1
|
Siddiqui NU, Karaiskakis A, Goldman AL, Eagle WVI, Low TCH, Luo H, Smibert CA, Gavis ER, Lipshitz HD. Smaug regulates germ plasm assembly and primordial germ cell number in Drosophila embryos. SCIENCE ADVANCES 2024; 10:eadg7894. [PMID: 38608012 PMCID: PMC11014450 DOI: 10.1126/sciadv.adg7894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
During Drosophila oogenesis, the Oskar (OSK) RNA binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here, we identify mechanisms that subsequently regulate germ plasm assembly in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk messenger RNA (mRNA) as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNA results in excess translation of these transcripts in the germ plasm, accumulation of excess germ plasm, and budding of excess primordial germ cells (PGCs). Therefore, SMG triggers a posttranscriptional regulatory pathway that attenuates the amount of germ plasm in embryos to modulate the number of PGCs.
Collapse
Affiliation(s)
- Najeeb U. Siddiqui
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
- Program in Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Angelo Karaiskakis
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Aaron L. Goldman
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
- Program in Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Whitby V. I. Eagle
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Timothy C. H. Low
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Hua Luo
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Craig A. Smibert
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Howard D. Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
2
|
Siddiqui NU, Karaiskakis A, Goldman AL, Eagle WV, Smibert CA, Gavis ER, Lipshitz HD. Smaug regulates germ plasm synthesis and primordial germ cell number in Drosophila embryos by repressing the oskar and bruno 1 mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530189. [PMID: 36909513 PMCID: PMC10002672 DOI: 10.1101/2023.02.27.530189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
During Drosophila oogenesis, the Oskar (OSK) RNA-binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here we identify the mechanisms that regulate the osk mRNA in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk mRNA itself as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNAs results in ectopic translation of these transcripts in the germ plasm and excess PGCs. SMG therefore triggers a post-transcriptional regulatory pathway that attenuates germ plasm synthesis in embryos, thus modulating the number of PGCs.
Collapse
Affiliation(s)
- Najeeb U. Siddiqui
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Program in Developmental & Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Angelo Karaiskakis
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Aaron L. Goldman
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Program in Developmental & Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Whitby V.I. Eagle
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Craig A. Smibert
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Howard D. Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| |
Collapse
|
3
|
Mitra R, Rehman A, Singh KK, Jaganathan BG. Multifaceted roles of MAGOH Proteins. Mol Biol Rep 2023; 50:1931-1941. [PMID: 36396768 DOI: 10.1007/s11033-022-07904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/14/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022]
Abstract
MAGOH and MAGOHB are paralog proteins that can substitute each other in the exon junction complex (EJC). The EJC is formed of core components EIF4A3, RBM8A, and MAGOH/MAGOHB. As a part of the EJC, MAGOH proteins are required for mRNA splicing, export, translation and nonsense-mediated mRNA decay (NMD). MAGOH is also essential for embryonic development and normal cellular functioning. The haploinsufficiency of MAGOH results in disorders such as microcephaly and cancer. The present review discusses the discovery of MAGOH, its paralog MAGOHB, their roles in cellular function as part of the EJC, and other cellular roles that are not directly associated with mRNA processing. We also discuss how MAGOH haploinsufficiency in cancer cells can be exploited to develop a novel targeted cancer treatment.
Collapse
Affiliation(s)
- Rumela Mitra
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Ayushi Rehman
- RNA-Binding Proteins (RBPs) Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Kusum Kumari Singh
- RNA-Binding Proteins (RBPs) Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India.
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India.
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India.
| |
Collapse
|
4
|
Evolution of sexual systems, sex chromosomes and sex-linked gene transcription in flatworms and roundworms. Nat Commun 2022; 13:3239. [PMID: 35688815 PMCID: PMC9187692 DOI: 10.1038/s41467-022-30578-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Many species with separate male and female individuals (termed ‘gonochorism’ in animals) have sex-linked genome regions. Here, we investigate evolutionary changes when genome regions become completely sex-linked, by analyses of multiple species of flatworms (Platyhelminthes; among which schistosomes recently evolved gonochorism from ancestral hermaphroditism), and roundworms (Nematoda) which have undergone independent translocations of different autosomes. Although neither the evolution of gonochorism nor translocations fusing ancestrally autosomal regions to sex chromosomes causes inevitable loss of recombination, we document that formerly recombining regions show genomic signatures of recombination suppression in both taxa, and become strongly genetically degenerated, with a loss of most genes. Comparisons with hermaphroditic flatworm transcriptomes show masculinisation and some defeminisation in schistosome gonad gene expression. We also find evidence that evolution of sex-linkage in nematodes is accompanied by transcriptional changes and dosage compensation. Our analyses also identify sex-linked genes that could assist future research aimed at controlling some of these important parasites. Transitions between hermaphroditic and separate sexes are relatively understudied in animals compared to pants. Here, Wang et al. reconstruct the evolution of separate sexes in the flatworms and complex changes of sex chromosomes in the roundworms.
Collapse
|
5
|
Kwon OS, Mishra R, Safieddine A, Coleno E, Alasseur Q, Faucourt M, Barbosa I, Bertrand E, Spassky N, Le Hir H. Exon junction complex dependent mRNA localization is linked to centrosome organization during ciliogenesis. Nat Commun 2021; 12:1351. [PMID: 33649372 PMCID: PMC7921557 DOI: 10.1038/s41467-021-21590-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Exon junction complexes (EJCs) mark untranslated spliced mRNAs and are crucial for the mRNA lifecycle. An imbalance in EJC dosage alters mouse neural stem cell (mNSC) division and is linked to human neurodevelopmental disorders. In quiescent mNSC and immortalized human retinal pigment epithelial (RPE1) cells, centrioles form a basal body for ciliogenesis. Here, we report that EJCs accumulate at basal bodies of mNSC or RPE1 cells and decline when these cells differentiate or resume growth. A high-throughput smFISH screen identifies two transcripts accumulating at centrosomes in quiescent cells, NIN and BICD2. In contrast to BICD2, the localization of NIN transcripts is EJC-dependent. NIN mRNA encodes a core component of centrosomes required for microtubule nucleation and anchoring. We find that EJC down-regulation impairs both pericentriolar material organization and ciliogenesis. An EJC-dependent mRNA trafficking towards centrosome and basal bodies might contribute to proper mNSC division and brain development. Exon junction complexes (EJCs) that mark untranslated mRNA are involved in transport, translation and nonsense-mediated mRNA decay. Here the authors show centrosomal localization of EJCs which appears to be required for both the localization of NIN mRNA around centrosomes and ciliogenesis.
Collapse
Affiliation(s)
- Oh Sung Kwon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Rahul Mishra
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Adham Safieddine
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Emeline Coleno
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Quentin Alasseur
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Isabelle Barbosa
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
6
|
Chiu YL, Shikina S, Yoshioka Y, Shinzato C, Chang CF. De novo transcriptome assembly from the gonads of a scleractinian coral, Euphyllia ancora: molecular mechanisms underlying scleractinian gametogenesis. BMC Genomics 2020; 21:732. [PMID: 33087060 PMCID: PMC7579821 DOI: 10.1186/s12864-020-07113-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. RESULTS 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. CONCLUSIONS Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies.
Collapse
Affiliation(s)
- Yi-Ling Chiu
- Doctoral Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan.,Doctoral Program in Marine Biotechnology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan. .,Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Rd, Keelung, 20224, Taiwan.
| | - Yuki Yoshioka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Rd, Keelung, 20224, Taiwan. .,Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
7
|
Sepe RM, Ghiron JHL, Zucchetti I, Caputi L, Tarallo R, Crocetta F, De Santis R, D'Aniello S, Sordino P. The EJC component Magoh in non-vertebrate chordates. Dev Genes Evol 2020; 230:295-304. [PMID: 32632492 DOI: 10.1007/s00427-020-00664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/01/2020] [Indexed: 11/26/2022]
Abstract
Earliest craniates possess a newly enlarged, elaborated forebrain with new cell types and neuronal networks. A key question in vertebrate evolution is when and how this cerebral expansion took place. The exon-junction complex (EJC) plays an essential role in mRNA processing of all Eukarya. Recently, it has been proposed that the EJC represses recursive RNA splicing in Deuterostomes, with implication in human brain diseases like microcephaly and depression. However, the EJC or EJC subunit contribution to brain development in non-vertebrate Deuterostomes remained unknown. Being interested in the evolution of chordate characters, we focused on the model species, Branchiostoma lanceolatum (Cephalochordata) and Ciona robusta (Tunicata), with the aim to investigate the ancestral and the derived expression state of Magoh orthologous genes. This study identifies that Magoh is part of a conserved syntenic group exclusively in vertebrates and suggests that Magoh has experienced duplication and loss events in mammals. During early development in amphioxus and ascidian, maternal contribution and zygotic expression of Magoh genes in various types of progenitor cells and tissues are consistent with the condition observed in other Bilateria. Later in development, we also show expression of Magoh in the brain of cephalochordate and ascidian larvae. Collectively, these results provide a basis to further define what functional role(s) Magoh exerted during nervous system development and evolution.
Collapse
Affiliation(s)
- Rosa Maria Sepe
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Jung Hee Levialdi Ghiron
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Ivana Zucchetti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Luigi Caputi
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Raffaella Tarallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Fabio Crocetta
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Rosaria De Santis
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy.
