1
|
Alavimanesh S, Nayerain Jazi N, Choubani M, Saeidi F, Afkhami H, Yarahmadi A, Ronaghi H, Khani P, Modarressi MH. Cellular senescence in the tumor with a bone niche microenvironment: friend or foe? Clin Exp Med 2025; 25:44. [PMID: 39849183 PMCID: PMC11759293 DOI: 10.1007/s10238-025-01564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
Cellular senescence is understood to be a biological process that is defined as irreversible growth arrest and was originally recognized as a tumor-suppressive mechanism that prevents further propagation of damaged cells. More recently, cellular senescence has been shown to have a dual role in prevention and tumor promotion. Senescent cells carry a senescence-associated secretory phenotype (SASP), which is altered by secretory factors including pro-inflammatory cytokines, chemokines, and other proteases, leading to the alteration of the tissue microenvironment. Though senescence would eventually halt the growth of cancerous potential cells, SASP contributes to the tumor environment by promoting inflammation, matrix remodeling, and tumor cell invasion. The paradox of tumor prevention/promotion is particularly relevant to the bone niche tumor microenvironment, where longer-lasting, chronic inflammation promotes tumor formation. Insights into a mechanistic understanding of cellular senescence and SASP provide the basis for targeted therapies, such as senolytics, which aim to eliminate senescent cells, or SASP inhibitors, which would eliminate the tumor-promoting effects of senescence. These therapeutic interventions offer significant clinical implications for treating cancer and healthy aging.
Collapse
Affiliation(s)
- Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Negar Nayerain Jazi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Choubani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzane Saeidi
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hossein Ronaghi
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad Hossein Modarressi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
2
|
Dehghan N, Mousavikia SN, Qasempour Y, Azimian H. Radiation-induced senescence in glioblastoma: An overview of the mechanisms and eradication strategies. Life Sci 2024; 359:123218. [PMID: 39510171 DOI: 10.1016/j.lfs.2024.123218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
Radiotherapy as a treatment method for glioblastoma is limited due to the intrinsic apoptosis resistance mechanisms of the tumor. Administration of higher radiation doses contributes to toxicities in normal tissues and organs at risk, like optic chiasma. Cellular senescence represents an alternative mechanism to apoptosis following radiotherapy in glioblastoma, occurring in both normal and neoplastic cells. Although it impedes the growth of tumors and sustains cells in their cycle, it can also act as a cause of tumor development and recurrence following treatment. In this review, we discuss detailed insights into the significance of radiation-induced senescence in glioblastoma and the underlying mechanisms that lead to radioresistance. We also discuss senescence biomarkers and the role of senescence-associated secretory phenotype (SASP) in tumor recurrence. Finally, we review the studies that have administered potential interventions to eradicate or inhibit senescent cells in glioblastoma after treatment with radiation.
Collapse
Affiliation(s)
- Neda Dehghan
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Nasibeh Mousavikia
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Younes Qasempour
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Azimian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Physics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Ashraf S, Deshpande N, Cheung Q, Asabere JB, Wong RJ, Gauthier AG, Parekh M, Adhikari Y, Melangath G, Jurkunas UV. Modulation of ATM enhances DNA repair in G2/M phase of cell cycle and averts senescence in Fuchs endothelial corneal dystrophy. Commun Biol 2024; 7:1482. [PMID: 39523410 PMCID: PMC11551145 DOI: 10.1038/s42003-024-07179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Fuchs Endothelial Corneal Dystrophy (FECD) is an aging disorder characterized by expedited loss of corneal endothelial cells (CEnCs) and heightened DNA damage compared to normal CEnCs. We previously established that ultraviolet-A (UVA) light causes DNA damage and leads to FECD phenotype in a non-genetic mouse model. Here, we demonstrate that acute treatment with chemical stressor, menadione, or physiological stressors, UVA, and catechol estrogen (4-OHE2), results in an early and increased activation of ATM-mediated DNA damage response in FECD compared to normal CEnCs. Acute stress with UVA and 4OHE2 causes (i) greater cell-cycle arrest and DNA repair in G2/M phase, and (ii) greater cytoprotective senescence in NQO1-/- compared to NQO1+/+ cells, which was reversed upon ATM inhibition. Chronic stress with UVA and 4OHE2 results in ATM-driven cell-cycle arrest in G0/G1 phase, reduced DNA repair, and cytotoxic senescence, due to sustained damage. Likewise, UVA-induced cell-cycle reentry, gamma-H2AX foci, and senescence-associated heterochromatin were reduced in Atm-null mice. Remarkably, inhibiting ATM activation with KU-55933 restored DNA repair in G2/M phase and attenuated senescence in chronic cellular model of FECD lacking NQO1. This study provides insights into understanding the pivotal role of ATM in regulating cell-cycle, DNA repair, and senescence, in oxidative-stress disorders like FECD.
Collapse
Affiliation(s)
- Shazia Ashraf
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Neha Deshpande
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Queenie Cheung
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jeffrey Boakye Asabere
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Raymond Jeff Wong
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Alex G Gauthier
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Mohit Parekh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Yadav Adhikari
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Geetha Melangath
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ula V Jurkunas
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Yamauchi S, Sugiura Y, Yamaguchi J, Zhou X, Takenaka S, Odawara T, Fukaya S, Fujisawa T, Naguro I, Uchiyama Y, Takahashi A, Ichijo H. Mitochondrial fatty acid oxidation drives senescence. SCIENCE ADVANCES 2024; 10:eado5887. [PMID: 39454000 PMCID: PMC11506141 DOI: 10.1126/sciadv.ado5887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Cellular senescence is a stress-induced irreversible cell cycle arrest involved in tumor suppression and aging. Many stresses, such as telomere shortening and oncogene activation, induce senescence by damaging nuclear DNA. However, the mechanisms linking DNA damage to senescence remain unclear. Here, we show that DNA damage response (DDR) signaling to mitochondria triggers senescence. A genome-wide small interfering RNA screen implicated the outer mitochondrial transmembrane protein BNIP3 in senescence induction. We found that BNIP3 is phosphorylated by the DDR kinase ataxia telangiectasia mutated (ATM) and contributes to an increase in the number of mitochondrial cristae. Stable isotope labeling metabolomics indicated that the increase in cristae enhances fatty acid oxidation (FAO) to acetyl-coenzyme A (acetyl-CoA). This promotes histone acetylation and expression of the cyclin-dependent kinase inhibitor p16INK4a. Notably, pharmacological activation of FAO alone induced senescence both in vitro and in vivo. Thus, mitochondrial energy metabolism plays a critical role in senescence induction and is a potential intervention target to control senescence.
Collapse
Affiliation(s)
- Shota Yamauchi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Yuki Sugiura
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto 606-8507, Japan
| | - Junji Yamaguchi
- Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Xiangyu Zhou
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Satoshi Takenaka
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cell Signaling and Stress Responses Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takeru Odawara
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shunsuke Fukaya
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cell Signaling and Stress Responses Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akiko Takahashi
- Division of Cellular Senescence, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Cell Signaling and Stress Responses Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
5
|
Daigh LH, Saha D, Rosenthal DL, Ferrick KR, Meyer T. Uncoupling of mTORC1 from E2F activity maintains DNA damage and senescence. Nat Commun 2024; 15:9181. [PMID: 39448567 PMCID: PMC11502682 DOI: 10.1038/s41467-024-52820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
DNA damage is a primary trigger for cellular senescence, which in turn causes organismal aging and is a promising target of anti-aging therapies. Most DNA damage occurs when DNA is fragile during DNA replication in S phase, but senescent cells maintain DNA damage long-after DNA replication has stopped. How senescent cells induce DNA damage and why senescent cells fail to repair damaged DNA remain open questions. Here, we combine reversible expression of the senescence-inducing CDK4/6 inhibitory protein p16INK4 (p16) with live single-cell analysis and show that sustained mTORC1 signaling triggers senescence in non-proliferating cells by increasing transcriptional DNA damage and inflammation signaling that persists after p16 is degraded. Strikingly, we show that activation of E2F transcriptional program, which is regulated by CDK4/6 activity and promotes expression of DNA repair proteins, repairs transcriptionally damaged DNA without requiring DNA replication. Together, our study suggests that senescence can be maintained by ongoing mTORC1-induced transcriptional DNA damage that cannot be sufficiently repaired without induction of protective E2F target genes.
Collapse
Affiliation(s)
- Leighton H Daigh
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Debarya Saha
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - David L Rosenthal
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Katherine R Ferrick
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Ratushnyy A, Ezdakova M, Matveeva D, Tyrina E, Buravkova L. Regulatory Effects of Senescent Mesenchymal Stem Cells: Endotheliocyte Reaction. Cells 2024; 13:1345. [PMID: 39195236 PMCID: PMC11352319 DOI: 10.3390/cells13161345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Currently, there is a growing focus on aging and age-related diseases. The processes of aging are based on cell senescence, which results in changes in intercellular communications and pathological alterations in tissues. In the present study, we investigate the influence of senescent mesenchymal stem cells (MSCs) on endothelial cells (ECs). In order to induce senescence in MSCs, we employed a method of stress-induced senescence utilizing mitomycin C (MmC). Subsequent experiments involved the interaction of ECs with MSCs in a coculture or the treatment of ECs with the secretome of senescent MSCs. After 48 h, we assessed the EC state. Our findings revealed that direct interaction led to a decrease in EC proliferation and migratory activity of the coculture. Furthermore, there was an increase in the activity of the lysosomal compartment, as well as an upregulation of the genes P21, IL6, IL8, ITGA1, and ITGB1. Treatment of ECs with the "senescent" secretome resulted in less pronounced effects, although a decrease in proliferation and an increase in ICAM-1 expression were observed. The maintenance of high levels of typical "senescent" cytokines and growth factors after 48 h suggests that the addition of the "senescent" secretome may have a prolonged effect on the cells. It is noteworthy that in samples treated with the "senescent" secretome, the level of PDGF-AA was higher, which may explain some of the pro-regenerative effects of senescent cells. Therefore, the detected changes may underlie both the negative and positive effects of senescence. The findings provide insight into the effects of cell senescence in vitro, where many of the organism's regulatory mechanisms are absent.
