1
|
Miyasaka M, Mioka T, Kishimoto T, Itoh E, Tanaka K. A complex genetic interaction implicates that phospholipid asymmetry and phosphate homeostasis regulate Golgi functions. PLoS One 2020; 15:e0236520. [PMID: 32730286 PMCID: PMC7392219 DOI: 10.1371/journal.pone.0236520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/07/2020] [Indexed: 11/24/2022] Open
Abstract
In eukaryotic cells, phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of the lipid bilayer. Budding yeast contains five flippases, of which Cdc50p-Drs2p and Neo1p are primarily involved in membrane trafficking in endosomes and Golgi membranes. The ANY1/CFS1 gene was identified as a suppressor of growth defects in the neo1Δ and cdc50Δ mutants. Cfs1p is a membrane protein of the PQ-loop family and is localized to endosomal/Golgi membranes, but its relationship to phospholipid asymmetry remains unknown. The neo1Δ cfs1Δ mutant appears to function normally in membrane trafficking but may function abnormally in the regulation of phospholipid asymmetry. To identify a gene that is functionally relevant to NEO1 and CFS1, we isolated a mutation that is synthetically lethal with neo1Δ cfs1Δ and identified ERD1. Erd1p is a Golgi membrane protein that is involved in the transport of phosphate (Pi) from the Golgi lumen to the cytoplasm. The Neo1p-depleted cfs1Δ erd1Δ mutant accumulated plasma membrane proteins in the Golgi, perhaps due to a lack of phosphatidylinositol 4-phosphate. The Neo1p-depleted cfs1Δ erd1Δ mutant also exhibited abnormal structure of the endoplasmic reticulum (ER) and induced an unfolded protein response, likely due to defects in the retrieval pathway from the cis-Golgi region to the ER. Genetic analyses suggest that accumulation of Pi in the Golgi lumen is responsible for defects in Golgi functions in the Neo1p-depleted cfs1Δ erd1Δ mutant. Thus, the luminal ionic environment is functionally relevant to phospholipid asymmetry. Our results suggest that flippase-mediated phospholipid redistribution and luminal Pi concentration coordinately regulate Golgi membrane functions.
Collapse
Affiliation(s)
- Mamoru Miyasaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan
| | - Tetsuo Mioka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
| | - Takuma Kishimoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
| | - Eriko Itoh
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
| | - Kazuma Tanaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
2
|
Ahmadpour D, Babazadeh R, Nystrom T. Hitchhiking on vesicles: a way to harness age-related proteopathies? FEBS J 2020; 287:5068-5079. [PMID: 32336030 DOI: 10.1111/febs.15345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022]
Abstract
Central to proteopathies and leading to most age-related neurodegenerative disorders is a failure in protein quality control (PQC). To harness the toxicity of misfolded and damaged disease proteins, such proteins are either refolded, degraded by temporal PQC, or sequestered by spatial PQC into specific, organelle-associated, compartments within the cell. Here, we discuss the impact of vesicle trafficking pathways in general, and syntaxin 5 in particular, as key players in spatial PQC directing misfolded proteins to the surface of vacuole and mitochondria, which facilitates their clearance and detoxification. Since boosting vesicle trafficking genetically can positively impact on spatial PQC and make cells less sensitive to misfolded disease proteins, we speculate that regulators of such trafficking might serve as therapeutic targets for age-related neurological disorders.
Collapse
Affiliation(s)
- Doryaneh Ahmadpour
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Sweden.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Roja Babazadeh
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Thomas Nystrom
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Sweden
| |
Collapse
|
3
|
Liang XH, Sun H, Nichols JG, Allen N, Wang S, Vickers TA, Shen W, Hsu CW, Crooke ST. COPII vesicles can affect the activity of antisense oligonucleotides by facilitating the release of oligonucleotides from endocytic pathways. Nucleic Acids Res 2018; 46:10225-10245. [PMID: 30239896 PMCID: PMC6212795 DOI: 10.1093/nar/gky841] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/23/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
RNase H1-dependent, phosphorothioate-modified antisense oligonucleotides (PS-ASOs) can enter cells through endocytic pathways and need to be released from the membrane-enclosed organelles, a limiting step for antisense activity. Accumulating evidence has suggested that productive PS-ASO release mainly occurs from late endosomes (LEs). However, how PS-ASOs escape from LEs is not well understood. Here, we report that upon PS-ASO incubation, COPII vesicles, normally involved in ER-Golgi transport, can re-locate to PS-ASO-containing LEs. Reduction of COPII coat proteins significantly decreased PS-ASO activity, without affecting the levels of PS-ASO uptake and early-to-late endosome transport, but caused slower PS-ASO release from LEs. COPII co-localization with PS-ASOs at LEs does not require de novo assembly of COPII at ER. Interestingly, reduction of STX5 and P115, proteins involved in tethering and fusion of COPII vesicles with Golgi membranes, impaired COPII re-localization to LEs and decreased PS-ASO activity. STX5 can re-locate to LEs upon PS-ASO incubation, can bind PS-ASOs, and the binding appears to be required for this pathway. Our study reveals a novel release pathway in which PS-ASO incubation causes LE re-localization of STX5, which mediates the recruitment of COPII vesicles to LEs to facilitate endosomal PS-ASO release, and identifies another key PS-ASO binding protein.