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, 80121, Naples, Italy.
| |
Collapse
|
8
|
Gangras P, Gallagher TL, Parthun MA, Yi Z, Patton RD, Tietz KT, Deans NC, Bundschuh R, Amacher SL, Singh G. Zebrafish rbm8a and magoh mutants reveal EJC developmental functions and new 3'UTR intron-containing NMD targets. PLoS Genet 2020; 16:e1008830. [PMID: 32502192 PMCID: PMC7310861 DOI: 10.1371/journal.pgen.1008830] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 06/23/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Many post-transcriptional mechanisms operate via mRNA 3'UTRs to regulate protein expression, and such controls are crucial for development. We show that homozygous mutations in two zebrafish exon junction complex (EJC) core genes rbm8a and magoh leads to muscle disorganization, neural cell death, and motor neuron outgrowth defects, as well as dysregulation of mRNAs subjected to nonsense-mediated mRNA decay (NMD) due to translation termination ≥ 50 nts upstream of the last exon-exon junction. Intriguingly, we find that EJC-dependent NMD also regulates a subset of transcripts that contain 3'UTR introns (3'UI) < 50 nts downstream of a stop codon. Some transcripts containing such stop codon-proximal 3'UI are also NMD-sensitive in cultured human cells and mouse embryonic stem cells. We identify 167 genes that contain a conserved proximal 3'UI in zebrafish, mouse and humans. foxo3b is one such proximal 3'UI-containing gene that is upregulated in zebrafish EJC mutant embryos, at both mRNA and protein levels, and loss of foxo3b function in EJC mutant embryos significantly rescues motor axon growth defects. These data are consistent with EJC-dependent NMD regulating foxo3b mRNA to control protein expression during zebrafish development. Our work shows that the EJC is critical for normal zebrafish development and suggests that proximal 3'UIs may serve gene regulatory function in vertebrates.
Collapse
Affiliation(s)
- Pooja Gangras
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Thomas L. Gallagher
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Michael A. Parthun
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Zhongxia Yi
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Robert D. Patton
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
- Department of Physics, The Ohio State University, Ohio, United States of America
| | - Kiel T. Tietz
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Natalie C. Deans
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
- Department of Physics, The Ohio State University, Ohio, United States of America
- Department of Chemistry and Biochemistry, The Ohio State University, Ohio, United States of America
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Ohio, United States of America
| | - Sharon L. Amacher
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Ohio, United States of America
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children’s Hospital, Ohio, United States of America
| | - Guramrit Singh
- Department of Molecular Genetics, The Ohio State University, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Ohio, United States of America
| |
Collapse
|
9
|
Kleinschnitz K, Vießmann N, Jordan M, Heidmann SK. Condensin I is required for faithful meiosis in Drosophila males. Chromosoma 2020; 129:141-160. [PMID: 32314039 PMCID: PMC7260282 DOI: 10.1007/s00412-020-00733-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 01/03/2023]
Abstract
The heteropentameric condensin complexes play vital roles in the formation and faithful segregation of mitotic chromosomes in eukaryotes. While the different contributions of the two common condensin complexes, condensin I and condensin II, to chromosome morphology and behavior in mitosis have been thoroughly investigated, much less is known about the specific roles of the two complexes during meiotic divisions. In Drosophila melanogaster, faithful mitotic divisions depend on functional condensin I, but not on condensin II. However, meiotic divisions in Drosophila males require functional condensin II subunits. The role of condensin I during male meiosis in Drosophila has been unresolved. Here, we show that condensin I-specific subunits localize to meiotic chromatin in both meiosis I and II during Drosophila spermatogenesis. Live cell imaging reveals defects during meiotic divisions after RNAi-mediated knockdown of condensin I-specific mRNAs. This phenotype correlates with reduced male fertility and an increase in nondisjunction events both in meiosis I and meiosis II. Consistently, a reduction in male fertility was also observed after proteasome-mediated degradation of the condensin I subunit Barren. Taken together, our results demonstrate an essential role of condensin I during male meiosis in Drosophila melanogaster.
Collapse
Affiliation(s)
| | - Nina Vießmann
- Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
| | - Mareike Jordan
- Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
10
|
Kimball C, Powers K, Dustin J, Poirier V, Pellettieri J. The exon junction complex is required for stem and progenitor cell maintenance in planarians. Dev Biol 2020; 457:119-127. [PMID: 31557470 PMCID: PMC8544814 DOI: 10.1016/j.ydbio.2019.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/31/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
Abstract
Named for its assembly near exon-exon junctions during pre-mRNA splicing, the exon junction complex (EJC) regulates multiple aspects of RNA biochemistry, including export of spliced mRNAs from the nucleus and translation. Transcriptome analyses have revealed broad EJC occupancy of spliced metazoan transcripts, yet inhibition of core subunits has been linked to surprisingly specific phenotypes and a growing number of studies support gene-specific regulatory roles. Here we report results from a classroom-based RNAi screen revealing the EJC is necessary for regeneration in the planarian flatworm Schmidtea mediterranea. RNAi animals rapidly lost the stem and progenitor cells that drive formation of new tissue during both regeneration and cell turnover, but exhibited normal amputation-induced changes in gene expression in differentiated tissues. Together with previous reports that partial loss of EJC function causes stem cell defects in Drosophila and mice, our observations implicate the EJC as a conserved, posttranscriptional regulator of gene expression in stem cell lineages. This work also highlights the combined educational and scientific impacts of discovery-based research in the undergraduate biology curriculum.
Collapse
Affiliation(s)
- Casey Kimball
- Department of Biology, Keene State College, Keene, NH, USA
| | - Kaleigh Powers
- Department of Biology, Keene State College, Keene, NH, USA
| | - John Dustin
- Department of Biology, Keene State College, Keene, NH, USA
| | | | | |
Collapse
|
11
|
PIE-1 Translation in the Germline Lineage Contributes to PIE-1 Asymmetry in the Early Caenorhabditis elegans Embryo. G3-GENES GENOMES GENETICS 2018; 8:3791-3801. [PMID: 30279189 PMCID: PMC6288838 DOI: 10.1534/g3.118.200744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the C. elegans embryo, the germline lineage is established through successive asymmetric cell divisions that each generate a somatic and a germline daughter cell. PIE-1 is an essential maternal factor that is enriched in embryonic germline cells and is required for germline specification. We estimated the absolute concentration of PIE-1::GFP in germline cells and find that PIE-1::GFP concentration increases by roughly 4.5 fold, from 92 nM to 424 nM, between the 1 and 4-cell stages. Previous studies have shown that the preferential inheritance of PIE-1 by germline daughter cells and the degradation of PIE-1 in somatic cells are important for PIE-1 enrichment in germline cells. In this study, we provide evidence that the preferential translation of maternal PIE-1::GFP transcripts in the germline also contributes to PIE-1::GFP enrichment. Through an RNAi screen, we identified Y14 and MAG-1 (Drosophila tsunagi and mago nashi) as regulators of embryonic PIE-1::GFP levels. We show that Y14 and MAG-1 do not regulate PIE-1 degradation, segregation or synthesis in the early embryo, but do regulate the concentration of maternally-deposited PIE-1::GFP. Taken together, or findings point to an important role for translational control in the regulation of PIE-1 levels in the germline lineage.
Collapse
|
12
|
Gong P, Li J, He C. Exon junction complex (EJC) core genes play multiple developmental roles in Physalis floridana. PLANT MOLECULAR BIOLOGY 2018; 98:545-563. [PMID: 30426309 PMCID: PMC6280879 DOI: 10.1007/s11103-018-0795-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE Molecular and functional characterization of four gene families of the Physalis exon junction complex (EJC) core improved our understanding of the evolution and function of EJC core genes in plants. The exon junction complex (EJC) plays significant roles in posttranscriptional regulation of genes in eukaryotes. However, its developmental roles in plants are poorly known. We characterized four EJC core genes from Physalis floridana that were named PFMAGO, PFY14, PFeIF4AIII and PFBTZ. They shared a similar phylogenetic topology and were expressed in all examined organs. PFMAGO, PFY14 and PFeIF4AIII were localized in both the nucleus and cytoplasm while PFBTZ was mainly localized in the cytoplasm. No protein homodimerization was observed, but they could form heterodimers excluding the PFY14-PFBTZ heterodimerization. Virus-induced gene silencing (VIGS) of PFMAGO or PFY14 aborted pollen development and resulted in low plant survival due to a leaf-blight-like phenotype in the shoot apex. Carpel functionality was also impaired in the PFY14 knockdowns, whereas pollen maturation was uniquely affected in PFBTZ-VIGS plants. Once PFeIF4AIII was strongly downregulated, plant survival was reduced via a decomposing root collar after flowering and Chinese lantern morphology was distorted. The expression of Physalis orthologous genes in the DYT1-TDF1-AMS-bHLH91 regulatory cascade that is associated with pollen maturation was significantly downregulated in PFMAGO-, PFY14- and PFBTZ-VIGS flowers. Intron-retention in the transcripts of P. floridana dysfunctional tapetum1 (PFDYT1) occurred in these mutated flowers. Additionally, the expression level of WRKY genes in defense-related pathways in the shoot apex of PFMAGO- or PFY14-VIGS plants and in the root collar of PFeIF4AIII-VIGS plants was significantly downregulated. Taken together, the Physalis EJC core genes play multiple roles including a conserved role in male fertility and newly discovered roles in Chinese lantern development, carpel functionality and defense-related processes. These data increase our understanding of the evolution and functions of EJC core genes in plants.
Collapse
Affiliation(s)
- Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jing Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Lazzaretti D, Bandholz-Cajamarca L, Emmerich C, Schaaf K, Basquin C, Irion U, Bono F. The crystal structure of Staufen1 in complex with a physiological RNA sheds light on substrate selectivity. Life Sci Alliance 2018; 1:e201800187. [PMID: 30456389 PMCID: PMC6238398 DOI: 10.26508/lsa.201800187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/29/2023] Open
Abstract
Combination of in vitro and in vivo data show that RNA sequence influences Staufen target recognition and that protein–RNA base contacts are required for Staufen function in Drosophila. During mRNA localization, RNA-binding proteins interact with specific structured mRNA localization motifs. Although several such motifs have been identified, we have limited structural information on how these interact with RNA-binding proteins. Staufen proteins bind structured mRNA motifs through dsRNA-binding domains (dsRBD) and are involved in mRNA localization in Drosophila and mammals. We solved the structure of two dsRBDs of human Staufen1 in complex with a physiological dsRNA sequence. We identified interactions between the dsRBDs and the RNA sugar–phosphate backbone and direct contacts of conserved Staufen residues to RNA bases. Mutating residues mediating nonspecific backbone interactions only affected Staufen function in Drosophila when in vitro binding was severely reduced. Conversely, residues involved in base-directed interactions were required in vivo even when they minimally affected in vitro binding. Our work revealed that Staufen can read sequence features in the minor groove of dsRNA and suggests that these influence target selection in vivo.