Collapse
Affiliation(s)
- Andrey Ratushnyy
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia; (M.E.); (D.M.); (E.T.); (L.B.)
| | | | | | | | | |
Collapse
|
7
|
Kitaeva KV, Solovyeva VV, Blatt NL, Rizvanov AA. Eternal Youth: A Comprehensive Exploration of Gene, Cellular, and Pharmacological Anti-Aging Strategies. Int J Mol Sci 2024; 25:643. [PMID: 38203812 PMCID: PMC10778954 DOI: 10.3390/ijms25010643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
The improvement of human living conditions has led to an increase in average life expectancy, creating a new social and medical problem-aging, which diminishes the overall quality of human life. The aging process of the body begins with the activation of effector signaling pathways of aging in cells, resulting in the loss of their normal functions and deleterious effects on the microenvironment. This, in turn, leads to chronic inflammation and similar transformations in neighboring cells. The cumulative retention of these senescent cells over a prolonged period results in the deterioration of tissues and organs, ultimately leading to a reduced quality of life and an elevated risk of mortality. Among the most promising methods for addressing aging and age-related illnesses are pharmacological, genetic, and cellular therapies. Elevating the activity of aging-suppressing genes, employing specific groups of native and genetically modified cells, and utilizing senolytic medications may offer the potential to delay aging and age-related ailments over the long term. This review explores strategies and advancements in the field of anti-aging therapies currently under investigation, with a particular emphasis on gene therapy involving adeno-associated vectors and cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Nataliya L. Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.V.K.); (V.V.S.); (N.L.B.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
8
|
Chang DF, Court KA, Holgate R, Davis EA, Bush KA, Quick AP, Spiegel AJ, Rahimi M, Cooke JP, Godin B. Telomerase mRNA Enhances Human Skin Engraftment for Wound Healing. Adv Healthc Mater 2024; 13:e2302029. [PMID: 37619534 PMCID: PMC10840696 DOI: 10.1002/adhm.202302029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Deep skin wounds represent a serious condition and frequently require split-thickness skin grafts (STSG) to heal. The application of autologous human-skin-cell-suspension (hSCS) requires less donor skin than STSG without compromising the healing capacity. Impaired function and replicative ability of senescent cutaneous cells in the aging skin affects healing with autologous hSCS. Major determinants of senescence are telomere erosion and DNA damage. Human telomerase reverse transcriptase (hTERT) adds telomeric repeats to the DNA and can protect against DNA damage. Herein, hTERT mRNA lipid nanoparticles (LNP) are proposed and evaluated for enhancing cellular engraftment and proliferation of hSCS. Transfection with optimized hTERT mRNA LNP system enables delivery and expression of mRNA in vitro in keratinocytes, fibroblasts, and in hSCS prepared from donors' skin. Telomerase activity in hSCS is significantly increased. hTERT mRNA LNP enhance the generation of a partial-thickness human skin equivalent in the mouse model, increasing hSCS engraftment (Lamin) and proliferation (Ki67), while reducing cellular senescence (p21) and DNA damage (53BP1).
Collapse
Affiliation(s)
- David F. Chang
- Center for Cardiovascular Regeneration, Institute of Academic Medicine (IAM), Houston Methodist Research Institute (HMRI), Houston, TX, USA
| | | | - Rhonda Holgate
- Center for Cardiovascular Regeneration, Institute of Academic Medicine (IAM), Houston Methodist Research Institute (HMRI), Houston, TX, USA
| | - Elizabeth A. Davis
- Center for Cardiovascular Regeneration, Institute of Academic Medicine (IAM), Houston Methodist Research Institute (HMRI), Houston, TX, USA
| | | | | | - Aldona J. Spiegel
- Center for Breast Restoration, Houston Methodist Institute for Reconstructive Surgery, Houston Methodist Hospital (HMH)
| | - Maham Rahimi
- Center of Cardiovascular Surgery, Institute of Academic Medicine, HMH
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Institute of Academic Medicine (IAM), Houston Methodist Research Institute (HMRI), Houston, TX, USA
- Department of Cardiovascular Sciences, Institute of Academic Medicine, HMH
- Center for RNA Therapeutics, IAM, HMH
| | - Biana Godin
- Department of Nanomedicine, IAM, HMRI, Houston, TX, USA
- Center for RNA Therapeutics, IAM, HMH
- Department of Obstetrics and Gynecology, HMH
- Department of Obstetrics and Gynecology, Weill Cornell Medicine College
- Department of Biomedical Engineering, Texas A&M University
| |
Collapse
|
9
|
Chin T, Lee XE, Ng PY, Lee Y, Dreesen O. The role of cellular senescence in skin aging and age-related skin pathologies. Front Physiol 2023; 14:1297637. [PMID: 38074322 PMCID: PMC10703490 DOI: 10.3389/fphys.2023.1297637] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2024] Open
Abstract
Aging is the result of a gradual functional decline at the cellular, and ultimately, organismal level, resulting in an increased risk of developing a variety of chronic illnesses, such as cardiovascular disease, stroke, cancer and diabetes. The skin is the largest organ of the human body, and the site where signs of aging are most visible. These signs include thin and dry skin, sagging, loss of elasticity, wrinkles, as well as aberrant pigmentation. The appearance of these features is accelerated by exposure to extrinsic factors such as ultraviolet (UV) radiation or pollution, as well as intrinsic factors including time, genetics, and hormonal changes. At the cellular level, aging is associated with impaired proteostasis and an accumulation of macromolecular damage, genomic instability, chromatin reorganization, telomere shortening, remodelling of the nuclear lamina, proliferation defects and premature senescence. Cellular senescence is a state of permanent growth arrest and a key hallmark of aging in many tissues. Due to their inability to proliferate, senescent cells no longer contribute to tissue repair or regeneration. Moreover, senescent cells impair tissue homeostasis, promote inflammation and extracellular matrix (ECM) degradation by secreting molecules collectively known as the "senescence-associated secretory phenotype" (SASP). Senescence can be triggered by a number of different stimuli such as telomere shortening, oncogene expression, or persistent activation of DNA damage checkpoints. As a result, these cells accumulate in aging tissues, including human skin. In this review, we focus on the role of cellular senescence during skin aging and the development of age-related skin pathologies, and discuss potential strategies to rejuvenate aged skin.
Collapse
Affiliation(s)
- Toby Chin
- Lee Kong Chiang School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xin Er Lee
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pei Yi Ng
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yaelim Lee
- Mechanobiology Institute, National University of Singapore, T-Lab, Singapore, Singapore
| | - Oliver Dreesen
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, T-Lab, Singapore, Singapore
| |
Collapse
|
10
|
Chojak R, Fares J, Petrosyan E, Lesniak MS. Cellular senescence in glioma. J Neurooncol 2023; 164:11-29. [PMID: 37458855 DOI: 10.1007/s11060-023-04387-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/01/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Glioma is the most common primary brain tumor and is often associated with treatment resistance and poor prognosis. Standard treatment typically involves radiotherapy and temozolomide-based chemotherapy, both of which induce cellular senescence-a tumor suppression mechanism. DISCUSSION Gliomas employ various mechanisms to bypass or escape senescence and remain in a proliferative state. Importantly, senescent cells remain viable and secrete a large number of factors collectively known as the senescence-associated secretory phenotype (SASP) that, paradoxically, also have pro-tumorigenic effects. Furthermore, senescent cells may represent one form of tumor dormancy and play a role in glioma recurrence and progression. CONCLUSION In this article, we delineate an overview of senescence in the context of gliomas, including the mechanisms that lead to senescence induction, bypass, and escape. Furthermore, we examine the role of senescent cells in the tumor microenvironment and their role in tumor progression and recurrence. Additionally, we highlight potential therapeutic opportunities for targeting senescence in glioma.
Collapse
Affiliation(s)
- Rafał Chojak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edgar Petrosyan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, Suite 2210, Chicago, IL, 60611, USA.