Collapse
Affiliation(s)
- Xue-hai Liang
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Joshua G Nichols
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Nickolas Allen
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Shiyu Wang
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Timothy A Vickers
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Wen Shen
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Chih-Wei Hsu
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
4
|
Chen T, Wang D, Xie T, Xu LG. Sec13 is a positive regulator of VISA-mediated antiviral signaling. Virus Genes 2018; 54:514-526. [PMID: 29948782 DOI: 10.1007/s11262-018-1581-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022]
Abstract
Viral infection triggers the innate antiviral immune response that rapidly produces type I interferons in most cell types to combat viruses invading. Upon viral infection, the cytoplasmic RNA sensors RIG-I/MDA5 recognize viral RNA, and then RIG-I/MDA5 is transported to mitochondria interacting with VISA through the CARD domain. From there, VISA recruits downstream antiviral signaling pathways molecules, such as TRAFs and TBK1. Eventually, IRF3 is phosphorylated and type I IFNs are induced to fight as the first line of defense against viruses. However, it remains unclear how VISA acts as a scaffold to assemble the signalosome in RIG-I-mediated antiviral signaling. Here, we demonstrated Sec13 as a novel component that was involved in VISA-mediated antiviral signaling pathway. The co-immunoprecipitation assays showed that Sec13 specifically interacts with VISA. Overexpression of Sec13 increases VISA's aggregation and ubiquitination and significantly enhances the phosphorylation and dimerization of IRF3, facilitating the IFN-β production. Conversely, the knockdown of Sec13 attenuates Sendai virus-induced and VISA-mediated IRF3 activation and the production of IFNβ, thus weakens antiviral immune activity.
Collapse
Affiliation(s)
- Tian Chen
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, Jiangxi, China
| | - Dandan Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, Jiangxi, China
| | - Tao Xie
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, Jiangxi, China
| | - Liang-Guo Xu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, Jiangxi, China.
| |
Collapse
|
5
|
Rout MP, Field MC. The Evolution of Organellar Coat Complexes and Organization of the Eukaryotic Cell. Annu Rev Biochem 2017; 86:637-657. [DOI: 10.1146/annurev-biochem-061516-044643] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Mark C. Field
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
6
|
Santos JC, Duchateau M, Fredlund J, Weiner A, Mallet A, Schmitt C, Matondo M, Hourdel V, Chamot-Rooke J, Enninga J. The COPII complex and lysosomal VAMP7 determine intracellular Salmonella localization and growth. Cell Microbiol 2015; 17:1699-720. [PMID: 26084942 DOI: 10.1111/cmi.12475] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/22/2015] [Accepted: 06/12/2015] [Indexed: 12/18/2022]
Abstract
Salmonella invades epithelial cells and survives within a membrane-bound compartment, the Salmonella-containing vacuole (SCV). We isolated and determined the host protein composition of the SCV at 30 min and 3 h of infection to identify and characterize novel regulators of intracellular bacterial localization and growth. Quantitation of the SCV protein content revealed 392 host proteins specifically enriched at SCVs, out of which 173 associated exclusively with early SCVs, 124 with maturing SCV and 95 proteins during both time-points. Vacuole interactions with endoplasmic reticulum-derived coat protein complex II vesicles modulate early steps of SCV maturation, promoting SCV rupture and bacterial hyper-replication within the host cytosol. On the other hand, SCV interactions with VAMP7-positive lysosome-like vesicles promote Salmonella-induced filament formation and bacterial growth within the late SCV. Our results reveal that the dynamic communication between the SCV and distinct host organelles affects both intracellular Salmonella localization and growth at successive steps of host cell invasion.