Collapse
Affiliation(s)
| | | | | | - Kristina Schaaf
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Claire Basquin
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Uwe Irion
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Fulvia Bono
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
14
|
Lu W, Lakonishok M, Serpinskaya AS, Kirchenbüechler D, Ling SC, Gelfand VI. Ooplasmic flow cooperates with transport and anchorage in Drosophila oocyte posterior determination. J Cell Biol 2018; 217:3497-3511. [PMID: 30037924 PMCID: PMC6168253 DOI: 10.1083/jcb.201709174] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/27/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022] Open
Abstract
The posterior determination of the Drosophila melanogaster embryo is defined by the posterior localization of oskar (osk) mRNA in the oocyte. Defects of its localization result in a lack of germ cells and failure of abdomen specification. A microtubule motor kinesin-1 is essential for osk mRNA posterior localization. Because kinesin-1 is required for two essential functions in the oocyte-transport along microtubules and cytoplasmic streaming-it is unclear how individual kinesin-1 activities contribute to the posterior determination. We examined Staufen, an RNA-binding protein that is colocalized with osk mRNA, as a proxy of posterior determination, and we used mutants that either inhibit kinesin-driven transport along microtubules or cytoplasmic streaming. We demonstrated that late-stage streaming is partially redundant with early-stage transport along microtubules for Staufen posterior localization. Additionally, an actin motor, myosin V, is required for the Staufen anchoring to the actin cortex. We propose a model whereby initial kinesin-driven transport, subsequent kinesin-driven streaming, and myosin V-based cortical retention cooperate in posterior determination.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Margot Lakonishok
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Anna S Serpinskaya
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - David Kirchenbüechler
- Center for Advanced Microscopy and the Nikon Imaging Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Shuo-Chien Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Program in Neuroscience and Behavior Disorders, Duke-National University of Singapore Medical School, Singapore
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
15
|
Bernard F, Lepesant JA, Guichet A. Nucleus positioning within Drosophila egg chamber. Semin Cell Dev Biol 2017; 82:25-33. [PMID: 29056490 DOI: 10.1016/j.semcdb.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Both types of Drosophila egg chamber germ cells, i.e. oocyte and nurse cells, have to control their nucleus positions in order to produce a viable gamete. Interestingly, while actin microfilaments are crucial to position the nuclei in nurse cells, these are the microtubules that are important for oocyte nucleus to migrate and adopt the correct position. In this review, we discuss the mechanisms underlying these positioning processes in the two cell types with respect to the organization and dynamics of the actin and microtubule skeleton. In the nurse cells it is essential to keep firmly the nuclei in a central position to prevent them from obstructing the ring canals when the cytoplasmic content of the cells is dumped into the oocyte cells toward the end of oogenesis. This is achieved by the assembly of thick filopodia-like actin cables anchored to the plasma membrane, which grow inwardly and eventually encase tightly the nuclei in a cage-like structure. In the oocyte, the migration at an early stage of oogenesis of the nucleus from a posterior location to an anchorage site at an asymmetric anterior position, is an essential step in the setting up of the dorsoventral polarity axis of the future embryo. This process is controlled by an interplay between MT networks that just start to be untangled. Although both mechanisms have evolved to fulfill cell-type specific cell processes in the context of fly oogenesis, interesting parallels can be drawn with other nuclear positioning mechanisms in the mouse oocyte and the developing muscle respectively.
Collapse
Affiliation(s)
- Fred Bernard
- Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex, France.
| | - Jean-Antoine Lepesant
- Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex, France.
| | - Antoine Guichet
- Institut Jacques Monod, CNRS UMR 7592, Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex, France.
| |
Collapse
|
16
|
Tissue-specific transcription of the neuronal gene Lim3 affects Drosophila melanogaster lifespan and locomotion. Biogerontology 2017; 18:739-757. [DOI: 10.1007/s10522-017-9704-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022]
|
17
|
Woodward LA, Mabin JW, Gangras P, Singh G. The exon junction complex: a lifelong guardian of mRNA fate. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 28008720 DOI: 10.1002/wrna.1411] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/27/2016] [Accepted: 11/09/2016] [Indexed: 12/28/2022]
Abstract
During messenger RNA (mRNA) biogenesis and processing in the nucleus, many proteins are imprinted on mRNAs assembling them into messenger ribonucleoproteins (mRNPs). Some of these proteins remain stably bound within mRNPs and have a long-lasting impact on their fate. One of the best-studied examples is the exon junction complex (EJC), a multiprotein complex deposited primarily 24 nucleotides upstream of exon-exon junctions as a consequence of pre-mRNA splicing. The EJC maintains a stable, sequence-independent, hold on the mRNA until its removal during translation in the cytoplasm. Acting as a molecular shepherd, the EJC travels with mRNA across the cellular landscape coupling pre-mRNA splicing to downstream, posttranscriptional processes such as mRNA export, mRNA localization, translation, and nonsense-mediated mRNA decay (NMD). In this review, we discuss our current understanding of the EJC's functions during these processes, and expound its newly discovered functions (e.g., pre-mRNA splicing). Another focal point is the recently unveiled in vivo EJC interactome, which has shed new light on the EJC's location on the spliced RNAs and its intimate relationship with other mRNP components. We summarize new strides being made in connecting the EJC's molecular function with phenotypes, informed by studies of human disorders and model organisms. The progress toward understanding EJC functions has revealed, in its wake, even more questions, which are discussed throughout. WIREs RNA 2017, 8:e1411. doi: 10.1002/wrna.1411 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Lauren A Woodward
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Justin W Mabin
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Pooja Gangras
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Guramrit Singh
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Trovisco V, Belaya K, Nashchekin D, Irion U, Sirinakis G, Butler R, Lee JJ, Gavis ER, St Johnston D. bicoid mRNA localises to the Drosophila oocyte anterior by random Dynein-mediated transport and anchoring. eLife 2016; 5. [PMID: 27791980 PMCID: PMC5125753 DOI: 10.7554/elife.17537] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/25/2016] [Indexed: 01/17/2023] Open
Abstract
bicoid mRNA localises to the Drosophila oocyte anterior from stage 9 of oogenesis onwards to provide a local source for Bicoid protein for embryonic patterning. Live imaging at stage 9 reveals that bicoid mRNA particles undergo rapid Dynein-dependent movements near the oocyte anterior, but with no directional bias. Furthermore, bicoid mRNA localises normally in shot2A2, which abolishes the polarised microtubule organisation. FRAP and photo-conversion experiments demonstrate that the RNA is stably anchored at the anterior, independently of microtubules. Thus, bicoid mRNA is localised by random active transport and anterior anchoring. Super-resolution imaging reveals that bicoid mRNA forms 110-120 nm particles with variable RNA content, but constant size. These particles appear to be well-defined structures that package the RNA for transport and anchoring.
Collapse
Affiliation(s)
- Vítor Trovisco
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Katsiaryna Belaya
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Dmitry Nashchekin
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Uwe Irion
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - George Sirinakis
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Richard Butler
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jack J Lee
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Daniel St Johnston
- The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Picard MAL, Boissier J, Roquis D, Grunau C, Allienne JF, Duval D, Toulza E, Arancibia N, Caffrey CR, Long T, Nidelet S, Rohmer M, Cosseau C. Sex-Biased Transcriptome of Schistosoma mansoni: Host-Parasite Interaction, Genetic Determinants and Epigenetic Regulators Are Associated with Sexual Differentiation. PLoS Negl Trop Dis 2016; 10:e0004930. [PMID: 27677173 PMCID: PMC5038963 DOI: 10.1371/journal.pntd.0004930] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 07/27/2016] [Indexed: 12/18/2022] Open
Abstract
Background Among more than 20,000 species of hermaphroditic trematodes, Schistosomatidae are unusual since they have evolved gonochorism. In schistosomes, sex is determined by a female heterogametic system, but phenotypic sexual dimorphism appears only after infection of the vertebrate definitive host. The completion of gonad maturation occurs even later, after pairing. To date, the molecular mechanisms that trigger the sexual differentiation in these species remain unknown, and in vivo studies on the developing schistosomulum stages are lacking. To study the molecular basis of sex determination and sexual differentiation in schistosomes, we investigated the whole transcriptome of the human parasite Schistosoma mansoni in a stage- and sex-comparative manner. Methodology/ Principal Findings We performed a RNA-seq on males and females for five developmental stages: cercariae larvae, three in vivo schistosomulum stages and adults. We detected 7,168 genes differentially expressed between sexes in at least one of the developmental stages, and 4,065 of them were functionally annotated. Transcriptome data were completed with H3K27me3 histone modification analysis using ChIP-Seq before (in cercariae) and after (in adults) the phenotypic sexual dimorphism appearance. In this paper we present (i) candidate determinants of the sexual differentiation, (ii) sex-biased players of the interaction with the vertebrate host, and (iii) different dynamic of the H3K27me3 histone mark between sexes as an illustration of sex-biased epigenetic landscapes. Conclusions/ Significance Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, genetic determinants and epigenetic regulators. Our results suggest that such combination could lead to the optimized sexual dimorphism of this parasitic species. As S. mansoni is pathogenic for humans, this study represents a promising source of therapeutic targets, providing not only data on the parasite development in interaction with its vertebrate host, but also new insights on its reproductive function. Parasitic flatworms include more than 20,000 species that are classically hermaphrodites. Among them, the roughly hundred species of Schistosomatidae are intriguing because they are gonochoric. Schistosomes are responsible of the second most important parasitic disease worldwide, and eggs are the main cause of the inflammatory symptoms. Thus, studying the sexual reproduction mechanisms of schistosomes is of particular interest for drug development. Schistosome’s sex is genetically determined by the presence of sex chromosomes: ZZ in males or ZW in females. There is, however, no phenotypic dimorphism in the larval stages: sexual dimorphism appears only in the vertebrate host. In order to understand the molecular mechanisms underlying phenotypic sexual dimorphism, we performed a transcriptome analysis (RNA-Seq) in five different stages of the parasite lifecycle as well as a chromatin status analysis (ChIP-Seq) in the non-differentiated stage cercariae and in the adult differentiated stage, for males and females separately. Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, developmental pathways and epigenetic regulators. Our sex-comparative approach provides therefore new potential therapeutic targets to affect development and sexual reproduction of parasite.