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
11
|
Holloway K, Neherin K, Dam KU, Zhang H. Cellular senescence and neurodegeneration. Hum Genet 2023; 142:1247-1262. [PMID: 37115318 DOI: 10.1007/s00439-023-02565-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Advancing age is a major risk factor of Alzheimer's disease (AD). The worldwide prevalence of AD is approximately 50 million people, and this number is projected to increase substantially. The molecular mechanisms underlying the aging-associated susceptibility to cognitive impairment in AD are largely unknown. As a hallmark of aging, cellular senescence is a significant contributor to aging and age-related diseases including AD. Senescent neurons and glial cells have been detected to accumulate in the brains of AD patients and mouse models. Importantly, selective elimination of senescent cells ameliorates amyloid beta and tau pathologies and improves cognition in AD mouse models, indicating a critical role of cellular senescence in AD pathogenesis. Nonetheless, the mechanisms underlying when and how cellular senescence contributes to AD pathogenesis remain unclear. This review provides an overview of cellular senescence and discusses recent advances in the understanding of the impact of cellular senescence on AD pathogenesis, with brief discussions of the possible role of cellular senescence in other neurodegenerative diseases including Down syndrome, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Kristopher Holloway
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kashfia Neherin
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kha Uyen Dam
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Hong Zhang
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
12
|
Mourkioti I, Polyzou A, Veroutis D, Theocharous G, Lagopati N, Gentile E, Stravokefalou V, Thanos DF, Havaki S, Kletsas D, Panaretakis T, Logothetis CJ, Stellas D, Petty R, Blandino G, Papaspyropoulos A, Gorgoulis VG. A GATA2-CDC6 axis modulates androgen receptor blockade-induced senescence in prostate cancer. J Exp Clin Cancer Res 2023; 42:187. [PMID: 37507762 PMCID: PMC10386253 DOI: 10.1186/s13046-023-02769-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Prostate cancer is a major cause of cancer morbidity and mortality in men worldwide. Androgen deprivation therapy (ADT) has proven effective in early-stage androgen-sensitive disease, but prostate cancer gradually develops into an androgen-resistant metastatic state in the vast majority of patients. According to our oncogene-induced model for cancer development, senescence is a major tumor progression barrier. However, whether senescence is implicated in the progression of early-stage androgen-sensitive to highly aggressive castration-resistant prostate cancer (CRPC) remains poorly addressed. METHODS Androgen-dependent (LNCaP) and -independent (C4-2B and PC-3) cells were treated or not with enzalutamide, an Androgen Receptor (AR) inhibitor. RNA sequencing and pathway analyses were carried out in LNCaP cells to identify potential senescence regulators upon treatment. Assessment of the invasive potential of cells and senescence status following enzalutamide treatment and/or RNAi-mediated silencing of selected targets was performed in all cell lines, complemented by bioinformatics analyses on a wide range of in vitro and in vivo datasets. Key observations were validated in LNCaP and C4-2B mouse xenografts. Senescence induction was assessed by state-of-the-art GL13 staining by immunocytochemistry and confocal microscopy. RESULTS We demonstrate that enzalutamide treatment induces senescence in androgen-sensitive cells via reduction of the replication licensing factor CDC6. Mechanistically, we show that CDC6 downregulation is mediated through endogenous activation of the GATA2 transcription factor functioning as a CDC6 repressor. Intriguingly, GATA2 levels decrease in enzalutamide-resistant cells, leading to CDC6 stabilization accompanied by activation of Epithelial-To-Mesenchymal Transition (EMT) markers and absence of senescence. We show that CDC6 loss is sufficient to reverse oncogenic features and induce senescence regardless of treatment responsiveness, thereby identifying CDC6 as a critical determinant of prostate cancer progression. CONCLUSIONS We identify a key GATA2-CDC6 signaling axis which is reciprocally regulated in enzalutamide-sensitive and -resistant prostate cancer environments. Upon acquired resistance, GATA2 repression leads to CDC6 stabilization, with detrimental effects in disease progression through exacerbation of EMT and abrogation of senescence. However, bypassing the GATA2-CDC6 axis by direct inhibition of CDC6 reverses oncogenic features and establishes senescence, thereby offering a therapeutic window even after acquiring resistance to therapy.
Collapse
Affiliation(s)
- Ioanna Mourkioti
- Department of Histology and Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Polyzou
- Department of Histology and Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Veroutis
- Department of Histology and Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Theocharous
- Department of Histology and Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Lagopati
- Department of Histology and Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Emanuela Gentile
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vasiliki Stravokefalou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Dimitris-Foivos Thanos
- Department of Histology and Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Havaki
- Department of Histology and Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Aghia Paraskevi, Greece
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Russell Petty
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Giovanni Blandino
- Department of Research, Oncogenomic and Epigenetic Unit, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Angelos Papaspyropoulos
- Department of Histology and Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| | - Vassilis G Gorgoulis
- Department of Histology and Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Biomedical Research Foundation, Academy of Athens, Athens, Greece.
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
13
|
Tyshkovskiy A, Ma S, Shindyapina AV, Tikhonov S, Lee SG, Bozaykut P, Castro JP, Seluanov A, Schork NJ, Gorbunova V, Dmitriev SE, Miller RA, Gladyshev VN. Distinct longevity mechanisms across and within species and their association with aging. Cell 2023; 186:2929-2949.e20. [PMID: 37269831 PMCID: PMC11192172 DOI: 10.1016/j.cell.2023.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2022] [Accepted: 05/02/2023] [Indexed: 06/05/2023]
Abstract
Lifespan varies within and across species, but the general principles of its control remain unclear. Here, we conducted multi-tissue RNA-seq analyses across 41 mammalian species, identifying longevity signatures and examining their relationship with transcriptomic biomarkers of aging and established lifespan-extending interventions. An integrative analysis uncovered shared longevity mechanisms within and across species, including downregulated Igf1 and upregulated mitochondrial translation genes, and unique features, such as distinct regulation of the innate immune response and cellular respiration. Signatures of long-lived species were positively correlated with age-related changes and enriched for evolutionarily ancient essential genes, involved in proteolysis and PI3K-Akt signaling. Conversely, lifespan-extending interventions counteracted aging patterns and affected younger, mutable genes enriched for energy metabolism. The identified biomarkers revealed longevity interventions, including KU0063794, which extended mouse lifespan and healthspan. Overall, this study uncovers universal and distinct strategies of lifespan regulation within and across species and provides tools for discovering longevity interventions.
Collapse
Affiliation(s)
- Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Siming Ma
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anastasia V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stanislav Tikhonov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Perinur Bozaykut
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - José P Castro
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Nicholas J Schork
- Quantitative Medicine and Systems Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
14
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
15
|
Li Y, Li X, Cournoyer P, Choudhuri S, Yu X, Guo L, Chen S. Cannabidiol-induced transcriptomic changes and cellular senescence in human Sertoli cells. Toxicol Sci 2023; 191:227-238. [PMID: 36519830 PMCID: PMC10123764 DOI: 10.1093/toxsci/kfac131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cannabidiol (CBD), one of the major cannabinoids in the plant Cannabis sativa L., is the active ingredient in a drug approved for the treatment of seizures associated with certain childhood-onset epileptic disorders. CBD has been shown to induce male reproductive toxicity in multiple animal models. We previously reported that CBD inhibits cellular proliferation in the mouse Sertoli cell line TM4 and in primary human Sertoli cells. In this study, using a transcriptomic approach with mRNA-sequencing analysis, we identified molecular mechanisms underlying CBD-induced cytotoxicity in primary human Sertoli cells. Analysis of differentially expressed genes demonstrated that DNA replication, cell cycle, and DNA repair were the most significantly affected pathways. We confirmed the concentration-dependent changes in the expression of key genes in these pathways using real-time PCR. mRNA sequencing showed upregulation of a group of genes tightly associated with the senescence-associated secretory phenotype (SASP) and with the activation of the p53 signaling pathway, a key upstream event in cellular senescence. Prolonged treatment of 10 μM CBD-induced cellular senescence, as evidenced by the stable cessation of proliferation and the activation of senescence-associated β-galactosidase (SA-β-gal), 2 hallmarks of senescence. Additionally, using real-time PCR and Western blotting assays, we observed that CBD treatment increased the expression of p16, an important marker of cellular senescence. Taken together, our results show that CBD exposure disturbs various interrelated signaling pathways and induces cellular senescence in primary human Sertoli cells.
Collapse
Affiliation(s)
- Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | | | - Supratim Choudhuri
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Xiaozhong Yu
- College of Nursing, University of New Mexico, Albuquerque, NM 87131, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
16
|
Zarneshan SN, Fakhri S, Bachtel G, Bishayee A. Exploiting pivotal mechanisms behind the senescence-like cell cycle arrest in cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:1-19. [PMID: 37061329 DOI: 10.1016/bs.apcsb.2022.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Senescence-like cell cycle arrest is a critical state of cancer initiation and progression. Senescence is an irreversible cell cycle arrest in response to stress induced by extrinsic and intrinsic stimuli, including oxidative/genotoxic stress, oncogenic activation, irradiation, mitochondrial malfunction, or chemotherapeutic drugs. Several signaling pathways are involved in senescence-like cell cycle arrest, which is primarily induced by the activation of p53/p21-dependent apoptotic pathways and suppressing p16INK4A/retinoblastoma protein (pRB)-dependent oncogenic pathways. p21 is necessary for proper cell cycle advancement, is involved in cell death, and mediates p53-dependent cell cycle arrest caused by DNA damage. pRB's role in tumor suppression is through modulation of the G1 checkpoint in the cell cycle, as it has the ability to block S-phase entry and cell growth. The aforementioned pathways are also highly interconnected with significant crosstalk, such as cyclin-dependent kinases (CDK)/cyclin complexes, and the dimerization partner, RB-like, E2F and multi-vulval class B (DREAM) complex. The primary regulators of transcription are p53 and pRB, which maintain the senescent state through negative control of the cell cycle and process of tumorigenesis. Because CDK inhibitors comprise negative regulators of cell cycle progress, they are fundamental parts of each route. Prolonged overexpression of any of these four fundamental elements (p16, p53, p21, and pRB) suffices to induce senescence, demonstrating how the regulatory DREAM complex causes senescence and how its malfunction results in cell cycle progression. The present chapter aims at revealing the pivotal mechanisms behind the senescence-like cell cycle arrest in cancer.
Collapse
|
17
|
Induction of premature senescence and a less-fibrogenic phenotype by programmed cell death 4 knockdown in the human hepatic stellate cell line Lieming Xu-2. Hum Cell 2023; 36:583-601. [PMID: 36522523 PMCID: PMC9947070 DOI: 10.1007/s13577-022-00844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Although programmed cell death 4 (PDCD4) was initially reported as a tumor suppressor and has been shown to inhibit cancer cell growth and metastasis, recent studies have demonstrated that loss of PDCD4 expression also induces growth inhibition by inducing apoptosis and/or cellular senescence. At present, the roles of PDCD4 in the activation and profibrogenic properties of myofibroblasts, which are critically involved in organ fibrosis, such as that in the liver, are unclear. We, therefore, investigated the roles of PDCD4 in myofibroblasts using human hepatic stellate cell line Lieming Xu-2 (LX-2). PDCD4 knockdown inhibited LX-2 proliferation and induced a senescent phenotype with increased β-galactosidase staining and p21 expression in a p53-independent manner together with downregulation of the notch signaling mediator RBJ-κ/CSL. During PDCD4 knockdown, alpha smooth muscle actin (α-SMA; an activation marker of myofibroblasts), matrix metalloproteinases MMP-1 and MMP-9, and collagen IV were upregulated, but the expression of collagen1α1 and collagen III was markedly downregulated without any marked change in the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1). These results demonstrated that knockdown of PDCD4 induced the cellular senescence phenotype and activated myofibroblasts while suppressing the profibrogenic phenotype, suggesting roles of PDCD4 in cellular senescence and fibrogenesis in the liver.
