap both sister chromatids, and the other model proposes that cohesin complexes associate with each sister chromatid and become paired during DNA replication. It is the first model that currently predominate the field--in part because prior efforts failed to detect higher order cohesin-cohesin interactions. However, the static configuration and size limitation of the one ring embrace model are the major limitations of the embrace model, and cannot explain various functions of cohesin in DNA replication, DNA repair and gene expression. In a recent study published by Zhang et al. in the Journal of Cell Biology describes a two-ring handcuff model for the cohesin complex, and provides new information regarding how sister chromatid cohesion and separation are achieved in vertebrate cell systems.
Collapse
Affiliation(s)
- Nenggang Zhang
- Texas Children’s Cancer Center; Department of Pediatric Hematology/Oncology; Baylor College of Medicine; Houston, Texas USA
| | - Debananda Pati
- Texas Children’s Cancer Center; Department of Pediatric Hematology/Oncology; Baylor College of Medicine; Houston, Texas USA
| |
Collapse
|
36
|
Abstract
Cohesin is a chromosome-associated multisubunit protein complex that is highly conserved in eukaryotes and has close homologs in bacteria. Cohesin mediates cohesion between replicated sister chromatids and is therefore essential for chromosome segregation in dividing cells. Cohesin is also required for efficient repair of damaged DNA and has important functions in regulating gene expression in both proliferating and post-mitotic cells. Here we discuss how cohesin associates with DNA, how these interactions are controlled during the cell cycle; how binding of cohesin to DNA may mediate sister chromatid cohesion, DNA repair, and gene regulation; and how defects in these processes can lead to human disease.
Collapse
Affiliation(s)
- Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), A-1030 Vienna, Austria.
| | | | | |
Collapse
|
37
|
Coelho PA, Queiroz-Machado J, Carmo AM, Moutinho-Pereira S, Maiato H, Sunkel CE. Dual role of topoisomerase II in centromere resolution and aurora B activity. PLoS Biol 2008; 6:e207. [PMID: 18752348 PMCID: PMC2525683 DOI: 10.1371/journal.pbio.0060207] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 07/16/2008] [Indexed: 11/19/2022] Open
Abstract
Chromosome segregation requires sister chromatid resolution. Condensins are essential for this process since they organize an axial structure where topoisomerase II can work. How sister chromatid separation is coordinated with chromosome condensation and decatenation activity remains unknown. We combined four-dimensional (4D) microscopy, RNA interference (RNAi), and biochemical analyses to show that topoisomerase II plays an essential role in this process. Either depletion of topoisomerase II or exposure to specific anti-topoisomerase II inhibitors causes centromere nondisjunction, associated with syntelic chromosome attachments. However, cells degrade cohesins and timely exit mitosis after satisfying the spindle assembly checkpoint. Moreover, in topoisomerase II-depleted cells, Aurora B and INCENP fail to transfer to the central spindle in late mitosis and remain tightly associated with centromeres of nondisjoined sister chromatids. Also, in topoisomerase II-depleted cells, Aurora B shows significantly reduced kinase activity both in S2 and HeLa cells. Codepletion of BubR1 in S2 cells restores Aurora B kinase activity, and consequently, most syntelic attachments are released. Taken together, our results support that topoisomerase II ensures proper sister chromatid separation through a direct role in centromere resolution and prevents incorrect microtubule-kinetochore attachments by allowing proper activation of Aurora B kinase.
Collapse
Affiliation(s)
- Paula A Coelho
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
| | - Joana Queiroz-Machado
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
- Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
| | | | | | - Helder Maiato
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
- Laboratory of Cell and Molecular Biology, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Claudio E Sunkel
- Instituto de Biologia Molecular e Celular (IBMC), Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Pimenta-Marques A, Tostões R, Marty T, Barbosa V, Lehmann R, Martinho RG. Differential requirements of a mitotic acetyltransferase in somatic and germ line cells. Dev Biol 2008; 323:197-206. [PMID: 18801358 PMCID: PMC2605734 DOI: 10.1016/j.ydbio.2008.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 08/18/2008] [Accepted: 08/18/2008] [Indexed: 12/20/2022]
Abstract
During mitosis different types of cells can have differential requirements for chromosome segregation. We isolated two new alleles of the separation anxiety gene (san). san was previously described in both Drosophila and in humans to be required for centromeric sister chromatid cohesion (Hou et al., 2007; Williams et al., 2003). Our work confirms and expands the observation that san is required in vivo for normal mitosis of different types of somatic cells. In addition, we suggest that san is also important for the correct resolution of chromosomes, implying a more general function of this acetyltransferase. Surprisingly, during oogenesis we cannot detect mitotic defects in germ line cells mutant for san. We hypothesize the female germ line stem cells have differential requirements for mitotic sister chromatid cohesion.