Collapse
Affiliation(s)
- Marion A. L. Picard
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Jérôme Boissier
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Roquis
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Christoph Grunau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Jean-François Allienne
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Duval
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Eve Toulza
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Nathalie Arancibia
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Thavy Long
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | | | | | - Céline Cosseau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- * E-mail:
| |
Collapse
|
20
|
Pilaz LJ, McMahon JJ, Miller EE, Lennox AL, Suzuki A, Salmon E, Silver DL. Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain. Neuron 2016; 89:83-99. [PMID: 26748089 DOI: 10.1016/j.neuron.2015.12.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 09/27/2015] [Accepted: 11/24/2015] [Indexed: 12/14/2022]
Abstract
Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly.
Collapse
Affiliation(s)
- Louis-Jan Pilaz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John J McMahon
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Emily E Miller
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ashley L Lennox
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Aussie Suzuki
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Edward Salmon
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
21
|
Microtubule-dependent balanced cell contraction and luminal-matrix modification accelerate epithelial tube fusion. Nat Commun 2016; 7:11141. [PMID: 27067650 PMCID: PMC4832058 DOI: 10.1038/ncomms11141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 02/25/2016] [Indexed: 01/22/2023] Open
Abstract
Connection of tubules into larger networks is the key process for the development of circulatory systems. In Drosophila development, tip cells of the tracheal system lead the migration of each branch and connect tubules by adhering to each other and simultaneously changing into a torus-shape. We show that as adhesion sites form between fusion cells, myosin and microtubules form polarized bundles that connect the new adhesion site to the cells' microtubule-organizing centres, and that E-cadherin and retrograde recycling endosomes are preferentially deposited at the new adhesion site. We demonstrate that microtubules help balancing tip cell contraction, which is driven by myosin, and is required for adhesion and tube fusion. We also show that retrograde recycling and directed secretion of a specific matrix protein into the fusion-cell interface promote fusion. We propose that microtubule bundles connecting these cell–cell interfaces coordinate cell contractility and apical secretion to facilitate tube fusion. During tracheal tube fusion in Drosophila, a pair of tip cells form an adherens junction and then fuse their plasma membranes. Here the authors show that a balanced pulling force mediated by myosin and microtubules, as well as localized deposition of matrix, promotes plasma membrane fusion.
Collapse
|
22
|
McMahon JJ, Miller EE, Silver DL. The exon junction complex in neural development and neurodevelopmental disease. Int J Dev Neurosci 2016; 55:117-123. [PMID: 27071691 DOI: 10.1016/j.ijdevneu.2016.03.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/28/2016] [Indexed: 11/17/2022] Open
Abstract
Post-transcriptional mRNA metabolism has emerged as a critical regulatory nexus in proper development and function of the nervous system. In particular, recent studies highlight roles for the exon junction complex (EJC) in neurodevelopment. The EJC is an RNA binding complex composed of 3 core proteins, EIF4A3 (DDX48), RBM8A (Y14), and MAGOH, and is a major hub of post-transcriptional regulation. Following deposition onto mRNA, the EJC serves as a platform for the binding of peripheral factors which together regulate splicing, nonsense mediated decay, translation, and RNA localization. While fundamental molecular roles of the EJC have been well established, the in vivo relevance in mammals has only recently been examined. New genetic models and cellular assays have revealed core and peripheral EJC components play critical roles in brain development, stem cell function, neuronal outgrowth, and neuronal activity. Moreover, human genetics studies increasingly implicate EJC components in the etiology of neurodevelopmental disorders. Collectively, these findings indicate that proper dosage of EJC components is necessary for diverse aspects of neuronal development and function. Going forward, genetic models of EJC components will provide valuable tools for further elucidating functions in the nervous system relevant for neurodevelopmental disease.
Collapse
Affiliation(s)
- J J McMahon
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, United States
| | - E E Miller
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, United States
| | - D L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, United States; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States; Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
23
|
Wang C, Szaro BG. Post-transcriptional regulation mediated by specific neurofilament introns in vivo. J Cell Sci 2016; 129:1500-11. [PMID: 26906423 DOI: 10.1242/jcs.185199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/17/2016] [Indexed: 11/20/2022] Open
Abstract
Neurons regulate genes post-transcriptionally to coordinate the supply of cytoskeletal proteins, such as the medium neurofilament (NEFM), with demand for structural materials in response to extracellular cues encountered by developing axons. By using a method for evaluating functionality of cis-regulatory gene elements in vivo through plasmid injection into Xenopus embryos, we discovered that splicing of a specific nefm intron was required for robust transgene expression, regardless of promoter or cell type. Transgenes utilizing the nefm 3'-UTR but substituting other nefm introns expressed little or no protein owing to defects in handling of the messenger (m)RNA as opposed to transcription or splicing. Post-transcriptional events at multiple steps, but mainly during nucleocytoplasmic export, contributed to these varied levels of protein expression. An intron of the β-globin gene was also able to promote expression in a manner identical to that of the nefm intron, implying a more general preference for certain introns in controlling nefm expression. These results expand our knowledge of intron-mediated gene expression to encompass neurofilaments, indicating an additional layer of complexity in the control of a cytoskeletal gene needed for developing and maintaining healthy axons.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Ben G Szaro
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
24
|
Yang ZP, Li HL, Guo D, Peng SQ. Identification and characterization of MAGO and Y14 genes in Hevea brasiliensis. Genet Mol Biol 2016; 39:73-85. [PMID: 27007901 PMCID: PMC4807384 DOI: 10.1590/1678-4685-gmb-2014-0387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 06/08/2015] [Indexed: 11/30/2022] Open
Abstract
Mago nashi (MAGO) and Y14 proteins are highly conserved among eukaryotes. In this study, we identified two MAGO (designated as HbMAGO1 andHbMAGO2) and two Y14 (designated as HbY14aand HbY14b) genes in the rubber tree (Hevea brasiliensis) genome annotation. Multiple amino acid sequence alignments predicted that HbMAGO and HbY14 proteins are structurally similar to homologous proteins from other species. Tissue-specific expression profiles showed that HbMAGO and HbY14 genes were expressed in at least one of the tissues (bark, flower, latex, leaf and root) examined. HbMAGOs and HbY14s were predominately located in the nucleus and were found to interact in yeast two-hybrid analysis (YTH) and bimolecular fluorescence complementation (BiFC) assays. HbMAGOs and HbY14s showed the highest transcription in latex and were regulated by ethylene and jasmonate. Interaction between HbMAGO2 and gp91phox (a large subunit of nicotinamide adenine dinucleotide phosphate) was identified using YTH and BiFC assays. These findings suggested that HbMAGO may be involved in the aggregation of rubber particles in H. brasiliensis.
Collapse
Affiliation(s)
- Zi-Ping Yang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hui-Liang Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dong Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shi-Qing Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
25
|
Cilano K, Mazanek Z, Khan M, Metcalfe S, Zhang XN. A New Mutation, hap1-2, Reveals a C Terminal Domain Function in AtMago Protein and Its Biological Effects in Male Gametophyte Development in Arabidopsis thaliana. PLoS One 2016; 11:e0148200. [PMID: 26867216 PMCID: PMC4750992 DOI: 10.1371/journal.pone.0148200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/14/2016] [Indexed: 01/02/2023] Open
Abstract
The exon-exon junction complex (EJC) is a conserved eukaryotic multiprotein complex that examines the quality of and determines the availability of messenger RNAs (mRNAs) posttranscriptionally. Four proteins, MAGO, Y14, eIF4AIII and BTZ, function as core components of the EJC. The mechanisms of their interactions and the biological indications of these interactions are still poorly understood in plants. A new mutation, hap1-2. leads to premature pollen death and a reduced seed production in Arabidopsis. This mutation introduces a viable truncated transcript AtMagoΔC. This truncation abolishes the interaction between AtMago and AtY14 in vitro, but not the interaction between AtMago and AteIF4AIII. In addition to a strong nuclear presence of AtMago, both AtMago and AtMagoΔC exhibit processing-body (P-body) localization. This indicates that AtMagoΔC may replace AtMago in the EJC when aberrant transcripts are to be degraded. When introducing an NMD mutation, upf3-1, into the existing HAP1/hap1-2 mutant, plants showed a severely reduced fertility. However, the change of splicing pattern of a subset of SR protein transcripts is mostly correlated with the sr45-1 and upf3-1 mutations, not the hap1-2 mutation. These results imply that the C terminal domain (CTD) of AtMago is required for the AtMago-AtY14 heterodimerization during EJC assembly, UPF3-mediated NMD pathway and the AtMago-AtY14 heterodimerization work synergistically to regulate male gametophyte development in plants.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Arabidopsis/genetics
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/physiology
- Base Sequence
- Cloning, Molecular
- Crosses, Genetic
- DNA Primers/genetics
- DNA, Complementary/metabolism
- Dimerization
- Exons
- Genes, Plant
- Germ Cells, Plant
- Humans
- Microscopy, Confocal
- Molecular Sequence Data
- Mutation
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Plants, Genetically Modified
- Pollen/physiology
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA Processing, Post-Transcriptional
- RNA Splicing
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/metabolism
- Seeds/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Kevin Cilano
- Department of Biology, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
| | - Zachary Mazanek
- Biochemistry Program, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
| | - Mahmuda Khan
- Department of Biology, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
| | - Sarah Metcalfe
- Biochemistry Program, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
| | - Xiao-Ning Zhang
- Department of Biology, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
- Biochemistry Program, Saint Bonaventure University, Saint Bonaventure, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Khuc Trong P, Doerflinger H, Dunkel J, St Johnston D, Goldstein RE. Cortical microtubule nucleation can organise the cytoskeleton of Drosophila oocytes to define the anteroposterior axis. eLife 2015; 4. [PMID: 26406117 PMCID: PMC4580948 DOI: 10.7554/elife.06088] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 08/14/2015] [Indexed: 02/02/2023] Open