Collapse
|
18
|
Herdy JR, Traxler L, Agarwal RK, Karbacher L, Schlachetzki JCM, Boehnke L, Zangwill D, Galasko D, Glass CK, Mertens J, Gage FH. Increased post-mitotic senescence in aged human neurons is a pathological feature of Alzheimer's disease. Cell Stem Cell 2022; 29:1637-1652.e6. [PMID: 36459967 PMCID: PMC10093780 DOI: 10.1016/j.stem.2022.11.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 10/03/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022]
Abstract
The concept of senescence as a phenomenon limited to proliferating cells has been challenged by growing evidence of senescence-like features in terminally differentiated cells, including neurons. The persistence of senescent cells late in life is associated with tissue dysfunction and increased risk of age-related disease. We found that Alzheimer's disease (AD) brains have significantly higher proportions of neurons that express senescence markers, and their distribution indicates bystander effects. AD patient-derived directly induced neurons (iNs) exhibit strong transcriptomic, epigenetic, and molecular biomarker signatures, indicating a specific human neuronal senescence-like state. AD iN single-cell transcriptomics revealed that senescent-like neurons face oncogenic challenges and metabolic dysfunction as well as display a pro-inflammatory signature. Integrative profiling of the inflammatory secretome of AD iNs and patient cerebral spinal fluid revealed a neuronal senescence-associated secretory phenotype that could trigger astrogliosis in human astrocytes. Finally, we show that targeting senescence-like neurons with senotherapeutics could be a strategy for preventing or treating AD.
Collapse
Affiliation(s)
- Joseph R Herdy
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria.
| | - Larissa Traxler
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria
| | - Ravi K Agarwal
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lukas Karbacher
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lena Boehnke
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria
| | - Dina Zangwill
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Doug Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jerome Mertens
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria.
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
19
|
Sattari M, Masoudnia M, Mashayekhi K, Hashemi SM, Khannazer N, Sattari S, Mohammadian Haftcheshmeh S, Momtazi-Borojeni AA. Evaluating the effect of LPS from periodontal pathogenic bacteria on the expression of senescence-related genes in human dental pulp stem cells. J Cell Mol Med 2022; 26:5647-5656. [PMID: 36259309 PMCID: PMC9667521 DOI: 10.1111/jcmm.17594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
The human dental pulp stem cells (hDPSCs) are one of the readily available sources of multipotent mesenchymal stem cells (MSCs) and can be considered as a type of tool cells for cell‐based therapies. However, the main limitation in the clinical use of these cells is DPSC senescence, which can be induced by lipopolysaccharide (LPS) of oral pathogenic bacteria. Up to now, far little attention has been paid to exploring the molecular mechanisms of senescence in DPSCs. So, the current study aimed to investigate the underlying molecular mechanism of senescence in hDPSCs stimulated with Porphyromonas gingivalis (P. gingivalis) and Escherichia coli (E. coli)‐derived LPSs, by evaluating both mRNA and protein expression of four important senescence‐related genes, including TP53, CDKN1A, CDKN2A and SIRT1. To this purpose, hDPSCs were stimulated with different LPSs for 6, 24 and 48 h and then the gene expression was evaluated using quantitative real‐time polymerase chain reaction (qPCR) and western blotting. Following stimulation with P. gingivalis and E. coli‐derived LPSs, the relative mRNA and protein expression of all genes were significantly up‐regulated in a time‐dependent manner, as compared with unstimulated hDPSCs. Moreover, the hDPSCs stimulated with P. gingivalis LPS for 6 and 24 h had the highest mRNA expression of CDKN1A and SIRT1, respectively (p < 0.0001), whereas the highest mRNA expression of CDKN2A and TP53 was seen in hDPSCs stimulated with E. coli LPS for 48 h (p < 0.0001). In summary, because DPSCs have been reported to have therapeutic potential for several cell‐based therapies, targeting molecular mechanisms aiming at preventing DPSC senescence could be considered a valuable strategy.
Collapse
Affiliation(s)
- Mandana Sattari
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Masoudnia
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Mashayekhi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Khannazer
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepanta Sattari
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
20
|
Evidence of Sex Differences in Cellular Senescence. Neurobiol Aging 2022; 120:88-104. [PMID: 36166919 DOI: 10.1016/j.neurobiolaging.2022.08.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022]
|
21
|
Iakovou E, Kourti M. A Comprehensive Overview of the Complex Role of Oxidative Stress in Aging, The Contributing Environmental Stressors and Emerging Antioxidant Therapeutic Interventions. Front Aging Neurosci 2022; 14:827900. [PMID: 35769600 PMCID: PMC9234325 DOI: 10.3389/fnagi.2022.827900] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Aging is a normal, inevitable, irreversible, and progressive process which is driven by internal and external factors. Oxidative stress, that is the imbalance between prooxidant and antioxidant molecules favoring the first, plays a key role in the pathophysiology of aging and comprises one of the molecular mechanisms underlying age-related diseases. However, the oxidative stress theory of aging has not been successfully proven in all animal models studying lifespan, meaning that altering oxidative stress/antioxidant defense systems did not always lead to a prolonged lifespan, as expected. On the other hand, animal models of age-related pathological phenotypes showed a well-correlated relationship with the levels of prooxidant molecules. Therefore, it seems that oxidative stress plays a more complicated role than the one once believed and this role might be affected by the environment of each organism. Environmental factors such as UV radiation, air pollution, and an unbalanced diet, have also been implicated in the pathophysiology of aging and seem to initiate this process more rapidly and even at younger ages. Aim The purpose of this review is to elucidate the role of oxidative stress in the physiology of aging and the effect of certain environmental factors in initiating and sustaining this process. Understanding the pathophysiology of aging will contribute to the development of strategies to postpone this phenomenon. In addition, recent studies investigating ways to alter the antioxidant defense mechanisms in order to prevent aging will be presented. Conclusions Careful exposure to harmful environmental factors and the use of antioxidant supplements could potentially affect the biological processes driving aging and slow down the development of age-related diseases. Maybe a prolonged lifespan could not be achieved by this strategy alone, but a longer healthspan could also be a favorable target.
Collapse
Affiliation(s)
- Evripides Iakovou
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
| | - Malamati Kourti
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- *Correspondence: Malamati Kourti
| |
Collapse
|
22
|
Miller SJ, Campbell CE, Jimenez-Corea HA, Wu GH, Logan R. Neuroglial Senescence, α-Synucleinopathy, and the Therapeutic Potential of Senolytics in Parkinson’s Disease. Front Neurosci 2022; 16:824191. [PMID: 35516803 PMCID: PMC9063319 DOI: 10.3389/fnins.2022.824191] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) is the most common movement disorder and the second most prevalent neurodegenerative disease after Alzheimer’s disease. Despite decades of research, there is still no cure for PD and the complicated intricacies of the pathology are still being worked out. Much of the research on PD has focused on neurons, since the disease is characterized by neurodegeneration. However, neuroglia has become recognized as key players in the health and disease of the central nervous system. This review provides a current perspective on the interactive roles that α-synuclein and neuroglial senescence have in PD. The self-amplifying and cyclical nature of oxidative stress, neuroinflammation, α-synucleinopathy, neuroglial senescence, neuroglial chronic activation and neurodegeneration will be discussed. Finally, the compelling role that senolytics could play as a therapeutic avenue for PD is explored and encouraged.
Collapse
Affiliation(s)
- Sean J. Miller
- Pluripotent Diagnostics Corp. (PDx), Molecular Medicine Research Institute, Sunnyvale, CA, United States
| | | | | | - Guan-Hui Wu
- Department of Neurology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Robert Logan
- Pluripotent Diagnostics Corp. (PDx), Molecular Medicine Research Institute, Sunnyvale, CA, United States
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
- *Correspondence: Robert Logan,
| |
Collapse
|
23
|
Cellular senescence in the Aging Brain: A promising target for neurodegenerative diseases. Mech Ageing Dev 2022; 204:111675. [DOI: 10.1016/j.mad.2022.111675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 01/10/2023]
|
24
|
Roger L, Tomas F, Gire V. Mechanisms and Regulation of Cellular Senescence. Int J Mol Sci 2021; 22:ijms222313173. [PMID: 34884978 PMCID: PMC8658264 DOI: 10.3390/ijms222313173] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence entails a state of an essentially irreversible proliferative arrest in which cells remain metabolically active and secrete a range of pro-inflammatory and proteolytic factors as part of the senescence-associated secretory phenotype. There are different types of senescent cells, and senescence can be induced in response to many DNA damage signals. Senescent cells accumulate in different tissues and organs where they have distinct physiological and pathological functions. Despite this diversity, all senescent cells must be able to survive in a nondividing state while protecting themselves from positive feedback loops linked to the constant activation of the DNA damage response. This capacity requires changes in core cellular programs. Understanding how different cell types can undergo extensive changes in their transcriptional programs, metabolism, heterochromatin patterns, and cellular structures to induce a common cellular state is crucial to preventing cancer development/progression and to improving health during aging. In this review, we discuss how senescent cells continuously evolve after their initial proliferative arrest and highlight the unifying features that define the senescent state.