Collapse
Affiliation(s)
- José Carlos Santos
- Unit of Dynamics of Host-Pathogen Interactions, Institut Pasteur, Paris, France.,Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto, Portugal
| | - Magalie Duchateau
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, Paris, France
| | - Jennifer Fredlund
- Unit of Dynamics of Host-Pathogen Interactions, Institut Pasteur, Paris, France
| | - Allon Weiner
- Unit of Dynamics of Host-Pathogen Interactions, Institut Pasteur, Paris, France
| | - Adeline Mallet
- Plate-forme Microscopie Ultrastructurale, Institut Pasteur, Paris, France
| | - Christine Schmitt
- Plate-forme Microscopie Ultrastructurale, Institut Pasteur, Paris, France
| | - Mariette Matondo
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, Paris, France
| | - Véronique Hourdel
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, Paris, France
| | - Julia Chamot-Rooke
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, Paris, France.,CNRS UMR3528, Paris, France
| | - Jost Enninga
- Unit of Dynamics of Host-Pathogen Interactions, Institut Pasteur, Paris, France
| |
Collapse
|
7
|
Faso C, Konrad C, Schraner EM, Hehl AB. Export of cyst wall material and Golgi organelle neogenesis in Giardia lamblia depend on endoplasmic reticulum exit sites. Cell Microbiol 2012; 15:537-53. [PMID: 23094658 DOI: 10.1111/cmi.12054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 10/05/2012] [Accepted: 10/11/2012] [Indexed: 12/01/2022]
Abstract
Giardia lamblia parasitism accounts for the majority of cases of parasitic diarrheal disease, making this flagellated eukaryote the most successful intestinal parasite worldwide. This organism has undergone secondary reduction/elimination of entire organelle systems such as mitochondria and Golgi. However, trophozoite to cyst differentiation (encystation) requires neogenesis of Golgi-like secretory organelles named encystation-specific vesicles (ESVs), which traffic, modify and partition cyst wall proteins produced exclusively during encystation. In this work we ask whether neogenesis of Golgi-related ESVs during G. lamblia differentiation, similarly to Golgi biogenesis in more complex eukaryotes, requires the maintenance of distinct COPII-associated endoplasmic reticulum (ER) subdomains in the form of ER exit sites (ERES) and whether ERES are also present in non-differentiating trophozoites. To address this question, we identified conserved COPII components in G. lamblia cells and determined their localization, quantity and dynamics at distinct ERES domains in vegetative and differentiating trophozoites. Analogous to ERES and Golgi biogenesis, these domains were closely associated to early stages of newly generated ESV. Ectopic expression of non-functional Sar1 GTPase variants caused ERES collapse and, consequently, ESV ablation, leading to impaired parasite differentiation. Thus, our data show how ERES domains remain conserved in G. lamblia despite elimination of steady-state Golgi. Furthermore, the fundamental eukaryotic principle of ERES to Golgi/Golgi-like compartment correspondence holds true in differentiating Giardia presenting streamlined machinery for secretory organelle biogenesis and protein trafficking. However, in the Golgi-less trophozoites ERES exist as stable ER subdomains, likely as the sole sorting centres for secretory traffic.
Collapse
Affiliation(s)
- Carmen Faso
- Laboratory of Molecular Parasitology, Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland
| | | | | | | |
Collapse
|
8
|
Bhattacharya N, O Donnell J, Stagg SM. The structure of the Sec13/31 COPII cage bound to Sec23. J Mol Biol 2012; 420:324-34. [PMID: 22543240 DOI: 10.1016/j.jmb.2012.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/03/2012] [Accepted: 04/23/2012] [Indexed: 02/03/2023]
Abstract
Structural studies have revealed some of the organizing principles and mechanisms involved in the assembly of the COPII coat including the location of the Sec23/24 adapter layer. Previous studies, however, were unable to unambiguously determine the positions of Sec23 and Sec24 in the coat. Here, we have determined a cryogenic electron microscopic structure of Sec13/31 together with Sec23. Electron tomography revealed that the binding of Sec23 induces Sec13/31 to form a variety of different geometries including a cuboctahedron, as was previously characterized for Sec13/31 alone. Single-particle reconstruction of the Sec13/31-23 cuboctahedra revealed that the binding of Sec23 induces a conformational change in Sec13/31, resulting in a more extended conformation. Docking Sec23 crystal structures into the electron microscopy map suggested that Sec24 projects its cargo binding surface out into the large open faces of the coat. These results have implications for the mechanisms by which COPII transports large cargos, cargos with large intracellular domains, and for tethering complexes that must project out of the coat in order to interact with their binding partners. Furthermore, Sec23 binds Sec13/31 at two unique sites in the coat, which suggests that each site may have unique roles in the mechanisms of COPII vesiculation.