Collapse
Affiliation(s)
- Ana Pimenta-Marques
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, n 6, 2781-901 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
39
|
McKee BD. Does cohesin regulate developmental gene expression in Drosophila? Proc Natl Acad Sci U S A 2008; 105:12097-8. [PMID: 18715997 PMCID: PMC2527870 DOI: 10.1073/pnas.0805712105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Bruce D McKee
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences Building, Knoxville, TN 37996-0840, USA.
| |
Collapse
|
40
|
Inoue A, Hyle J, Lechner MS, Lahti JM. Perturbation of HP1 localization and chromatin binding ability causes defects in sister-chromatid cohesion. Mutat Res 2008; 657:48-55. [PMID: 18790078 DOI: 10.1016/j.mrgentox.2008.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 01/06/2023]
Abstract
Sister-chromatid cohesion, the machinery used in eukaryote organisms to prevent aneuploidy, tethers sister chromatids together after their replication in S phase until mitosis. Previous studies in fission yeast, Drosophila and mammals have demonstrated the requirement for the heterochromatin formation pathway for proper centromeric cohesion. However, the exact role of heterochromatin protein 1 (HP1) in sister-chromatid cohesion in mammals is still unknown. In this study, we disrupted endogenous HP1 expression in HeLa cells using a dominant-negative mutant of HP1beta and wild-type or mutant forms of HP1alpha. We then examined their effects on chromosome alignment, segregation and cohesion. Enforced expression of these constructs leads to frequent chromosome misalignment and missegregation. Mitotic chromosomes from these cells also exhibit a loosened primary constriction and separated sister chromatids. We further demonstrate that alignment of the cohesin proteins around kinetochores was also aberrant and that cohesin complexes bound less tightly in these cells. Unexpectedly, we observed a "wavy" chromosome morphology resembling that seen upon depletion of condensin proteins in cells with over-expression of HP1alpha, but not in cells expressing the HP1beta mutant. These results indicate that proper HP1 status is required for sister-chromatid cohesion in mammalian cells, and suggest that HP1alpha might be required for chromosome condensation.
Collapse
Affiliation(s)
- Akira Inoue
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | |
Collapse
|
41
|
Hallson G, Syrzycka M, Beck SA, Kennison JA, Dorsett D, Page SL, Hunter SM, Keall R, Warren WD, Brock HW, Sinclair DAR, Honda BM. The Drosophila cohesin subunit Rad21 is a trithorax group (trxG) protein. Proc Natl Acad Sci U S A 2008; 105:12405-10. [PMID: 18713858 PMCID: PMC2527924 DOI: 10.1073/pnas.0801698105] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Indexed: 12/19/2022] Open
Abstract
The cohesin complex is a key player in regulating cell division. Cohesin proteins SMC1, SMC3, Rad21, and stromalin (SA), along with associated proteins Nipped-B, Pds5, and EcoI, maintain sister chromatid cohesion before segregation to daughter cells during anaphase. Recent chromatin immunoprecipitation (ChIP) data reveal extensive overlap of Nipped-B and cohesin components with RNA polymerase II binding at active genes in Drosophila. These and other data strongly suggest a role for cohesion in transcription; however, there is no clear evidence for any specific mechanisms by which cohesin and associated proteins regulate transcription. We report here a link between cohesin components and trithorax group (trxG) function, thus implicating these proteins in transcription activation and/or elongation. We show that the Drosophila Rad21 protein is encoded by verthandi (vtd), a member of the trxG gene family that is also involved in regulating the hedgehog (hh) gene. In addition, mutations in the associated protein Nipped-B show similar trxG activity i.e., like vtd, they act as dominant suppressors of Pc and hh(Mrt) without impairing cell division. Our results provide a framework to further investigate how cohesin and associated components might regulate transcription.