Abstract
Many cells contain non-centrosomal arrays of microtubules (MTs), but the assembly, organisation and function of these arrays are poorly understood. We present the first theoretical model for the non-centrosomal MT cytoskeleton in Drosophila oocytes, in which bicoid and oskar mRNAs become localised to establish the anterior-posterior body axis. Constrained by experimental measurements, the model shows that a simple gradient of cortical MT nucleation is sufficient to reproduce the observed MT distribution, cytoplasmic flow patterns and localisation of oskar and naive bicoid mRNAs. Our simulations exclude a major role for cytoplasmic flows in localisation and reveal an organisation of the MT cytoskeleton that is more ordered than previously thought. Furthermore, modulating cortical MT nucleation induces a bifurcation in cytoskeletal organisation that accounts for the phenotypes of polarity mutants. Thus, our three-dimensional model explains many features of the MT network and highlights the importance of differential cortical MT nucleation for axis formation. DOI:http://dx.doi.org/10.7554/eLife.06088.001 Cells contain a network of filaments known as microtubules that serve as tracks along which proteins and other materials can be moved from one location to another. For example, molecules called messenger ribonucleic acids (or mRNAs for short) are made in the nucleus and are then moved to various locations around the cell. Each mRNA molecule encodes the instructions needed to make a particular protein and the network of microtubules allows these molecules to be directed to wherever these proteins are needed. In female fruit flies, an mRNA called bicoid is moved to one end (called the anterior end) of a developing egg cell, while another mRNA called oskar is moved to the opposite (posterior) end. These mRNAs determine which ends of the cell will give rise to the head and the abdomen if the egg is fertilized. The microtubules start to form at sites near the inner face of the membrane that surrounds the cell, known as the cortex. From there, the microtubules grow towards the interior of the egg cell. However, it is not clear how this allows bicoid, oskar and other mRNAs to be moved to the correct locations. Khuc Trong et al. used a combination of computational and experimental techniques to develop a model of how microtubules form in the egg cells of fruit flies. The model produces a very similar arrangement of microtubules as observed in living cells and can reproduce the patterns of bicoid and oskar RNA movements. This study suggests that microtubules are more highly organised than previously thought. Furthermore, Khuc Trong et al.'s findings indicate that the anchoring of microtubules in the cortex is sufficient to direct bicoid and oskar RNAs to the opposite ends of the cell. The next challenge will be to find out how the microtubules are linked to the cortex and how this is regulated. DOI:http://dx.doi.org/10.7554/eLife.06088.002
Collapse
Affiliation(s)
- Philipp Khuc Trong
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Hélène Doerflinger
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | - Jörn Dunkel
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Daniel St Johnston
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge, United Kingdom
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Ihsan H, Khan MR, Ajmal W, Ali GM. WsMAGO2, a duplicated MAGO NASHI protein with fertility attributes interacts with MPF2-like MADS-box proteins. PLANTA 2015; 241:1173-1187. [PMID: 25630441 DOI: 10.1007/s00425-015-2247-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/16/2015] [Indexed: 06/04/2023]
Abstract
WsMAGO2 a duplicated protein in Withania through interactions with MPF2-like proteins affects male fertility by producing fewer flowers and aborted non-viable pollens/seeds regulated by anther-specific GAATTTGTGA motif. The MAGO NASHIs are highly conserved genes that encode proteins known to be involved in RNA physiology and many other developmental processes including germ cell differentiation in animals. However, their structural and functional implications in plants as fertility function proteins remained fragmented. MAGO (shorter name of MAGO NASHI) proteins form heterodimers with MPF2-like MADS-box proteins which are recruited in calyx identity and male fertility in Solanaceous plants. Four MAGO genes namely WsMAGO1 and WsMAGO2 and TaMAGO1 and TaMAGO2 were isolated from Withania somnifera and Tubocapsicum anomalum, respectively. These genes have duplicated probably due to whole genome duplication event. Dysfunction of WsMAGO2 through double-stranded RNAi in Withania revealed suppression of RNA transcripts, non-viable pollens, fewer flowers and aborted non-viable seeds in the developing berry suggesting a role of this protein in many traits particularly male fertility. WsMAGO2 flaunted stronger yeast 2-hybrid interactions with MPF2-like proteins WSA206, WSB206 and TAB201 than other MAGO counterparts. The native transcripts of WsMAGO2 culminated in stamens and seed-bearing berries though other MAGO orthologs also exhibited expression albeit at lower level. Coding sequences of the two orthologs are highly conserved, but they differ substantially in their upstream promoter regions. Remarkably, WsMAGO2 promoter is enriched with many anther-specific cis-motifs common in fertility function genes promoters. Among them, disruption of GAATTTGTGA abolished YFP/GUS gene expression in anthers alluding towards its involvement in regulating expression of MAGO in anther. Our findings support a possible recruitment of WsMAGO2 in fertility trait in Withania. These genes have practical application in hybrid production through cytoplasmic male sterility maintenance for enhancement in crops yield.
Collapse
Affiliation(s)
- Humera Ihsan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad, Pakistan
| | | | | | | |
Collapse
|
28
|
Wolniak SM, Boothby TC, van der Weele CM. Posttranscriptional control over rapid development and ciliogenesis in Marsilea. Methods Cell Biol 2015; 127:403-44. [PMID: 25837402 DOI: 10.1016/bs.mcb.2015.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Marsilea vestita is a semiaquatic fern that produces its spores (meiotic products) as it undergoes a process of natural desiccation. During the period of desiccation, the spores mature, and produce large quantities of pre-mRNA, which is partially processed and stored in nuclear speckles and can remain stable during a period of extended quiescence in the dry spore. Rehydration of the spores initiates a highly coordinated developmental program, featuring nine successive mitotic division cycles that occur at precise times and in precise planes within the spore wall to produce 39 cells, 32 of which are spermatids. The spermatids then undergo de novo basal body formation, the assembly of a massive cytoskeleton, nuclear and cell elongation, and finally ciliogenesis, before being released from the spore wall. The entire developmental program requires only 11 h to reach completion, and is synchronous in a population of spores rehydrated at the same time. Rapid development in this endosporic gametophyte is controlled posttranscriptionally, where stored pre-mRNAs, many of which are intron-retaining transcripts, are unmasked, processed, and translated under tight spatial and temporal control. Here, we describe posttranscriptional mechanisms that exert temporal and spatial control over this developmental program, which culminates in the production of ∼140 ciliary axonemes in each spermatozoid.
Collapse
Affiliation(s)
- Stephen M Wolniak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742, USA
| | - Thomas C Boothby
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742, USA
| | - Corine M van der Weele
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742, USA
| |
Collapse
|
29
|
Ali Y, Ruan K, Grace Zhai R. Drosophila Models of Tauopathy. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
30
|
Gong P, Quan H, He C. Targeting MAGO proteins with a peptide aptamer reinforces their essential roles in multiple rice developmental pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:905-14. [PMID: 25230811 DOI: 10.1111/tpj.12672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/08/2014] [Accepted: 09/14/2014] [Indexed: 05/16/2023]
Abstract
Peptide aptamers are artificial short peptides that potentially interfere with the biological roles of their target proteins; however, this technology has not yet been applied to plant functional genomics. MAGO and Y14, the two core subunits of the exon junction complex (EJC), form obligate heterodimers in eukaryotes. In Oryza sativa L. (rice), each of the two genes has two homologs, designated OsMAGO1 and OsMAGO2, and OsY14a and OsY14b, respectively. Here, we characterized a 16-amino acida peptide aptamer (PAP) for the rice MAGO proteins. PAP and rice Y14 bound competitively to rice MAGO proteins. Specifically targeting the MAGO proteins by expressing the aptamer in transgenic rice plants did not affect the endogenous synthesis and accumulation of MAGO proteins; however, the phenotypic variations observed in multiple organs phenocopied those of transgenic rice plants harboring RNA interference (RNAi) constructs in which the accumulation of MAGO and/or OsY14a transcripts and MAGO proteins was downregulated severely. Morphologically, the aptamer transgenic plants were short with abnormally developed flowers, and the stamens exhibited reduced degradation and absorption of both the endothecium and tapetum, thus confirming that EJC core heterodimers play essential roles in rice development, growth and reproduction. This study reveals that as a complementary approach of RNAi, peptide aptamers are powerful tools for interfering with the function of proteins in higher plants.
Collapse
Affiliation(s)
- Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093, Beijing, China
| | | | | |
Collapse
|
31
|
Morais-de-Sá E, Mukherjee A, Lowe N, St Johnston D. Slmb antagonises the aPKC/Par-6 complex to control oocyte and epithelial polarity. Development 2014; 141:2984-92. [PMID: 25053432 PMCID: PMC4197659 DOI: 10.1242/dev.109827] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Drosophila anterior-posterior axis is specified when the posterior follicle cells signal to polarise the oocyte, leading to the anterior/lateral localisation of the Par-6/aPKC complex and the posterior recruitment of Par-1, which induces a microtubule reorganisation that localises bicoid and oskar mRNAs. Here we show that oocyte polarity requires Slmb, the substrate specificity subunit of the SCF E3 ubiquitin ligase that targets proteins for degradation. The Par-6/aPKC complex is ectopically localised to the posterior of slmb mutant oocytes, and Par-1 and oskar mRNA are mislocalised. Slmb appears to play a related role in epithelial follicle cells, as large slmb mutant clones disrupt epithelial organisation, whereas small clones show an expansion of the apical domain, with increased accumulation of apical polarity factors at the apical cortex. The levels of aPKC and Par-6 are significantly increased in slmb mutants, whereas Baz is slightly reduced. Thus, Slmb may induce the polarisation of the anterior-posterior axis of the oocyte by targeting the Par-6/aPKC complex for degradation at the oocyte posterior. Consistent with this, overexpression of the aPKC antagonist Lgl strongly rescues the polarity defects of slmb mutant germline clones. The role of Slmb in oocyte polarity raises an intriguing parallel with C. elegans axis formation, in which PAR-2 excludes the anterior PAR complex from the posterior cortex to induce polarity, but its function can be substituted by overexpressing Lgl.