Collapse
|
9
|
Abstract
Cytoplasm-to-nucleus translocation of Smad is a fundamental step in transforming growth factor beta (TGF-beta) signal transduction. Here we identify a subset of nucleoporins that, in conjunction with Msk (Drosophila Imp7/8), specifically mediate activation-induced nuclear translocation of MAD (Drosophila Smad1) but not the constitutive import of proteins harboring a classic nuclear localization signal (cNLS) or the spontaneous nuclear import of Medea (Drosophila Smad4). Surprisingly, many of these nucleoporins, including Sec13, Nup75, Nup93, and Nup205, are scaffold nucleoporins considered important for the overall integrity of the nuclear pore complex (NPC) but not known to have cargo-specific functions. We demonstrate that the roles of these nucleoporins in supporting Smad nuclear import are separate from their previously assigned functions in NPC assembly. Furthermore, we uncovered novel pathway-specific functions of Sec13 and Nup93; both Sec13 and Nup93 are able to preferentially interact with the phosphorylated/activated form of MAD, and Nup93 acts to recruit the importin Msk to the nuclear periphery. These findings, together with the observation that Sec13 and Nup93 could interact directly with Msk, suggest their direct involvement in the nuclear import of MAD. Thus, we have delineated the nucleoporin requirement of MAD nuclear import, reflecting a unique trans-NPC mechanism.
Collapse
|
10
|
Nielsen AL. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1. Biochem Biophys Res Commun 2009; 388:571-5. [DOI: 10.1016/j.bbrc.2009.08.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 08/08/2009] [Indexed: 11/25/2022]
|
11
|
Brown CR, Wolfe AB, Cui D, Chiang HL. The vacuolar import and degradation pathway merges with the endocytic pathway to deliver fructose-1,6-bisphosphatase to the vacuole for degradation. J Biol Chem 2008; 283:26116-27. [PMID: 18660504 DOI: 10.1074/jbc.m709922200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is degraded in the vacuole when glucose is added to glucose-starved cells. Before it is delivered to the vacuole, however, FBPase is imported into intermediate carriers called Vid (vacuole import and degradation) vesicles. Here, using biochemical and genetic approaches, we identified a requirement for SEC28 in FBPase degradation. SEC28 encodes the epsilon-COP subunit of COPI (coat protein complex I) coatomer proteins. When SEC28 and other coatomer genes were mutated, FBPase degradation was defective and FBPase association with Vid vesicles was impaired. Coatomer proteins were identified as components of Vid vesicles, and they formed a protein complex with a Vid vesicle-specific protein, Vid24p. Furthermore, Vid24p association with Vid vesicles was impaired when coatomer genes were mutated. Kinetic studies indicated that Sec28p traffics to multiple locations. Sec28p was in Vid vesicles, endocytic compartments, and the vacuolar membrane in various mutants that block the FBPase degradation pathway. Sec28p was also found in vesicles adjacent to the vacuolar membrane in the ret2-1 coatomer mutant. We propose that Sec28p resides in Vid vesicles, and these vesicles converge with the endocytic pathway. After fusion, Sec28p is distributed on the vacuolar membrane, where it concentrates on vesicles that pinch off from this organelle. FBPase also utilizes the endocytic pathway for transport to the vacuole, as demonstrated by its presence in endocytic compartments in the Deltavph1 mutant. Taken together, our results indicate a strong connection between the Vid trafficking pathway and the endocytic pathway.