Collapse
Affiliation(s)
- Lauréline Roger
- Structure and Instability of Genomes Laboratory, Muséum National d’Histoire Naturelle (MNHN), CNRS-UMR 7196/INSERM U1154, 43 Rue Cuvier, 75005 Paris, France;
| | - Fanny Tomas
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier, France;
| | - Véronique Gire
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS UMR 5237, 1919 Route de Mende, 34293 Montpellier, France;
- Correspondence: ; Tel.: +33-(0)-434359513; Fax: +33-(0)-434359410
| |
Collapse
|
25
|
Koutsaliaris IK, Moschonas IC, Pechlivani LM, Tsouka AN, Tselepis AD. Inflammation, Oxidative Stress, Vascular Aging And Atherosclerotic Ischemic Stroke. Curr Med Chem 2021; 29:5496-5509. [PMID: 34547993 DOI: 10.2174/0929867328666210921161711] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
Vascular aging is a crucial risk factor for atherosclerotic ischemic stroke. Vascular aging is characterized by oxidative stress, endothelial dysfunction, inflammation, intimal and media thickening, as well as the gradual development of arterial stiffness, among other pathophysiological features. Regarding oxidative stress, increased concentration of reactive oxygen and nitrogen species is linked to atherosclerotic ischemic stroke in vascular aging. Additionally, oxidative stress is associated with an inflammatory response. Inflammation is related to aging through the "inflammaging" theory, which is characterized by decreased ability to cope with a variety of stressors, in combination with an increased pro-inflammatory state. Vascular aging is correlated with changes in cerebral arteries that are considered predictors of the risk for atherosclerotic ischemic stroke. The aim of the present review is to present the role of oxidative stress and inflammation in vascular aging, as well as their involvement in atherosclerotic ischemic stroke.
Collapse
Affiliation(s)
- Ioannis K Koutsaliaris
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina. Greece
| | - Iraklis C Moschonas
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina. Greece
| | - Louisa M Pechlivani
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina. Greece
| | - Aikaterini N Tsouka
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina. Greece
| | - Alexandros D Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina. Greece
| |
Collapse
|
26
|
Zhu Q, Chen L, Li Y, Huang M, Shao J, Li S, Cheng J, Yang H, Wu Y, Zhang J, Feng J, Fan M, Wu H. Rack1 is essential for corticogenesis by preventing p21-dependent senescence in neural stem cells. Cell Rep 2021; 36:109639. [PMID: 34469723 DOI: 10.1016/j.celrep.2021.109639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/27/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022] Open
Abstract
Normal neurodevelopment relies on intricate signaling pathways that balance neural stem cell (NSC) self-renewal, maturation, and survival. Disruptions lead to neurodevelopmental disorders, including microcephaly. Here, we implicate the inhibition of NSC senescence as a mechanism underlying neurogenesis and corticogenesis. We report that the receptor for activated C kinase (Rack1), a family member of WD40-repeat (WDR) proteins, is highly enriched in NSCs. Deletion of Rack1 in developing cortical progenitors leads to a microcephaly phenotype. Strikingly, the absence of Rack1 decreases neurogenesis and promotes a cellular senescence phenotype in NSCs. Mechanistically, the senescence-related p21 signaling pathway is dramatically activated in Rack1 null NSCs, and removal of p21 significantly rescues the Rack1-knockout phenotype in vivo. Finally, Rack1 directly interacts with Smad3 to suppress the activation of transforming growth factor (TGF)-β/Smad signaling pathway, which plays a critical role in p21-mediated senescence. Our data implicate Rack1-driven inhibition of p21-induced NSC senescence as a critical mechanism behind normal cortical development.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Minghe Huang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Jingyuan Shao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Shen Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Juanxian Cheng
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Haihong Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Jiyan Zhang
- Department of Neuroimmunology and Antibody Engineering, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 100850 Beijing, China
| | - Ming Fan
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, Jiangsu Province, China; Chinese Institute for Brain Research, 102206 Beijing, China.
| |
Collapse
|
27
|
Haghi-Aminjan H, Baeeri M, Khalid M, Rahimifard M, Mahdizadeh E, Hooshangi Shayesteh MR, Abdollahi M. Senolytic Effect of Cerium Oxide Nanoparticles (CeO2 NPs) by Attenuating p38/NF-кB, and p53/p21 Signaling Pathways. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Abstract
The ageing population is becoming a significant socio-economic issue. To address the expanding health gap, it is important to deepen our understanding of the mechanisms underlying ageing in various organisms at the single-cell level. The discovery of the antifungal, immunosuppressive, and anticancer drug rapamycin, which possesses the ability to extend the lifespan of several species, has prompted extensive research in the areas of cell metabolic regulation, development, and senescence. At the centre of this research is the mTOR pathway, with key roles in cell growth, proteosynthesis, ribosomal biogenesis, transcriptional regulation, glucose and lipid metabolism, and autophagy. Recently, it has become obvious that mTOR dysregulation is involved in several age-related diseases, such as cancer, neurodegenerative diseases, and type 2 diabetes mellitus. Additionally, mTOR hyperactivation affects the process of ageing per se. In this review, we provide an overview of recent insights into the mTOR signalling pathway, including its regulation and its influence on various hallmarks of ageing at the cellular level.
Collapse
Affiliation(s)
- Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
29
|
Chromatin-Directed Proteomics Identifies ZNF84 as a p53-Independent Regulator of p21 in Genotoxic Stress Response. Cancers (Basel) 2021; 13:cancers13092115. [PMID: 33925586 PMCID: PMC8123910 DOI: 10.3390/cancers13092115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Chemotherapy is a commonly applied anticancer treatment, however therapy-induced senescent growth arrest has been associated with aggressive disease recurrence. The p21 protein, encoded by CDKN1A, plays a vital role in the induction of senescence. Its transcriptional control by p53 is well-established. However, in many cancers where TP53 is mutated, p21 expression must be triggered by p53-independent mechanisms. We here used a chromatin-directed proteomic approach and identified ZNF84 as a regulator of CDKN1A gene expression in various p53-deficient cell lines. Knock-down of ZNF84, an as-yet un-characterized protein, inhibited p21 gene and protein expression in response to doxorubicin and facilitated senescence bypass. Intriguingly, ZNF84 depletion diminished genotoxic burden evoked by doxorubicin. Clinical data association studies indicated the relevance of ZNF84 expression for patient survival. Collectively, we identified ZNF84 as a critical regulator of senescence-proliferation outcome of chemotherapy, opening possibilities for its targeting in novel anti-cancer therapies of p53-mutated tumours. Abstract The p21WAF1/Cip1 protein, encoded by CDKN1A, plays a vital role in senescence, and its transcriptional control by the tumour suppressor p53 is well-established. However, p21 can also be regulated in a p53-independent manner, by mechanisms that still remain less understood. We aimed to expand the knowledge about p53-independent senescence by looking for novel players involved in CDKN1A regulation. We used a chromatin-directed proteomic approach and identified ZNF84 as a novel regulator of p21 in various p53-deficient cell lines treated with cytostatic dose of doxorubicin. Knock-down of ZNF84, an as-yet un-characterized protein, inhibited p21 gene and protein expression in response to doxorubicin, it attenuated senescence and was associated with enhanced proliferation, indicating that ZNF84-deficiency can favor senescence bypass. ZNF84 deficiency was also associated with transcriptomic changes in genes governing various cancer-relevant processes e.g., mitosis. In cells with ZNF84 knock-down we discovered significantly lower level of H2AX Ser139 phosphorylation (γH2AX), which is triggered by DNA double strand breaks. Intriguingly, we observed a reverse correlation between the level of ZNF84 expression and survival rate of colon cancer patients. In conclusion, ZNF84, whose function was previously not recognized, was identified here as a critical p53-independent regulator of senescence, opening possibilities for its targeting in novel therapies of p53-null cancers.
Collapse
|
30
|
Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol 2021; 9:645593. [PMID: 33855023 PMCID: PMC8039141 DOI: 10.3389/fcell.2021.645593] [Citation(s) in RCA: 815] [Impact Index Per Article: 203.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stable cell cycle arrest that can be triggered in normal cells in response to various intrinsic and extrinsic stimuli, as well as developmental signals. Senescence is considered to be a highly dynamic, multi-step process, during which the properties of senescent cells continuously evolve and diversify in a context dependent manner. It is associated with multiple cellular and molecular changes and distinct phenotypic alterations, including a stable proliferation arrest unresponsive to mitogenic stimuli. Senescent cells remain viable, have alterations in metabolic activity and undergo dramatic changes in gene expression and develop a complex senescence-associated secretory phenotype. Cellular senescence can compromise tissue repair and regeneration, thereby contributing toward aging. Removal of senescent cells can attenuate age-related tissue dysfunction and extend health span. Senescence can also act as a potent anti-tumor mechanism, by preventing proliferation of potentially cancerous cells. It is a cellular program which acts as a double-edged sword, with both beneficial and detrimental effects on the health of the organism, and considered to be an example of evolutionary antagonistic pleiotropy. Activation of the p53/p21WAF1/CIP1 and p16INK4A/pRB tumor suppressor pathways play a central role in regulating senescence. Several other pathways have recently been implicated in mediating senescence and the senescent phenotype. Herein we review the molecular mechanisms that underlie cellular senescence and the senescence associated growth arrest with a particular focus on why cells stop dividing, the stability of the growth arrest, the hypersecretory phenotype and how the different pathways are all integrated.