Collapse
Affiliation(s)
- Graham Hallson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Monika Syrzycka
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Samantha A. Beck
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - James A. Kennison
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2785
| | - Dale Dorsett
- Department of Biochemistry and Molecular Biology, School of Medicine, St. Louis University, St. Louis, MO 63104; and
| | - Scott L. Page
- Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia
| | - Sally M. Hunter
- Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia
| | - Rebecca Keall
- Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia
| | - William D. Warren
- Comparative Genomics Centre, James Cook University, Townsville 4811, Queensland, Australia
| | - Hugh W. Brock
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Donald A. R. Sinclair
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | - Barry M. Honda
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| |
Collapse
|
42
|
Gluenz E, Sharma R, Carrington M, Gull K. Functional characterization of cohesin subunit SCC1 in Trypanosoma brucei and dissection of mutant phenotypes in two life cycle stages. Mol Microbiol 2008; 69:666-80. [PMID: 18554326 PMCID: PMC2610385 DOI: 10.1111/j.1365-2958.2008.06320.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2008] [Indexed: 11/30/2022]
Abstract
In yeast and metazoa, structural maintenance of chromosome (SMC) complexes play key roles in chromosome segregation, architecture and DNA repair. The main function of the cohesin complex is to hold replicated sister chromatids together until segregation at anaphase, which is dependent on proteolytic cleavage of the cohesin subunit SCC1. Analysis of trypanosomatid genomes showed that the core cohesin and condensin complexes are conserved, but SMC5/6 is absent. To investigate the functional conservation of cohesin in eukaryotes distantly related to yeast and metazoa, we characterized the Trypanosoma brucei SCC1 orthologue. TbSCC1 is expressed prior to DNA synthesis at late G1, remains in the nucleus throughout S- and G2-phases of the cell cycle and disappears at anaphase. Depletion of SCC1 by RNAi or expression of a non-cleavable SCC1 resulted in karyokinesis failure. Using the dominant negative phenotype of non-cleavable SCC1 we investigated checkpoint regulation of cytokinesis in response to mitosis failure at anaphase. In the absence of chromosome segregation, procyclic trypanosomes progressed through cytokinesis to produce one nucleated and one anucleate cell (zoid). In contrast, cytokinesis was incomplete in bloodstream forms, where cleavage was initiated but cells failed to progress to abscission. Kinetoplast duplication was uninterrupted resulting in cells with multiple kinetoplasts and flagella.
Collapse
Affiliation(s)
- Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | | | |
Collapse
|
43
|
Cena A, Kozłowska E, Płochocka D, Grynberg M, Ishikawa T, Fronk J, Kurlandzka A. The F658G substitution in Saccharomyces cerevisiae cohesin Irr1/Scc3 is semi-dominant in the diploid and disturbs mitosis, meiosis and the cell cycle. Eur J Cell Biol 2008; 87:831-44. [PMID: 18617290 DOI: 10.1016/j.ejcb.2008.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 04/29/2008] [Accepted: 05/02/2008] [Indexed: 10/21/2022] Open
Abstract
The sister chromatid cohesion complex of Saccharomyces cerevisiae includes chromosomal ATPases Smc1p and Smc3p, the kleisin Mcd1p/Scc1p, and Irr1p/Scc3p, the least studied component. We have created an irr1-1 mutation (F658G substitution) which is lethal in the haploid and semi-dominant in the heterozygous diploid irr1-1/IRR1. The mutated Irr1-1 protein is present in the nucleus, its level is similar to that of wild-type Irr1p/Scc3p and it is able to interact with chromosomes. The irr1-1/IRR1 diploid exhibits mitotic and meiotic chromosome segregation defects, irregularities in mitotic divisions and is severely affected in meiosis. These defects are gene-dosage dependent, and experiments with synchronous cultures suggest that they may result from the malfunctioning of the spindle assembly checkpoint. The partial structure of Irr1p/Scc3p was predicted and the F658G substitution was found to induce marked changes in the general shape of the predicted protein. Nevertheless, the mutant protein retains its ability to interact with Scc1p, another component of the cohesin complex, as shown by coimmunoprecipitation.
Collapse
Affiliation(s)
- Agata Cena
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
44
|
Díaz-Martínez LA, Giménez-Abián JF, Clarke DJ. Chromosome cohesion - rings, knots, orcs and fellowship. J Cell Sci 2008; 121:2107-14. [PMID: 18565823 DOI: 10.1242/jcs.029132] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sister-chromatid cohesion is essential for accurate chromosome segregation. A key discovery towards our understanding of sister-chromatid cohesion was made 10 years ago with the identification of cohesins. Since then, cohesins have been shown to be involved in cohesion in numerous organisms, from yeast to mammals. Studies of the composition, regulation and structure of the cohesin complex led to a model in which cohesin loading during S-phase establishes cohesion, and cohesin cleavage at the onset of anaphase allows sister-chromatid separation. However, recent studies have revealed activities that provide cohesion in the absence of cohesin. Here we review these advances and propose an integrative model in which chromatid cohesion is a result of the combined activities of multiple cohesion mechanisms.