Collapse
Affiliation(s)
- Eurico Morais-de-Sá
- The Gurdon Institute, The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Avik Mukherjee
- The Gurdon Institute, The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Nick Lowe
- The Gurdon Institute, The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Daniel St Johnston
- The Gurdon Institute, The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
32
|
Malone CD, Mestdagh C, Akhtar J, Kreim N, Deinhard P, Sachidanandam R, Treisman J, Roignant JY. The exon junction complex controls transposable element activity by ensuring faithful splicing of the piwi transcript. Genes Dev 2014; 28:1786-99. [PMID: 25104425 PMCID: PMC4197963 DOI: 10.1101/gad.245829.114] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The exon junction complex (EJC) is a highly conserved ribonucleoprotein complex that binds RNAs during splicing and remains associated with them following export to the cytoplasm. Malone et al. describe a novel function for the EJC and its splicing subunit, RnpS1, in controlling piwi transcript splicing, where, in the absence of RnpS1, the fourth intron of piwi is retained. RnpS1-dependent removal of this intron requires splicing of the flanking introns. These data demonstrate a novel role for the EJC in regulating piwi intron excision and provide a mechanism for its function during splicing. The exon junction complex (EJC) is a highly conserved ribonucleoprotein complex that binds RNAs during splicing and remains associated with them following export to the cytoplasm. While the role of this complex in mRNA localization, translation, and degradation has been well characterized, its mechanism of action in splicing a subset of Drosophila and human transcripts remains to be elucidated. Here, we describe a novel function for the EJC and its splicing subunit, RnpS1, in preventing transposon accumulation in both Drosophila germline and surrounding somatic follicle cells. This function is mediated specifically through the control of piwi transcript splicing, where, in the absence of RnpS1, the fourth intron of piwi is retained. This intron contains a weak polypyrimidine tract that is sufficient to confer dependence on RnpS1. Finally, we demonstrate that RnpS1-dependent removal of this intron requires splicing of the flanking introns, suggesting a model in which the EJC facilitates the splicing of weak introns following its initial deposition at adjacent exon junctions. These data demonstrate a novel role for the EJC in regulating piwi intron excision and provide a mechanism for its function during splicing.
Collapse
Affiliation(s)
- Colin D Malone
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA; Howard Hughes Medical Institute
| | | | - Junaid Akhtar
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Nastasja Kreim
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Pia Deinhard
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jessica Treisman
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
33
|
Urban E, Nagarkar-Jaiswal S, Lehner CF, Heidmann SK. The cohesin subunit Rad21 is required for synaptonemal complex maintenance, but not sister chromatid cohesion, during Drosophila female meiosis. PLoS Genet 2014; 10:e1004540. [PMID: 25101996 PMCID: PMC4125089 DOI: 10.1371/journal.pgen.1004540] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/16/2014] [Indexed: 01/03/2023] Open
Abstract
Replicated sister chromatids are held in close association from the time of their synthesis until their separation during the next mitosis. This association is mediated by the ring-shaped cohesin complex that appears to embrace the sister chromatids. Upon proteolytic cleavage of the α-kleisin cohesin subunit at the metaphase-to-anaphase transition by separase, sister chromatids are separated and segregated onto the daughter nuclei. The more complex segregation of chromosomes during meiosis is thought to depend on the replacement of the mitotic α-kleisin cohesin subunit Rad21/Scc1/Mcd1 by the meiotic paralog Rec8. In Drosophila, however, no clear Rec8 homolog has been identified so far. Therefore, we have analyzed the role of the mitotic Drosophila α-kleisin Rad21 during female meiosis. Inactivation of an engineered Rad21 variant by premature, ectopic cleavage during oogenesis results not only in loss of cohesin from meiotic chromatin, but also in precocious disassembly of the synaptonemal complex (SC). We demonstrate that the lateral SC component C(2)M can interact directly with Rad21, potentially explaining why Rad21 is required for SC maintenance. Intriguingly, the experimentally induced premature Rad21 elimination, as well as the expression of a Rad21 variant with destroyed separase consensus cleavage sites, do not interfere with chromosome segregation during meiosis, while successful mitotic divisions are completely prevented. Thus, chromatid cohesion during female meiosis does not depend on Rad21-containing cohesin.
Collapse
Affiliation(s)
- Evelin Urban
- Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
| | | | - Christian F. Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
34
|
Multifunctional RNA processing protein SRm160 induces apoptosis and regulates eye and genital development in Drosophila. Genetics 2014; 197:1251-65. [PMID: 24907259 DOI: 10.1534/genetics.114.164434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
SRm160 is an SR-like protein implicated in multiple steps of RNA processing and nucleocytoplasmic export. Although its biochemical functions have been extensively described, its genetic interactions and potential participation in signaling pathways remain largely unknown, despite the fact that it is highly phosphorylated in both mammalian cells and Drosophila. To begin elucidating the functions of the protein in signaling and its potential role in developmental processes, we characterized mutant and overexpression SRm160 phenotypes in Drosophila and their interactions with the locus encoding the LAMMER protein kinase, Doa. SRm160 mutations are recessive lethal, while its overexpression generates phenotypes including roughened eyes and highly disorganized internal eye structure, which are due at least in part to aberrantly high levels of apoptosis. SRm160 is required for normal somatic sex determination, since its alleles strongly enhance a subtle sex transformation phenotype induced by Doa kinase alleles. Moreover, modification of SRm160 by DOA kinase appears to be necessary for its activity, since Doa alleles suppress phenotypes induced by SRm160 overexpression in the eye and enhance those in genital discs. Modification of SRm160 may occur through direct interaction because DOA kinase phosphorylates it in vitro. Remarkably, SRm160 protein was concentrated in the nuclei of precellular embryos but was very rapidly excluded from nuclei or degraded coincident with cellularization. Also of interest, transcripts are restricted almost exclusively to the developing nervous system in mature embryos.
Collapse
|
35
|
Heim AE, Hartung O, Rothhämel S, Ferreira E, Jenny A, Marlow FL. Oocyte polarity requires a Bucky ball-dependent feedback amplification loop. Development 2014; 141:842-54. [PMID: 24496621 DOI: 10.1242/dev.090449] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrates, the first asymmetries are established along the animal-vegetal axis during oogenesis, but the underlying molecular mechanisms are poorly understood. Bucky ball (Buc) was identified in zebrafish as a novel vertebrate-specific regulator of oocyte polarity, acting through unknown molecular interactions. Here we show that endogenous Buc protein localizes to the Balbiani body, a conserved, asymmetric structure in oocytes that requires Buc for its formation. Asymmetric distribution of Buc in oocytes precedes Balbiani body formation, defining Buc as the earliest marker of oocyte polarity in zebrafish. Through a transgenic strategy, we determined that excess Buc disrupts polarity and results in supernumerary Balbiani bodies in a 3'UTR-dependent manner, and we identified roles for the buc introns in regulating Buc activity. Analyses of mosaic ovaries indicate that oocyte pattern determines the number of animal pole-specific micropylar cells that are associated with an egg via a close-range signal or direct cell contact. We demonstrate interactions between Buc protein and buc mRNA with two conserved RNA-binding proteins (RNAbps) that are localized to the Balbiani body: RNA binding protein with multiple splice isoforms 2 (Rbpms2) and Deleted in azoospermia-like (Dazl). Buc protein and buc mRNA interact with Rbpms2; buc and dazl mRNAs interact with Dazl protein. Cumulatively, these studies indicate that oocyte polarization depends on tight regulation of buc: Buc establishes oocyte polarity through interactions with RNAbps, initiating a feedback amplification mechanism in which Buc protein recruits RNAbps that in turn recruit buc and other RNAs to the Balbiani body.
Collapse
Affiliation(s)
- Amanda E Heim
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
36
|
Hudson AM, Cooley L. Methods for studying oogenesis. Methods 2014; 68:207-17. [PMID: 24440745 DOI: 10.1016/j.ymeth.2014.01.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/02/2014] [Indexed: 12/31/2022] Open
Abstract
Drosophila oogenesis is an excellent system for the study of developmental cell biology. Active areas of research include stem cell maintenance, gamete development, pattern formation, cytoskeletal regulation, intercellular communication, intercellular transport, cell polarity, cell migration, cell death, morphogenesis, cell cycle control, and many more. The large size and relatively simple organization of egg chambers make them ideally suited for microscopy of both living and fixed whole mount tissue. A wide range of tools is available for oogenesis research. Newly available shRNA transgenic lines provide an alternative to classic loss-of-function F2 screens and clonal screens. Gene expression can be specifically controlled in either germline or somatic cells using the Gal4/UAS system. Protein trap lines provide fluorescent tags of proteins expressed at endogenous levels for live imaging and screening backgrounds. This review provides information on many available reagents and key methods for research in oogenesis.
Collapse
Affiliation(s)
- Andrew M Hudson
- Department of Genetics, Yale University School of Medicine, United States
| | - Lynn Cooley
- Department of Genetics, Yale University School of Medicine, United States; Department of Cell Biology, Yale University School of Medicine, United States; Department of Molecular, Cellular & Developmental Biology, Yale University, United States.
| |
Collapse
|
37
|
Gong P, Zhao M, He C. Slow co-evolution of the MAGO and Y14 protein families is required for the maintenance of their obligate heterodimerization mode. PLoS One 2014; 9:e84842. [PMID: 24416299 PMCID: PMC3885619 DOI: 10.1371/journal.pone.0084842] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/19/2013] [Indexed: 11/18/2022] Open
Abstract
The exon junction complex (EJC) plays important roles in RNA metabolisms and the development of eukaryotic organisms. MAGO (short form of MAGO NASHI) and Y14 (also Tsunagi or RBM8) are the EJC core components. Their biological roles have been well investigated in various species, but the evolutionary patterns of the two gene families and their protein-protein interactions are poorly known. Genome-wide survey suggested that the MAGO and Y14 two gene families originated in eukaryotic organisms with the maintenance of a low copy. We found that the two protein families evolved slowly; however, the MAGO family under stringent purifying selection evolved more slowly than the Y14 family that was under relative relaxed purifying selection. MAGO and Y14 were obliged to form heterodimer in a eukaryotic organism, and this obligate mode was plesiomorphic. Lack of binding of MAGO to Y14 as functional barrier was observed only among distantly species, suggesting that a slow co-evolution of the two protein families. Inter-protein co-evolutionary signal was further quantified in analyses of the Tol-MirroTree and co-evolution analysis using protein sequences. About 20% of the 41 significantly correlated mutation groups (involving 97 residues) predicted between the two families was clade-specific. Moreover, around half of the predicted co-evolved groups and nearly all clade-specific residues fell into the minimal interaction domains of the two protein families. The mutagenesis effects of the clade-specific residues strengthened that the co-evolution is required for obligate MAGO-Y14 heterodimerization mode. In turn, the obliged heterodimerization in an organism serves as a strong functional constraint for the co-evolution of the MAGO and Y14 families. Such a co-evolution allows maintaining the interaction between the proteins through large evolutionary time scales. Our work shed a light on functional evolution of the EJC genes in eukaryotes, and facilitates to understand the co-evolutionary processes among protein families.