Collapse
Affiliation(s)
- Ruchi Kumari
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Parmjit Jat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| |
Collapse
|
31
|
Functional heterogeneity in senescence. Biochem Soc Trans 2021; 48:765-773. [PMID: 32369550 PMCID: PMC7329341 DOI: 10.1042/bst20190109] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022]
Abstract
Senescence is a tumour suppressor mechanism which is cell-intrinsically activated in the context of cellular stress. Senescence can further be propagated to neighbouring cells, a process called secondary senescence induction. Secondary senescence was initially shown as a paracrine response to the secretion of cytokines from primary senescent cells. More recently, juxtacrine Notch signalling has been implicated in mediating secondary senescence induction. Primary and secondary senescent induction results in distinct transcriptional outcomes. In addition, cell type and the stimulus in which senescence is induced can lead to variations in the phenotype of the senescence response. It is unclear whether heterogeneous senescent end-points are associated with distinct cellular function in situ, presenting functional heterogeneity. Thus, understanding senescence heterogeneity could prove to be important when devising ways of targeting senescent cells by senolytics, senostatics or senogenics. In this review, we discuss a role for functional heterogeneity in senescence in tissue- and cell-type specific manners, highlighting potential differences in senescence outcomes of primary and secondary senescence.
Collapse
|
32
|
Kuang Y, Kang J, Li H, Liu B, Zhao X, Li L, Jin X, Li Q. Multiple functions of p21 in cancer radiotherapy. J Cancer Res Clin Oncol 2021; 147:987-1006. [PMID: 33547489 DOI: 10.1007/s00432-021-03529-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Greater than half of cancer patients experience radiation therapy, for both radical and palliative objectives. It is well known that researches on radiation response mechanisms are conducive to improve the efficacy of cancer radiotherapy. p21 was initially identified as a widespread inhibitor of cyclin-dependent kinases, transcriptionally modulated by p53 and a marker of cellular senescence. It was once considered that p21 acts as a tumour suppressor mainly to restrain cell cycle progression, thereby resulting in growth suppression. With the deepening researches on p21, p21 has been found to regulate radiation responses via participating in multiple cellular processes, including cell cycle arrest, apoptosis, DNA repair, senescence and autophagy. Hence, a comprehensive summary of the p21's functions in radiation response will provide a new perspective for radiotherapy against cancer. METHODS We summarize the recent pertinent literature from various electronic databases, including PubMed and analyzed several datasets from Gene Expression Omnibus database. This review discusses how p21 influences the effect of cancer radiotherapy via involving in multiple signaling pathways and expounds the feasibility, barrier and risks of using p21 as a biomarker as well as a therapeutic target of radiotherapy. CONCLUSION p21's complicated and important functions in cancer radiotherapy make it a promising therapeutic target. Besides, more thorough insights of p21 are needed to make it a safe therapeutic target.
Collapse
Affiliation(s)
- Yanbei Kuang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Kang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Bingtao Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueshan Zhao
- The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Linying Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
33
|
Ow JR, Cadez MJ, Zafer G, Foo JC, Li HY, Ghosh S, Wollmann H, Cazenave-Gassiot A, Ong CB, Wenk MR, Han W, Choi H, Kaldis P. Remodeling of whole-body lipid metabolism and a diabetic-like phenotype caused by loss of CDK1 and hepatocyte division. eLife 2020; 9:63835. [PMID: 33345777 PMCID: PMC7771968 DOI: 10.7554/elife.63835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Cell cycle progression and lipid metabolism are well-coordinated processes required for proper cell proliferation. In liver diseases that arise from dysregulated lipid metabolism, hepatocyte proliferation is diminished. To study the outcome of CDK1 loss and blocked hepatocyte proliferation on lipid metabolism and the consequent impact on whole-body physiology, we performed lipidomics, metabolomics, and RNA-seq analyses on a mouse model. We observed reduced triacylglycerides in liver of young mice, caused by oxidative stress that activated FOXO1 to promote the expression of Pnpla2/ATGL. Additionally, we discovered that hepatocytes displayed malfunctioning β-oxidation, reflected by increased acylcarnitines (ACs) and reduced β-hydroxybutyrate. This led to elevated plasma free fatty acids (FFAs), which were transported to the adipose tissue for storage and triggered greater insulin secretion. Upon aging, chronic hyperinsulinemia resulted in insulin resistance and hepatic steatosis through activation of LXR. Here, we demonstrate that loss of hepatocyte proliferation is not only an outcome but also possibly a causative factor for liver pathology.
Collapse
Affiliation(s)
- Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Matias J Cadez
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Gözde Zafer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Juat Chin Foo
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Hong Yu Li
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), A*STAR, Singapore, Singapore
| | - Soumita Ghosh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Heike Wollmann
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Chee Bing Ong
- Biological Resource Centre (BRC), A*STAR, Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Weiping Han
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), A*STAR, Singapore, Singapore
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Malmö, Sweden
| |
Collapse
|
34
|
Fujimaki K, Yao G. Cell dormancy plasticity: quiescence deepens into senescence through a dimmer switch. Physiol Genomics 2020; 52:558-562. [PMID: 32986540 DOI: 10.1152/physiolgenomics.00068.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Both being dormant cellular states, quiescence and senescence are traditionally considered distinct. Quiescence is reversible to proliferation upon growth signals, whereas senescence is irreversible in physiological conditions. Recent findings, however, suggest that quiescence deepening with a decreased proliferative tendency, but not capability, is a common transition path toward senescence in many cell and tissue types. This transition is associated with the continuously increased activation threshold of an RB-E2F-CDK gene network switch.
Collapse
Affiliation(s)
- Kotaro Fujimaki
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona
| | - Guang Yao
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona.,Arizona Cancer Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
35
|
Markiewicz E, Idowu OC. DNA damage in human skin and the capacities of natural compounds to modulate the bystander signalling. Open Biol 2019; 9:190208. [PMID: 31847786 PMCID: PMC6936251 DOI: 10.1098/rsob.190208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Human skin is a stratified organ frequently exposed to sun-generated ultraviolet radiation (UVR), which is considered one of the major factors responsible for DNA damage. Such damage can be direct, through interactions of DNA with UV photons, or indirect, mainly through enhanced production of reactive oxygen species that introduce oxidative changes to the DNA. Oxidative stress and DNA damage also associate with profound changes at the cellular and molecular level involving several cell cycle and signal transduction factors responsible for DNA repair or irreversible changes linked to ageing. Crucially, some of these factors constitute part of the signalling known for the induction of biological changes in non-irradiated, neighbouring cells and defined as the bystander effect. Network interactions with a number of natural compounds, based on their known activity towards these biomarkers in the skin, reveal the capacity to inhibit both the bystander signalling and cell cycle/DNA damage molecules while increasing expression of the anti-oxidant enzymes. Based on this information, we discuss the likely polypharmacology applications of the natural compounds and next-generation screening technologies in improving the anti-oxidant and DNA repair capacities of the skin.
Collapse
|
36
|
Fujita K. p53 Isoforms in Cellular Senescence- and Ageing-Associated Biological and Physiological Functions. Int J Mol Sci 2019; 20:ijms20236023. [PMID: 31795382 PMCID: PMC6928910 DOI: 10.3390/ijms20236023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence, a term originally used to define the characteristics of normal human fibroblasts that reached their replicative limit, is an important factor for ageing, age-related diseases including cancer, and cell reprogramming. These outcomes are mediated by senescence-associated changes in gene expressions, which sometimes lead to the secretion of pro-inflammatory factors, or senescence-associated secretory phenotype (SASP) that contribute to paradoxical pro-tumorigenic effects. p53 functions as a transcription factor in cell-autonomous responses such as cell-cycle control, DNA repair, apoptosis, and cellular senescence, and also non-cell-autonomous responses to DNA damage by mediating the SASP function of immune system activation. The human TP53 gene encodes twelve protein isoforms, which provides an explanation for the pleiotropic p53 function on cellular senescence. Recent reports suggest that some short isoforms of p53 may modulate gene expressions in a full-length p53-dependent and -independent manner, in other words, some p53 isoforms cooperate with full-length p53, whereas others operate independently. This review summarizes our current knowledge about the biological activities and functions of p53 isoforms, especially Δ40p53, Δ133p53α, and p53β, on cellular senescence, ageing, age-related disorder, reprogramming, and cancer. Numerous cellular and animal model studies indicate that an unbalance in p53 isoform expression in specific cell types causes age-related disorders such as cancer, premature ageing, and degenerative diseases.
Collapse
Affiliation(s)
- Kaori Fujita
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
37
|
Weis KE, Raetzman LT. Genistein inhibits proliferation and induces senescence in neonatal mouse pituitary gland explant cultures. Toxicology 2019; 427:152306. [PMID: 31593742 DOI: 10.1016/j.tox.2019.152306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/27/2022]
Abstract
Genistein is an isoflavone abundant in soybean and infants are exposed to high levels of genistein in soy-based formula. It is known that genistein mediates estrogen receptor (ER) signaling, and exposure during neonatal development could cause acute and long term endocrine effects. We assayed genistein's impact on the neonatal mouse pituitary gland because it is an endocrine signaling hub and is sensitive to endocrine disruption during critical periods. Pituitary explant cultures, which actively proliferate and differentiate, were exposed to 0.06 μM-36 μM genistein and assayed for mRNA and protein changes. Genistein induced mRNA expression of the ERα regulated gene, Cckar, to the same magnitude as estradiol (E2) but with less potency. Interestingly, 36 μM genistein strongly inhibited pituitary proliferation, measured by a reduction in mKi67 mRNA and phospho-Histone H3 immunostaining. Examining cell cycle dynamics, we found that 36 μM genistein decreased Ccnb1 (Cyclin B1) mRNA; while mRNA for the cyclin dependent kinase inhibitor Cdkn1a (p21) was upregulated, correlated with an apparent increase in p21 immunostained cells. Strikingly, we observed a robust onset of cellular senescence, permanent cell cycle exit, in 36 μM genistein treated pituitaries by increased senescence activated β-galactosidase staining. We also found that 36 μM genistein decreased Bcl2 mRNA levels, a gene protective against apoptosis. Taken together these data suggest that genistein exposure during the neonatal period could initiate senescence and halt proliferation during a time when the proper numbers of endocrine cells are being established for mature gland function.