Collapse
Affiliation(s)
- C Randell Brown
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
12
|
Aspergillus nidulans hypB encodes a Sec7-domain protein important for hyphal morphogenesis. Fungal Genet Biol 2008; 45:749-59. [DOI: 10.1016/j.fgb.2007.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/07/2007] [Accepted: 11/19/2007] [Indexed: 01/31/2023]
|
13
|
Ebola virus matrix protein VP40 uses the COPII transport system for its intracellular transport. Cell Host Microbe 2008; 3:168-77. [PMID: 18329616 DOI: 10.1016/j.chom.2008.02.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 01/02/2008] [Accepted: 02/04/2008] [Indexed: 11/23/2022]
Abstract
The Ebola virus matrix protein VP40 plays an important role in virion formation and viral egress from cells. However, the host cell proteins and mechanisms responsible for intracellular transport of VP40 prior to its contribution to virion formation remain to be elucidated. Therefore we used coimmunoprecipitation and mass spectrometric analyses to identify host proteins interacting with VP40. We found that Sec24C, a component of the host COPII vesicular transport system, interacts specifically with VP40 via VP40 amino acids 303 to 307. Coimmunoprecipitation and dominant-negative mutant studies indicated that the COPII transport system plays a critical role in VP40 intracellular transport to the plasma membrane. Marburg virus VP40 was also shown to use the COPII transport system for intracellular transport. These findings identify a conserved intersection between a host pathway and filovirus replication, an intersection that can be targeted in the development of new antiviral drugs.
Collapse
|
14
|
Thomas T, Jordan K, Simek J, Shao Q, Jedeszko C, Walton P, Laird DW. Mechanisms of Cx43 and Cx26 transport to the plasma membrane and gap junction regeneration. J Cell Sci 2005; 118:4451-62. [PMID: 16159960 DOI: 10.1242/jcs.02569] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous reports have suggested that Cx26 exhibits unique intracellular transport pathways en route to the cell surface compared with other members of the connexin family. To directly examine and compare nascent and steady-state delivery of Cx43 and Cx26 to the plasma membrane and gap junction biogenesis we expressed fluorescent-protein-tagged Cx43 and Cx26 in BICR-M1Rk and NRK cells. Static and time-lapse imaging revealed that both connexins were routed through the Golgi apparatus prior to being transported to the cell surface, a process inhibited in the presence of brefeldin A (BFA) or the expression of a dominant-negative form of Sar1 GTPase. During recovery from BFA, time-lapse imaging of nascent connexin Golgi-to-plasma membrane delivery revealed many dynamic post-Golgi carriers (PGCs) originating from the distal side of the Golgi apparatus consisting of heterogeneous vesicles and long, tubular-like extensions. Vesicles and tubular extensions were also observed in HBL-100 cells expressing a human, disease-linked, Golgi-localized Cx26 mutant, D66H-GFP. A diffuse cell surface rim of fluorescent-protein-tagged wild-type connexins was observed prior to the appearance of punctate gap junctions, which suggests that random fusion of PGCs occurred with the plasma membrane followed by lateral diffusion of connexins into clusters. Fluorescence recovery after photobleaching studies revealed that Cx26-YFP was more mobile within gap junction plaques compared with Cx43-GFP. Intriguingly, Cx43-GFP delivery and gap junction regeneration was inhibited by BFA and nocodazole, whereas Cx26-GFP delivery was prevented by BFA but not nocodazole. Collectively, these studies suggest that during gap junction biogenesis two phylogenetically distinct members of the connexin family, Cx43 and Cx26, share common secretory pathways, types of transport intermediates and turnover dynamics but differ in their microtubule-dependence and mobility within the plasma membrane, which might reflect differences in binding to protein scaffolds.
Collapse
Affiliation(s)
- Tamsin Thomas
- Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, Rm. 00077, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | | | |
Collapse
|
15
|
Begley TJ, Rosenbach AS, Ideker T, Samson LD. Hot spots for modulating toxicity identified by genomic phenotyping and localization mapping. Mol Cell 2004; 16:117-25. [PMID: 15469827 DOI: 10.1016/j.molcel.2004.09.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/23/2004] [Accepted: 08/04/2004] [Indexed: 11/24/2022]
Abstract
DNA repair and checkpoint pathways protect against carcinogen-induced toxicity. Here, we describe additional, equally protective pathways discovered by interrogating 4,733 yeast proteins for their ability to diminish toxicity induced by four known carcinogens. A computational mapping strategy for global phenotypic data was developed to build a systems toxicology model detailing recovery from carcinogen exposure and identifying protein complexes that modulate toxicity. Global phenotypic data were merged with global subcellular localization and protein interactome data to generate an integrated picture of cellular recovery after carcinogen exposure. Statistically validated results from this systems-wide integration demonstrate that, in addition to the nucleus, subnetworks of toxicity-modulating proteins were overrepresented in the vacuolar membrane, endosome, endoplasmic reticulum, and mitochondrion. In addition, we show that many proteins associated with RNA polymerase II, macromolecular trafficking, and vacuole function can now be counted among the many proteins that modulate carcinogen-induced toxicity.