Collapse
Affiliation(s)
- Laura A Díaz-Martínez
- Department of Pharmacology, UT-Southwestern Medical Center, 6001 Forest Park Rd, Dallas, TX75390, USA.
| | | | | |
Collapse
|
45
|
Pauli A, Althoff F, Oliveira RA, Heidmann S, Schuldiner O, Lehner CF, Dickson BJ, Nasmyth K. Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev Cell 2008; 14:239-51. [PMID: 18267092 PMCID: PMC2258333 DOI: 10.1016/j.devcel.2007.12.009] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 12/07/2007] [Accepted: 12/12/2007] [Indexed: 12/22/2022]
Abstract
Cohesin is a highly conserved multisubunit complex that holds sister chromatids together in mitotic cells. At the metaphase to anaphase transition, proteolytic cleavage of the alpha kleisin subunit (Rad21) by separase causes cohesin's dissociation from chromosomes and triggers sister-chromatid disjunction. To investigate cohesin's function in postmitotic cells, where it is widely expressed, we have created fruit flies whose Rad21 can be cleaved by TEV protease. Cleavage causes precocious separation of sister chromatids and massive chromosome missegregation in proliferating cells, but not disaggregation of polytene chromosomes in salivary glands. Crucially, cleavage in postmitotic neurons is lethal. In mushroom-body neurons, it causes defects in axon pruning, whereas in cholinergic neurons it causes highly abnormal larval locomotion. These data demonstrate essential roles for cohesin in nondividing cells and also introduce a powerful tool by which to investigate protein function in metazoa.
Collapse
Affiliation(s)
- Andrea Pauli
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | | | - Stefan Heidmann
- Department of Genetics, University of Bayreuth, 95440 Bayreuth, Germany
| | - Oren Schuldiner
- Stanford University, Department of Biological Sciences, Stanford, CA 94305, USA
| | | | | | - Kim Nasmyth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
46
|
Gause M, Webber HA, Misulovin Z, Haller G, Rollins RA, Eissenberg JC, Bickel SE, Dorsett D. Functional links between Drosophila Nipped-B and cohesin in somatic and meiotic cells. Chromosoma 2008; 117:51-66. [PMID: 17909832 PMCID: PMC2258212 DOI: 10.1007/s00412-007-0125-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 09/05/2007] [Accepted: 09/07/2007] [Indexed: 01/11/2023]
Abstract
Drosophila Nipped-B is an essential protein that has multiple functions. It facilitates expression of homeobox genes and is also required for sister chromatid cohesion. Nipped-B is conserved from yeast to man, and its orthologs also play roles in deoxyribonucleic acid repair and meiosis. Mutation of the human ortholog, Nipped-B-Like (NIPBL), causes Cornelia de Lange syndrome (CdLS), associated with multiple developmental defects. The Nipped-B protein family is required for the cohesin complex that mediates sister chromatid cohesion to bind to chromosomes. A key question, therefore, is whether the Nipped-B family regulates gene expression, meiosis, and development by controlling cohesin. To gain insights into Nipped-B's functions, we compared the effects of several Nipped-B mutations on gene expression, sister chromatid cohesion, and meiosis. We also examined association of Nipped-B and cohesin with somatic and meiotic chromosomes by immunostaining. Missense Nipped-B alleles affecting the same HEAT repeat motifs as CdLS-causing NIPBL mutations have intermediate effects on both gene expression and mitotic chromatid cohesion, linking these two functions and the role of NIPBL in human development. Nipped-B colocalizes extensively with cohesin on chromosomes in both somatic and meiotic cells and is present in soluble complexes with cohesin subunits in nuclear extracts. In meiosis, Nipped-B also colocalizes with the synaptonemal complex and contributes to maintenance of meiotic chromosome cores. These results support the idea that direct regulation of cohesin function underlies the diverse functions of Nipped-B and its orthologs.