Collapse
Affiliation(s)
- Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China ; University of Chinese Academy of Sciences, Beijing, China
| | - Man Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China ; University of Chinese Academy of Sciences, Beijing, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Cruaud A, Underhill JG, Huguin M, Genson G, Jabbour-Zahab R, Tolley KA, Rasplus JY, van Noort S. A multilocus phylogeny of the world Sycoecinae fig wasps (Chalcidoidea: Pteromalidae). PLoS One 2013; 8:e79291. [PMID: 24223925 PMCID: PMC3818460 DOI: 10.1371/journal.pone.0079291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 09/22/2013] [Indexed: 11/25/2022] Open
Abstract
The Sycoecinae is one of five chalcid subfamilies of fig wasps that are mostly dependent on Ficus inflorescences for reproduction. Here, we analysed two mitochondrial (COI, Cytb) and four nuclear genes (ITS2, EF-1α, RpL27a, mago nashi) from a worldwide sample of 56 sycoecine species. Various alignment and partitioning strategies were used to test the stability of major clades. All topologies estimated using maximum likelihood and Bayesian methods were similar and well resolved but did not support the existing classification. A high degree of morphological convergence was highlighted and several species appeared best described as species complexes. We therefore proposed a new classification for the subfamily. Our analyses revealed several cases of probable speciation on the same host trees (up to 8 closely related species on one single tree of F. sumatrana), which raises the question of how resource partitioning occurs to avoid competitive exclusion. Comparisons of our results with fig phylogenies showed that, despite sycoecines being internally ovipositing wasps host-switches are common incidents in their evolutionary history. Finally, by studying the evolutionary properties of the markers we used and profiling their phylogenetic informativeness, we predicted their utility for resolving phylogenetic relationships of Chalcidoidea at various taxonomic levels.
Collapse
Affiliation(s)
- Astrid Cruaud
- INRA, UMR1062 CBGP Centre de Biologie pour la Gestion des Populations, Montferrier-sur-Lez, France
| | - Jenny G. Underhill
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| | - Maïlis Huguin
- INRA, UMR1062 CBGP Centre de Biologie pour la Gestion des Populations, Montferrier-sur-Lez, France
| | - Gwenaëlle Genson
- INRA, UMR1062 CBGP Centre de Biologie pour la Gestion des Populations, Montferrier-sur-Lez, France
| | - Roula Jabbour-Zahab
- INRA, UMR1062 CBGP Centre de Biologie pour la Gestion des Populations, Montferrier-sur-Lez, France
| | - Krystal A. Tolley
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
- Department of Zoology, University of Cape Town, Rondebosch, South Africa
| | - Jean-Yves Rasplus
- INRA, UMR1062 CBGP Centre de Biologie pour la Gestion des Populations, Montferrier-sur-Lez, France
| | - Simon van Noort
- Natural History Division, South African Museum, Iziko Museums of Cape Town, Cape Town, South Africa
- Department of Zoology, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
39
|
Herzog S, Nagarkar Jaiswal S, Urban E, Riemer A, Fischer S, Heidmann SK. Functional dissection of the Drosophila melanogaster condensin subunit Cap-G reveals its exclusive association with condensin I. PLoS Genet 2013; 9:e1003463. [PMID: 23637630 PMCID: PMC3630105 DOI: 10.1371/journal.pgen.1003463] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 03/05/2013] [Indexed: 11/19/2022] Open
Abstract
The heteropentameric condensin complexes have been shown to participate in mitotic chromosome condensation and to be required for unperturbed chromatid segregation in nuclear divisions. Vertebrates have two condensin complexes, condensin I and condensin II, which contain the same structural maintenance of chromosomes (SMC) subunits SMC2 and SMC4, but differ in their composition of non-SMC subunits. While a clear biochemical and functional distinction between condensin I and condensin II has been established in vertebrates, the situation in Drosophila melanogaster is less defined. Since Drosophila lacks a clear homolog for the condensin II-specific subunit Cap-G2, the condensin I subunit Cap-G has been hypothesized to be part of both complexes. In vivo microscopy revealed that a functional Cap-G-EGFP variant shows a distinct nuclear enrichment during interphase, which is reminiscent of condensin II localization in vertebrates and contrasts with the cytoplasmic enrichment observed for the other EGFP-fused condensin I subunits. However, we show that this nuclear localization is dispensable for Cap-G chromatin association, for its assembly into the condensin I complex and, importantly, for development into a viable and fertile adult animal. Immunoprecipitation analyses and complex formation studies provide evidence that Cap-G does not associate with condensin II-specific subunits, while it can be readily detected in complexes with condensin I-specific proteins in vitro and in vivo. Mass-spectrometric analyses of proteins associated with the condensin II-specific subunit Cap-H2 not only fail to identify Cap-G but also the other known condensin II-specific homolog Cap-D3. As condensin II-specific subunits are also not found associated with SMC2, our results question the existence of a soluble condensin II complex in Drosophila.
Collapse
Affiliation(s)
- Sabine Herzog
- Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
| | | | - Evelin Urban
- Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
| | - Anna Riemer
- Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
| | - Sina Fischer
- Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
- Lehrstuhl für Pflanzenphysiologie, University of Bayreuth, Bayreuth, Germany
| | - Stefan K. Heidmann
- Lehrstuhl für Genetik, University of Bayreuth, Bayreuth, Germany
- * E-mail:
| |
Collapse
|
40
|
Zhang F, Wang J, Xu J, Zhang Z, Koppetsch BS, Schultz N, Vreven T, Meignin C, Davis I, Zamore PD, Weng Z, Theurkauf WE. UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery. Cell 2013; 151:871-884. [PMID: 23141543 DOI: 10.1016/j.cell.2012.09.040] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/09/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022]
Abstract
piRNAs silence transposons during germline development. In Drosophila, transcripts from heterochromatic clusters are processed into primary piRNAs in the perinuclear nuage. The nuclear DEAD box protein UAP56 has been previously implicated in mRNA splicing and export, whereas the DEAD box protein Vasa has an established role in piRNA production and localizes to nuage with the piRNA binding PIWI proteins Ago3 and Aub. We show that UAP56 colocalizes with the cluster-associated HP1 variant Rhino, that nuage granules containing Vasa localize directly across the nuclear envelope from cluster foci containing UAP56 and Rhino, and that cluster transcripts immunoprecipitate with both Vasa and UAP56. Significantly, a charge-substitution mutation that alters a conserved surface residue in UAP56 disrupts colocalization with Rhino, germline piRNA production, transposon silencing, and perinuclear localization of Vasa. We therefore propose that UAP56 and Vasa function in a piRNA-processing compartment that spans the nuclear envelope.
Collapse
Affiliation(s)
- Fan Zhang
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jie Wang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jia Xu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Zhao Zhang
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Birgit S Koppetsch
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nadine Schultz
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Carine Meignin
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67 084 Strasbourg Cedex, France
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Phillip D Zamore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Howard Hughes Medical Institute
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - William E Theurkauf
- Program in Cell and Developmental Dynamics, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
41
|
Wilson MJ, Dearden PK. RNA localization in the honeybee (Apis mellifera) oocyte reveals insights about the evolution of RNA localization mechanisms. Dev Biol 2013; 375:193-201. [PMID: 23313731 DOI: 10.1016/j.ydbio.2013.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/21/2012] [Accepted: 01/02/2013] [Indexed: 11/28/2022]
Abstract
Subcellular localization of RNAs is a critical biological process for generation of cellular asymmetries for many cell types and a critical step in axis determination during the early development of animals. We have identified transcripts localized to the anterior and posterior of honeybee oocyte using laser capture microscopy and microarray analysis. Analysis of orthologous transcripts in Drosophila indicates that many do not show a conserved pattern of localization. By microinjecting fluorescently labeled honeybee transcripts into Drosophila egg chambers we show that these RNAs become localized in a similar manner to their localization in honeybee oocytes, indicating conservation of the localization machinery. Thus while the mechanisms for localizing RNA are conserved, the complement of localized RNAs are not. We propose that this complement of localized RNAs may change relatively rapidly through the loss or evolution of signal sequences detected by the conserved localization machinery, and show this has occurred in one transcript that is localized in a novel way in the honeybee. Our proposal, that the acquisition of novel RNA localization is relatively easy to evolve, has implications for the evolution of symmetry breaking mechanisms that trigger axis formation and development in animal embryos.
Collapse
Affiliation(s)
- Megan J Wilson
- Laboratory for Evolution and Development, Genetics Otago and Gravida, The National Centre for Growth and Development, Department of Biochemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | | |
Collapse
|
42
|
Abstract
How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We showed that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments.
Collapse
|
43
|
Cytoplasmic streaming in Drosophila oocytes varies with kinesin activity and correlates with the microtubule cytoskeleton architecture. Proc Natl Acad Sci U S A 2012; 109:15109-14. [PMID: 22949706 DOI: 10.1073/pnas.1203575109] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells can localize molecules asymmetrically through the combined action of cytoplasmic streaming, which circulates their fluid contents, and specific anchoring mechanisms. Streaming also contributes to the distribution of nutrients and organelles such as chloroplasts in plants, the asymmetric position of the meiotic spindle in mammalian embryos, and the developmental potential of the zygote, yet little is known quantitatively about the relationship between streaming and the motor activity which drives it. Here we use Particle Image Velocimetry to quantify the statistical properties of Kinesin-dependent streaming during mid-oogenesis in Drosophila. We find that streaming can be used to detect subtle changes in Kinesin activity and that the flows reflect the architecture of the microtubule cytoskeleton. Furthermore, based on characterization of the rheology of the cytoplasm in vivo, we establish estimates of the number of Kinesins required to drive the observed streaming. Using this in vivo data as the basis of a model for transport, we suggest that the disordered character of transport at mid-oogenesis, as revealed by streaming, is an important component of the localization dynamics of the body plan determinant oskar mRNA.