Collapse
Affiliation(s)
- Karen E Weis
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois, 61801, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois, 61801, USA.
| |
Collapse
|
38
|
Sinjari B, Diomede F, Khavinson V, Mironova E, Linkova N, Trofimova S, Trubiani O, Caputi S. Short Peptides Protect Oral Stem Cells from Ageing. Stem Cell Rev Rep 2019; 16:159-166. [DOI: 10.1007/s12015-019-09921-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Kreis NN, Louwen F, Yuan J. The Multifaceted p21 (Cip1/Waf1/ CDKN1A) in Cell Differentiation, Migration and Cancer Therapy. Cancers (Basel) 2019; 11:cancers11091220. [PMID: 31438587 PMCID: PMC6770903 DOI: 10.3390/cancers11091220] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Loss of cell cycle control is characteristic of tumorigenesis. The protein p21 is the founding member of cyclin-dependent kinase inhibitors and an important versatile cell cycle protein. p21 is transcriptionally controlled by p53 and p53-independent pathways. Its expression is increased in response to various intra- and extracellular stimuli to arrest the cell cycle ensuring genomic stability. Apart from its roles in cell cycle regulation including mitosis, p21 is involved in differentiation, cell migration, cytoskeletal dynamics, apoptosis, transcription, DNA repair, reprogramming of induced pluripotent stem cells, autophagy and the onset of senescence. p21 acts either as a tumor suppressor or as an oncogene depending largely on the cellular context, its subcellular localization and posttranslational modifications. In the present review, we briefly mention the general functions of p21 and summarize its roles in differentiation, migration and invasion in detail. Finally, regarding its dual role as tumor suppressor and oncogene, we highlight the potential, difficulties and risks of using p21 as a biomarker as well as a therapeutic target.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany.
| | - Frank Louwen
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
40
|
Lau L, David G. Pro- and anti-tumorigenic functions of the senescence-associated secretory phenotype. Expert Opin Ther Targets 2019; 23:1041-1051. [PMID: 30616404 DOI: 10.1080/14728222.2019.1565658] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: Cellular senescence is a stable form of cell cycle exit. Though they no longer divide, senescent cells remain metabolically active and secrete a plethora of proteins collectively termed the senescence-associated secretory phenotype (SASP). Although senescence-associated cell cycle exit likely evolved as an anti-tumor mechanism, the SASP contains both anti- and pro-tumorigenic potential.Areas covered: In this review, we briefly discuss the discovery of senescent cells and its relationship to cancer and aging. We also describe the initiation and regulation of the SASP upon senescence stimulus onset. We focus on both the pro- and anti-tumorigenic properties of the SASP. Finally, we speculate on the potential benefits of therapy-induced senescence combined with selective SASP inhibition for the treatment of cancer.Expert opinion: Further identification and characterization of the SASP factors that are pro-tumorigenic and those that are anti-tumorigenic in specific contexts will be crucial in order to develop personalized therapeutics for the successful treatment of cancer.
Collapse
Affiliation(s)
- Lena Lau
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Department of Urology, New York University School of Medicine, New York, NY, USA.,NYU Cancer Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
41
|
Tajan M, Hock AK, Blagih J, Robertson NA, Labuschagne CF, Kruiswijk F, Humpton TJ, Adams PD, Vousden KH. A Role for p53 in the Adaptation to Glutamine Starvation through the Expression of SLC1A3. Cell Metab 2018; 28:721-736.e6. [PMID: 30122553 PMCID: PMC6224545 DOI: 10.1016/j.cmet.2018.07.005] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/29/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022]
Abstract
Numerous mechanisms to support cells under conditions of transient nutrient starvation have been described. Several functions of the tumor-suppressor protein p53 can contribute to the adaptation of cells to metabolic stress and help cancer cell survival under nutrient-limiting conditions. We show here that p53 promotes the expression of SLC1A3, an aspartate/glutamate transporter that allows the utilization of aspartate to support cells in the absence of extracellular glutamine. Under glutamine deprivation, SLC1A3 expression maintains electron transport chain and tricarboxylic acid cycle activity, promoting de novo glutamate, glutamine, and nucleotide synthesis to rescue cell viability. Tumor cells with high levels of SLC1A3 expression are resistant to glutamine starvation, and SLC1A3 depletion retards the growth of these cells in vitro and in vivo, suggesting a therapeutic potential for SLC1A3 inhibition.
Collapse
Affiliation(s)
- Mylène Tajan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andreas K Hock
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Julianna Blagih
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Neil A Robertson
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1BD, UK
| | | | - Flore Kruiswijk
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Timothy J Humpton
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Peter D Adams
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1BD, UK; Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
42
|
Alessio N, Capasso S, Ferone A, Di Bernardo G, Cipollaro M, Casale F, Peluso G, Giordano A, Galderisi U. Misidentified Human Gene Functions with Mouse Models: The Case of the Retinoblastoma Gene Family in Senescence. Neoplasia 2017; 19:781-790. [PMID: 28865301 PMCID: PMC5577395 DOI: 10.1016/j.neo.2017.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022] Open
Abstract
Although mice models rank among the most widely used tools for understanding human genetics, biology, and diseases, differences between orthologous genes among species as close as mammals are possible, particularly in orthologous gene pairs in which one or more paralogous (i.e., duplicated) genes appear in the genomes of the species. Duplicated genes can possess overlapping functions and compensate for each other. The retinoblastoma gene family demonstrates typical composite functionality in its three member genes (i.e., RB1, RB2/P130, and P107), all of which participate in controlling the cell cycle and associated phenomena, including proliferation, quiescence, apoptosis, senescence, and cell differentiation. We analyzed the role of the retinoblastoma gene family in regulating senescence in mice and humans. Silencing experiments with each member of the gene family in mesenchymal stromal cells (MSCs) and fibroblasts from mouse and human tissues demonstrated that RB1 may be indispensable for senescence in mouse cells, but not in human ones, as an example of species specificity. Furthermore, although RB2/P130 seems to be implicated in maintaining human cell senescence, the function of RB1 within any given species might differ by cell type, as an example of cell specificity. For instance, silencing RB1 in mouse fibroblasts induced a reduced senescence not observed in mouse MSCs. Our findings could be useful as a general paradigm of cautions to take when inferring the role of human genes analyzed in animal studies and when examining the role of the retinoblastoma gene family in detail.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Stefania Capasso
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Ferone
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fiorina Casale
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Department of Biology, College of Science and Technology, Temple University, Philadelphia PA; Department of Medicine, Surgery & Neuroscience, University of Siena, Siena, Italy
| | - Umberto Galderisi
- Sbarro Institute for Cancer Research and Molecular Medicine and Department of Biology, College of Science and Technology, Temple University, Philadelphia PA; Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy; Institute of Bioscience and Bioresources, CNR, Naples, Italy.
| |
Collapse
|
43
|
Hsieh HH, Chen YC, Jhan JR, Lin JJ. The serine protease inhibitor serpinB2 binds and stabilizes p21 in senescent cells. J Cell Sci 2017; 130:3272-3281. [PMID: 28794016 DOI: 10.1242/jcs.204974] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/03/2017] [Indexed: 01/18/2023] Open
Abstract
SerpinB2 is a serine protease inhibitor also known as plasminogen activator inhibitor type 2 (PAI-2). It has been well documented that serpinB2 is an inhibitor of urokinase plasminogen activator (uPA) and tissue plasminogen activator (tPA). Interestingly, serpinB2 levels are increased in senescent cells and serpinB2 is thus considered a senescence biomarker. In this study, by mimicking the elevated levels of serpinB2 in senescent cells, proliferating human fibroblasts were induced into senescence. Senescence induced by serpinB2 did not relate to its extracellular function, as inhibition of serpinB2 secretion, exogenous introduced serpinB2, or a serpinB2 mutant that failed to bind to its extracellular target uPA did not affect senescence. We also showed that serpinB2 is a direct downstream target of p53 that is activated by the DNA damage response pathway. Significantly, serpinB2 bound to and stabilized p21 to mediate senescence in a proteasome-independent manner, indicating that serpinB2 has a direct role in senescence. Thus, this study reveals a unique mechanism by which serpinB2 maintains senescence through stabilization of p21 protein levels.
Collapse
Affiliation(s)
- Hsi-Hsien Hsieh
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan 112
| | - Ying-Chieh Chen
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan 112
| | - Jing-Ru Jhan
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan 112
| | - Jing-Jer Lin
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan 112 .,Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan 100
| |
Collapse
|
44
|
Han JA, Kim JI. Analysis of Gene Expression in Human Dermal Fibroblasts Treated with Senescence-Modulating COX Inhibitors. Genomics Inform 2017. [PMID: 28638310 PMCID: PMC5478708 DOI: 10.5808/gi.2017.15.2.56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that NS-398, a cyclooxygenase-2 (COX-2)-selective inhibitor, inhibited replicative cellular senescence in human dermal fibroblasts and skin aging in hairless mice. In contrast, celecoxib, another COX-2-selective inhibitor, and aspirin, a non-selective COX inhibitor, accelerated the senescence and aging. To figure out causal factors for the senescence-modulating effect of the inhibitors, we here performed cDNA microarray experiment and subsequent Gene Set Enrichment Analysis. The data showed that several senescence-related gene sets were regulated by the inhibitor treatment. NS-398 up-regulated gene sets involved in the tumor necrosis factor β receptor pathway and the fructose and mannose metabolism, whereas it down-regulated a gene set involved in protein secretion. Celecoxib up-regulated gene sets involved in G2M checkpoint and E2F targets. Aspirin up-regulated the gene set involved in protein secretion, and down-regulated gene sets involved in RNA transcription. These results suggest that COX inhibitors modulate cellular senescence by different mechanisms and will provide useful information to understand senescence-modulating mechanisms of COX inhibitors.