Collapse
Affiliation(s)
- Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Hayley A. Webber
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Gabe Haller
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | | | - Joel C. Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Sharon E. Bickel
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA, e-mail:
| |
Collapse
|
47
|
Schuldiner O, Berdnik D, Levy JM, Wu JS, Luginbuhl D, Gontang AC, Luo L. piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev Cell 2008; 14:227-38. [PMID: 18267091 PMCID: PMC2268086 DOI: 10.1016/j.devcel.2007.11.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/24/2007] [Accepted: 11/02/2007] [Indexed: 12/25/2022]
Abstract
Developmental axon pruning is widely used to refine neural circuits. We performed a mosaic screen to identify mutations affecting axon pruning of Drosophila mushroom body gamma neurons. We constructed a modified piggyBac vector with improved mutagenicity and generated insertions in >2000 genes. We identified two cohesin subunits (SMC1 and SA) as being essential for axon pruning. The cohesin complex maintains sister-chromatid cohesion during cell division in eukaryotes. However, we show that the pruning phenotype in SMC1(-/-) clones is rescued by expressing SMC1 in neurons, revealing a postmitotic function. SMC1(-/-) clones exhibit reduced levels of the ecdysone receptor EcR-B1, a key regulator of axon pruning. The pruning phenotype is significantly suppressed by overexpressing EcR-B1 and is enhanced by a reduced dose of EcR, supporting a causal relationship. We also demonstrate a postmitotic role for SMC1 in dendrite targeting of olfactory projection neurons. We suggest that cohesin regulates diverse aspects of neuronal morphogenesis.
Collapse
Affiliation(s)
- Oren Schuldiner
- Howard Hughes Medical Institute, Department of Biological Sciences and Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Skibbens RV. Mechanisms of sister chromatid pairing. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:283-339. [PMID: 18779060 DOI: 10.1016/s1937-6448(08)01005-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The continuance of life through cell division requires high fidelity DNA replication and chromosome segregation. During DNA replication, each parental chromosome is duplicated exactly and one time only. At the same time, the resulting chromosomes (called sister chromatids) become tightly paired along their length. This S-phase pairing, or cohesion, identifies chromatids as sisters over time. During mitosis in most eukaryotes, sister chromatids bi-orient to the mitotic spindle. After each chromosome pair is properly oriented, the cohesion established during S phase is inactivated in a tightly regulated fashion, allowing sister chromatids to segregate away from each other. Recent findings of cohesin structure and enzymology provide new insights into cohesion, while many critical facets of cohesion (how cohesins tether together sister chromatids and how those tethers are established) remain actively debated.
Collapse
Affiliation(s)
- Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
49
|
Tanaka TU, Stark MJR, Tanaka K. Kinetochore capture and bi-orientation on the mitotic spindle. Nat Rev Mol Cell Biol 2007; 6:929-42. [PMID: 16341079 DOI: 10.1038/nrm1764] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Kinetochores are large protein complexes that are formed on chromosome regions known as centromeres. For high-fidelity chromosome segregation, kinetochores must be correctly captured on the mitotic spindle before anaphase onset. During prometaphase, kinetochores are initially captured by a single microtubule that extends from a spindle pole and are then transported poleward along the microtubule. Subsequently, microtubules that extend from the other spindle pole also interact with kinetochores and, eventually, each sister kinetochore attaches to microtubules that extend from opposite poles - this is known as bi-orientation. Here we discuss the molecular mechanisms of these processes, by focusing on budding yeast and drawing comparisons with other organisms.
Collapse
Affiliation(s)
- Tomoyuki U Tanaka
- School of Life Sciences, University of Dundee, Wellcome Trust Biocentre, Dow Street, Dundee, DD1 5EH, UK.
| | | | | |
Collapse
|
50
|
Khetani RS, Bickel SE. Regulation of meiotic cohesion and chromosome core morphogenesis during pachytene in Drosophila oocytes. J Cell Sci 2007; 120:3123-37. [PMID: 17698920 DOI: 10.1242/jcs.009977] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
During meiosis, cohesion between sister chromatids is required for normal levels of homologous recombination, maintenance of chiasmata and accurate chromosome segregation during both divisions. In Drosophila, null mutations in the ord gene abolish meiotic cohesion, although how ORD protein promotes cohesion has remained elusive. We show that SMC subunits of the cohesin complex colocalize with ORD at centromeres of ovarian germ-line cells. In addition, cohesin SMCs and ORD are visible along the length of meiotic chromosomes during pachytene and remain associated with chromosome cores following DNase I digestion. In flies lacking ORD activity, cohesin SMCs fail to accumulate at oocyte centromeres. Although SMC1 and SMC3 localization along chromosome cores appears normal during early pachytene in ord mutant oocytes, the cores disassemble as meiosis progresses. These data suggest that cohesin loading and/or accumulation at centromeres versus arms is under differential control during Drosophila meiosis. Our experiments also reveal that the alpha-kleisin C(2)M is required for the assembly of chromosome cores during pachytene but is not involved in recruitment of cohesin SMCs to the centromeres. We present a model for how chromosome cores are assembled during Drosophila meiosis and the role of ORD in meiotic cohesion, chromosome core maintenance and homologous recombination.
Collapse
Affiliation(s)
- Radhika S Khetani
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | |
Collapse
|