Collapse
|
44
|
Gonsalvez GB, Long RM. Spatial regulation of translation through RNA localization. F1000 BIOLOGY REPORTS 2012; 4:16. [PMID: 22912650 PMCID: PMC3412389 DOI: 10.3410/b4-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA localization is a mechanism to post-transcriptionally regulate gene
expression. Eukaryotic organisms ranging from fungi to mammals localize mRNAs to
spatially restrict synthesis of specific proteins to distinct regions of the
cytoplasm. In this review, we provide a general summary of RNA localization
pathways in Saccharomyces cerevisiae, Xenopus,
Drosophila and mammalian neurons.
Collapse
Affiliation(s)
- Graydon B. Gonsalvez
- Department of Cellular Biology and
Anatomy, Georgia Health Sciences UniversityC2915D,
1459 Laney Walker Blvd., Augusta, GA
30912USA
| | - Roy M. Long
- Department of Microbiology, Immunology
& Molecular Genetics, Medical College of
Wisconsin8701 Watertown Plank Rd., Milwaukee, WI
53226USA
| |
Collapse
|
45
|
Drosophila models of tauopathies: what have we learned? Int J Alzheimers Dis 2012; 2012:970980. [PMID: 22701808 PMCID: PMC3373119 DOI: 10.1155/2012/970980] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/08/2012] [Indexed: 01/10/2023] Open
Abstract
Aggregates of the microtubule-associated protein Tau are neuropathological hallmark lesions in Alzheimer's disease (AD) and related primary tauopathies. In addition, Tau is genetically implicated in a number of human neurodegenerative disorders including frontotemporal dementia (FTD) and Parkinson's disease (PD). The exact mechanism by which Tau exerts its neurotoxicity is incompletely understood. Here, we give an overview of how studies using the genetic model organism Drosophila over the past decade have contributed to the molecular understanding of Tau neurotoxicity. We compare the different available readouts for Tau neurotoxicity in flies and review the molecular pathways in which Tau has been implicated. Finally, we emphasize that the integration of genome-wide approaches in human or mice with high-throughput genetic validation in Drosophila is a fruitful approach.
Collapse
|
46
|
Shahbabian K, Chartrand P. Control of cytoplasmic mRNA localization. Cell Mol Life Sci 2012; 69:535-52. [PMID: 21984598 PMCID: PMC11115051 DOI: 10.1007/s00018-011-0814-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/09/2011] [Accepted: 09/01/2011] [Indexed: 12/17/2022]
Abstract
mRNA localization is a mechanism used by various organisms to control the spatial and temporal production of proteins. This process is a highly regulated event that requires multiple cis- and trans-acting elements that mediate the accurate localization of target mRNAs. The intrinsic nature of localization elements, together with their interaction with different RNA-binding proteins, establishes control mechanisms that can oversee the transcript from its birth in the nucleus to its specific final destination. In this review, we aim to summarize the different mechanisms of mRNA localization, with a particular focus on the various control mechanisms that affect the localization of mRNAs in the cytoplasm.
Collapse
Affiliation(s)
- Karen Shahbabian
- Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Qc Canada
| | - Pascal Chartrand
- Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Qc Canada
| |
Collapse
|
47
|
Dubin-Bar D, Bitan A, Bakhrat A, Amsalem S, Abdu U. Drosophila javelin-like encodes a novel microtubule-associated protein and is required for mRNA localization during oogenesis. Development 2011; 138:4661-71. [PMID: 21989913 DOI: 10.1242/dev.069161] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Asymmetrical localization of mRNA transcripts during Drosophila oogenesis determines the anteroposterior and dorsoventral axes of the Drosophila embryo. Correct localization of these mRNAs requires both microtubule (MT) and actin networks. In this study, we have identified a novel gene, CG43162, that regulates mRNA localization during oogenesis and also affects bristle development. We also showed that the Drosophila gene javelin-like, which was identified based on its bristle phenotype, is an allele of the CG43162 gene. We demonstrated that female mutants for jvl produce ventralized eggs owing to the defects in the localization and translation of gurken mRNA during mid-oogenesis. Mutations in jvl also affect oskar and bicoid mRNA localization. Analysis of cytoskeleton organization in the mutants reveal defects in both MT and actin networks. We showed that Jvl protein colocalizes with MT network in Schneider cells, in mammalian cells and in the Drosophila oocyte. Both in the oocyte and in the bristle cells, the protein localizes to a region where MT minus-ends are enriched. Jvl physically interacts with SpnF and is required for its localization. We found that overexpression of Jvl in the germline affects MT-dependent processes: oocyte growth and oocyte nucleus anchoring. Thus, our results show that we have identified a novel MT-associated protein that affects mRNA localization in the oocyte by regulating MT organization.
Collapse
Affiliation(s)
- Dikla Dubin-Bar
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
48
|
Parton RM, Hamilton RS, Ball G, Yang L, Cullen CF, Lu W, Ohkura H, Davis I. A PAR-1-dependent orientation gradient of dynamic microtubules directs posterior cargo transport in the Drosophila oocyte. J Cell Biol 2011; 194:121-35. [PMID: 21746854 PMCID: PMC3135408 DOI: 10.1083/jcb.201103160] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/07/2011] [Indexed: 12/31/2022] Open
Abstract
Cytoskeletal organization is central to establishing cell polarity in various cellular contexts, including during messenger ribonucleic acid sorting in Drosophila melanogaster oocytes by microtubule (MT)-dependent molecular motors. However, MT organization and dynamics remain controversial in the oocyte. In this paper, we use rapid multichannel live-cell imaging with novel image analysis, tracking, and visualization tools to characterize MT polarity and dynamics while imaging posterior cargo transport. We found that all MTs in the oocyte were highly dynamic and were organized with a biased random polarity that increased toward the posterior. This organization originated through MT nucleation at the oocyte nucleus and cortex, except at the posterior end of the oocyte, where PAR-1 suppressed nucleation. Our findings explain the biased random posterior cargo movements in the oocyte that establish the germline and posterior.
Collapse
Affiliation(s)
- Richard M. Parton
- Department of Biochemistry, University of
Oxford, Oxford OX1 3QU, England, UK
| | - Russell S. Hamilton
- Department of Biochemistry, University of
Oxford, Oxford OX1 3QU, England, UK
| | - Graeme Ball
- Department of Biochemistry, University of
Oxford, Oxford OX1 3QU, England, UK
| | - Lei Yang
- Department of Physics, Heriot-Watt
University, Edinburgh EH14 4AS, Scotland, UK
| | - C. Fiona Cullen
- Wellcome Trust Centre for Cell Biology,
University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Weiping Lu
- Department of Physics, Heriot-Watt
University, Edinburgh EH14 4AS, Scotland, UK
| | - Hiroyuki Ohkura
- Wellcome Trust Centre for Cell Biology,
University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Ilan Davis
- Department of Biochemistry, University of
Oxford, Oxford OX1 3QU, England, UK
| |
Collapse
|
49
|
Wolniak SM, van der Weele CM, Deeb F, Boothby T, Klink VP. Extremes in rapid cellular morphogenesis: post-transcriptional regulation of spermatogenesis in Marsilea vestita. PROTOPLASMA 2011; 248:457-73. [PMID: 21487804 DOI: 10.1007/s00709-011-0276-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/30/2011] [Indexed: 05/07/2023]
Abstract
The endosporic male gametophyte of the water fern, Marsilea vestita, provides a unique opportunity to study the mechanisms that control cell fate determination during a burst of rapid development. In this review, we show how the spatial and temporal control of development in this simple gametophyte involves several distinct modes of RNA processing that allow the translation of specific mRNAs at distinct stages during gametogenesis. During the early part of development, nine successive cell division cycles occur in precise planes within a closed volume to produce seven sterile cells and 32 spermatids. There is no cell movement in the gametophyte; so, cell position and size within the spore wall define cell fate. After the division cycles have been completed, the spermatids become sites for the de novo formation of basal bodies, for the assembly of a complex cytoskeleton, for nuclear and cell elongation, and for ciliogenesis. In contrast, the adjacent sterile cells exhibit none of these changes. The spermatids differentiate into multiciliated, corkscrew-shaped gametes that resemble no other cells in the entire plant. Development is controlled post-transcriptionally. The transcripts stored in the microspore are released (unmasked) in the gametophyte at different times during development. At the start of these studies, we identified several key mRNAs that undergo translation at specific stages of gametophyte development. We developed RNA silencing protocols that enabled us to block the translation of these proteins and thereby establish their necessity and sufficiency for the completion of specific stages of gametogenesis. In addition, RNAi enabled us to identify additional proteins that are essential for other phases of development. Since the distributions of mRNAs and the proteins they encode are not identical in the gametophyte, transcript processing is apparently important in allowing translation to occur under strict temporal and spatial control. Transcript polyadenylation occurs in the spermatogenous cells in ways that match the translation of specific mRNAs. We have found that the exon junction complex plays key roles in transcript regulation and modifications that underlie cell specification in the gametophyte. We have recently become interested in the mechanisms that control the unmasking of the stored transcripts and have linked the synthesis and redistribution of spermidine in the gametophyte to the control of mRNA release from storage during early development and later to basal body formation, cytoskeletal assembly, and nuclear and cell elongation in the differentiating spermatids.
Collapse
Affiliation(s)
- Stephen M Wolniak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | |
Collapse
|
50
|
Inaki M, Kato D, Utsugi T, Onoda F, Hanaoka F, Murakami Y. Genetic analyses using a mouse cell cycle mutant identifies magoh as a novel gene involved in Cdk regulation. Genes Cells 2011; 16:166-78. [DOI: 10.1111/j.1365-2443.2010.01479.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|