Collapse
Affiliation(s)
- Thomas J Begley
- Biological Engineering Division and Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
16
|
Abstract
The tumor oncoproteins HRAS, KRAS, and NRAS are the founding members of a larger family of at least 35 related human proteins. Using a somewhat broader definition of sequence similarity reveals a more extended superfamily of more than 170 RAS-related proteins. The RAS superfamily of GTP (guanosine triphosphate) hydrolysis-coupled signal transduction relay proteins can be subclassified into RAS, RHO, RAB, and ARF families, as well as the closely related Galpha family. The members of each family can, in turn, be arranged into evolutionarily conserved branches. These groupings reflect structural, biochemical, and functional conservation. Recent findings have provided insights into the signaling characteristics of representative members of most RAS superfamily branches. The analysis presented here may serve as a guide for predicting the function of numerous uncharacterized superfamily members. Also described are guanosine triphosphatases (GTPases) distinct from members of the RAS superfamily. These related proteins employ GTP binding and GTPase domains in diverse structural contexts, expanding the scope of their function in humans.
Collapse
|
17
|
Abstract
Generating and maintaining features that distinguish one organelle from another is essential for accurate membrane traffic. Recent work has revealed that organelles express 'identity' by the local generation of activated GTP-binding proteins and lipid species. These recruiting determinants are then recognized by cytosolic proteins that facilitate the formation and delivery of vesicles at the correct compartment.
Collapse
Affiliation(s)
- Sean Munro
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
18
|
Kagan JC, Stein MP, Pypaert M, Roy CR. Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. ACTA ACUST UNITED AC 2004; 199:1201-11. [PMID: 15117975 PMCID: PMC2211909 DOI: 10.1084/jem.20031706] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Legionella pneumophila is a bacterial pathogen that infects eukaryotic host cells and replicates inside a specialized organelle that is morphologically similar to the endoplasmic reticulum (ER). To better understand the molecular mechanisms governing transport of the Legionella-containing vacuole (LCV), we have identified host proteins that participate in the conversion of the LCV into a replicative organelle. Our data show that Rab1 is recruited to the LCV within minutes of uptake. Rab1 recruitment to the LCV precedes remodeling of this compartment by ER-derived vesicles. Genetic inhibition studies demonstrate that Rab1 is important for the recruitment of ER-derived vesicles to the LCV and that inhibiting Rab1 function abrogates intracellular growth of Legionella. Morphological studies indicate that the Sec22b protein is located on ER-derived vesicles recruited to the LCV and that Sec22b is delivered to the LCV membrane. Sec22b function was found to be important for biogenesis of the specialized organelle that supports Legionella replication. These studies demonstrate that Legionella has the ability to subvert Rab1 and Sec22b function to facilitate the transport and fusion of ER-derived vesicles with the LCV, resulting in the formation of a specialized organelle that can support bacterial replication.
Collapse
Affiliation(s)
- Jonathan C Kagan
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Ave., New Haven, CT 06536, USA
| | | | | | | |
Collapse
|
19
|
Senkovich O, Chattopadhyay D. Plasmodium falciparum ARFGAP: expression and crystallization of the catalytic domain. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1698:127-30. [PMID: 15063323 DOI: 10.1016/j.bbapap.2003.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 10/20/2003] [Accepted: 10/27/2003] [Indexed: 11/23/2022]
Abstract
GTPase activating protein for ARF GTPAse (ARFGAP) from the malaria parasite Plasmodium falciparum was expressed, purified and crystallized. Crystals of ARFGAP belong to trigonal space group P321 (or its enantiomorph) with unit cell parameters a=b=95.89 and c=92.46 A. Diffraction data to 2.4-A resolution have been collected. Calculation of self-rotation function suggested the presence of two molecules in the asymmetric unit.
Collapse
Affiliation(s)
- Olga Senkovich
- Division of Geographic Medicine and Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, CBSE-250, 1025 18th Street South, Birmingham, AL 35294, USA
| | | |
Collapse
|