Collapse
Affiliation(s)
- Jeong A Han
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| |
Collapse
|
45
|
Mohan A, Asakura A. CDK inhibitors for muscle stem cell differentiation and self-renewal. ACTA ACUST UNITED AC 2017; 6:65-74. [PMID: 28713664 DOI: 10.7600/jpfsm.6.65] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regeneration of muscle is undertaken by muscle stem cell populations named satellite cells which are normally quiescent or at the G0 phase of the cell cycle. However, upon signals from damaged muscle, satellite cells lose their quiescence, and enter the G1 cell cycle phase to expand the population of satellite cell progenies termed myogenic precursor cells (MPCs). Eventually, MPCs stop their cell cycle and undergo terminal differentiation to form skeletal muscle fibers. Some MPCs retract to quiescent satellite cells as a self-renewal process. Therefore, cell cycle regulation, consisting of satellite cell activation, proliferation, differentiation and self-renewal, is the key event of muscle regeneration. In this review, we summarize up-to-date progress on research about cell cycle regulation of myogenic progenitor cells and muscle stem cells during embryonic myogenesis and adult muscle regeneration, aging, exercise and muscle diseases including muscular dystrophy and muscle fiber atrophy, especially focusing on cyclin-dependent kinase inhibitors (CDKIs).
Collapse
Affiliation(s)
- Amrudha Mohan
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, 2001 6th Street SE, MTRF 4-220, Minneapolis, MN 55455, USA
| | - Atsushi Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, 2001 6th Street SE, MTRF 4-220, Minneapolis, MN 55455, USA
| |
Collapse
|
46
|
WSB1 overcomes oncogene-induced senescence by targeting ATM for degradation. Cell Res 2016; 27:274-293. [PMID: 27958289 DOI: 10.1038/cr.2016.148] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
Oncogene-induced senescence (OIS) or apoptosis through the DNA-damage response is an important barrier of tumorigenesis. Overcoming this barrier leads to abnormal cell proliferation, genomic instability, and cellular transformation, and finally allows cancers to develop. However, it remains unclear how the OIS barrier is overcome. Here, we show that the E3 ubiquitin ligase WD repeat and SOCS box-containing protein 1 (WSB1) plays a role in overcoming OIS. WSB1 expression in primary cells helps the bypass of OIS, leading to abnormal proliferation and cellular transformation. Mechanistically, WSB1 promotes ATM ubiquitination, resulting in ATM degradation and the escape from OIS. Furthermore, we identify CDKs as the upstream kinase of WSB1. CDK-mediated phosphorylation activates WSB1 by promoting its monomerization. In human cancer tissue and in vitro models, WSB1-induced ATM degradation is an early event during tumorigenic progression. We suggest that WSB1 is one of the key players of early oncogenic events through ATM degradation and destruction of the tumorigenesis barrier. Our work establishes an important mechanism of cancer development and progression in premalignant lesions.
Collapse
|
47
|
Tang H, Fan X, Xing J, Liu Z, Jiang B, Dou Y, Gorospe M, Wang W. NSun2 delays replicative senescence by repressing p27 (KIP1) translation and elevating CDK1 translation. Aging (Albany NY) 2016; 7:1143-58. [PMID: 26687548 PMCID: PMC4712338 DOI: 10.18632/aging.100860] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A rise in the levels of the cyclin-dependent kinase (CDK) inhibitor p27KIP1 is important for the growth arrest of senescent cells, but the mechanisms responsible for this increase are poorly understood. Here, we show that the tRNA methyltransferase NSun2 represses the expression of p27 in replicative senescence. NSun2 methylated the 5′-untranslated region (UTR) of p27 mRNA at cytosine C64 in vitro and in cells, thereby repressing the translation of p27. During replicative senescence, increased p27 protein levels were accompanied by decreased NSun2 protein levels. Knockdown of NSun2 in human diploid fibroblasts (HDFs) elevated p27 levels and reduced the expression of CDK1 (encoded by CDK1 mRNA, a previously reported target of NSun2), which in turn further repressed cell proliferation and accelerated replicative senescence, while overexpression of NSun2 exerted the opposite effect. Ectopic overexpression of the p27 5′UTR fragment rescued the effect of NSun2 overexpression in lowering p27, increasing CDK1, promoting cell proliferation, and delaying replicative senescence. Our findings indicate that NSun2-mediated mRNA methylation regulates p27 and CDK1 levels during replicative senescence.
Collapse
Affiliation(s)
- Hao Tang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiuqin Fan
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Junyue Xing
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhenyun Liu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Bin Jiang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yali Dou
- Department of Pathology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48105, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
48
|
Neault M, Mallette F, Richard S. miR-137 Modulates a Tumor Suppressor Network-Inducing Senescence in Pancreatic Cancer Cells. Cell Rep 2016; 14:1966-78. [DOI: 10.1016/j.celrep.2016.01.068] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/10/2015] [Accepted: 01/22/2016] [Indexed: 12/18/2022] Open
|
49
|
Brookes S, Gagrica S, Sanij E, Rowe J, Gregory FJ, Hara E, Peters G. Evidence for a CDK4-dependent checkpoint in a conditional model of cellular senescence. Cell Cycle 2016; 14:1164-73. [PMID: 25695870 PMCID: PMC4613988 DOI: 10.1080/15384101.2015.1010866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cellular senescence, the stable cell cycle arrest elicited by various forms of stress, is an important facet of tumor suppression. Although much is known about the key players in the implementation of senescence, including the pRb and p53 axes and the cyclin dependent kinase inhibitors p16INK4a and p21CIP1, many details remain unresolved. In studying conditional senescence in human fibroblasts that express a temperature sensitive SV40 large T-antigen (T-Ag), we uncovered an unexpected role for CDK4. At the permissive temperature, where pRb and p53 are functionally compromised by T-Ag, cyclin D-CDK4 complexes are disrupted by the high p16INK4a levels and reduced expression of p21CIP1. In cells arrested at the non-permissive temperature, p21CIP1 promotes reassembly of cyclin D-CDK4 yet pRb is in a hypo-phosphorylated state, consistent with cell cycle arrest. In exploring whether the reassembled cyclin D-CDK4-p21 complexes are functional, we found that shRNA-mediated knockdown or chemical inhibition of CDK4 prevented the increase in cell size associated with the senescent phenotype by allowing the cells to arrest in G1 rather than G2/M. The data point to a role for CDK4 kinase activity in a G2 checkpoint that contributes to senescence.
Collapse
Key Words
- BrdU, bromodeoxyuridine
- CDK, cyclin dependent kinase
- CDK4
- FACS, fluorescence actvated cell sorting
- HFs, human fibroblasts
- PI, propidium iodide
- SA-βgal, senescence-associated β-galactosidase activity
- SV40 T-antigen
- SV40, simian virus 40
- TERT, telomerase reverse transcriptase
- human fibroblasts
- p16INK4a
- p21CIP1
- p53
- pRb, retinoblastoma protein
- retinoblastoma protein
- senescence
- shRNA, short-hairpin RNA
- ts, temperature sensitive
Collapse
Affiliation(s)
- Sharon Brookes
- a Cancer Research-UK London Research Institute ; London , UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Liu S, Wang X, Zhao Q, Liu S, Zhang H, Shi J, Li N, Lei X, Zhao H, Deng Z, Cao Y, Ning L, Xia G, Duan E. Senescence of human skin-derived precursors regulated by Akt-FOXO3-p27(KIP¹)/p15(INK⁴b) signaling. Cell Mol Life Sci 2015; 72:2949-60. [PMID: 25753771 PMCID: PMC11113525 DOI: 10.1007/s00018-015-1877-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 12/17/2022]
Abstract
Multipotent skin-derived precursors (SKPs) are dermal stem cells with the capacity to reconstitute the dermis and other tissues, such as muscles and the nervous system. Thus, the easily available human SKPs (hSKPs) hold great promises in regenerative medicine. However, long-term expansion is difficult for hSKPs in vitro. We previously demonstrated that hSKPs senesced quickly under routine culture conditions. To identify the underlying mechanisms so as to find an effective way to expand hSKPs, time-dependent microarray analysis of gene expression in hSKPs during in vitro culture was performed. We found that the senescence of hSKPs had a unique gene expression pattern that differs from reported typical senescence. Subsequent investigation ruled out the role of DNA damage and classical p53 and p16(INK4a) signaling in hSKP senescence. Examination of cyclin-dependent kinase inhibitors revealed the involvement of p15(INK4b) and p27(KIP1). Further exploration about upstream signals indicated the contribution of Akt hypo-activity and FOXO3 to hSKP senescence. Forced activation of Akt and knockdown of FOXO3, p15(INK4b) and p27(KIP1) effectively inhibited hSKP senescence and promoted hSKP proliferation. The unique senescent phenotype of human dermal stem cells and the role of Akt-FOXO3-p27(KIP1)/p15(INK4b) signaling in regulating hSKP senescence provide novel insights into the senescence and self-renewal regulation of adult stem cells. The present study also points out a way to propagate hSKPs in vitro so as to fulfill their promises in regenerative medicine.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Xinyue Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Qian Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193 China
| | - Shu Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Huishan Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Junchao Shi
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Na Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaohua Lei
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Huashan Zhao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhili Deng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yujing Cao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Lina Ning
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193 China
| | - Enkui Duan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101 China
| |
Collapse
|