1
|
Rodríguez E, Guerra M, Peruzzo B, Blázquez JL. Tanycytes: A rich morphological history to underpin future molecular and physiological investigations. J Neuroendocrinol 2019; 31:e12690. [PMID: 30697830 DOI: 10.1111/jne.12690] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/04/2023]
Abstract
Tanycytes are located at the base of the brain and retain characteristics from their developmental origins, such as radial glial cells, throughout their life span. With transport mechanisms and modulation of tight junction proteins, tanycytes form a bridge connecting the cerebrospinal fluid with the external limiting basement membrane. They also retain the powers of self-renewal and can differentiate to generate neurones and glia. Similar to radial glia, they are a heterogeneous family with distinct phenotypes. Although the four subtypes so far distinguished display distinct characteristics, further research is likely to reveal new subtypes. In this review, we have re-visited the work of the pioneers in the field, revealing forgotten work that is waiting to inspire new research with today's cutting-edge technologies. We have conducted a systematic ultrastructural study of α-tanycytes that resulted in a wealth of new information, generating numerous questions for future study. We also consider median eminence pituicytes, a closely-related cell type to tanycytes, and attempt to relate pituicyte fine morphology to molecular and functional mechanism. Our rationale was that future research should be guided by a better understanding of the early pioneering work in the field, which may currently be overlooked when interpreting newer data or designing new investigations.
Collapse
Affiliation(s)
- Esteban Rodríguez
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Montserrat Guerra
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Bruno Peruzzo
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Juan Luis Blázquez
- Departamento de Anatomía e Histología Humanas, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
2
|
Chen W, Su L, Zhang P, Li C, Zhang D, Wu W, Jiang X. Thermo and pH dual-responsive drug-linked pseudo-polypeptide micelles with a comb-shaped polymer as a micellar exterior. Polym Chem 2017. [DOI: 10.1039/c7py01389b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The thermo and pH dual-responsive drug-linked pseudo-polypeptide micelles were prepared by a self-assembly strategy.
Collapse
Affiliation(s)
- Weizhi Chen
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing 210093
| | - Liling Su
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing 210093
| | - Peng Zhang
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing 210093
| | - Cheng Li
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing 210093
| | - Dan Zhang
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing 210093
| | - Wei Wu
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing 210093
| | - Xiqun Jiang
- Department of Polymer Science & Engineering
- College of Chemistry & Chemical Engineering
- and Jiangsu Key Laboratory for Nanotechnology
- Nanjing University
- Nanjing 210093
| |
Collapse
|
3
|
Fujita H, Motokawa T, Katagiri T, Yokota S, Yamamoto A, Himeno M, Tanaka Y. Inulavosin, a Melanogenesis Inhibitor, Leads to Mistargeting of Tyrosinase to Lysosomes and Accelerates its Degradation. J Invest Dermatol 2009; 129:1489-99. [DOI: 10.1038/jid.2008.376] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
4
|
Tanaka N, Kyuuma M, Sugamura K. Endosomal sorting complex required for transport proteins in cancer pathogenesis, vesicular transport, and non-endosomal functions. Cancer Sci 2008; 99:1293-303. [PMID: 18429951 PMCID: PMC11158640 DOI: 10.1111/j.1349-7006.2008.00825.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 02/27/2008] [Accepted: 02/29/2008] [Indexed: 12/18/2022] Open
Abstract
Endosomal sorting complex required for transport (ESCRT) proteins form a multicomplex sorting machinery that controls multivesicular body (MVB) formation and the sorting of ubiquitinated membrane proteins to the endosomes. Being sorted to the MVB generally results in the lysosome-dependent degradation of cell-surface receptors, and defects in this machinery induce dysregulated receptor traffic and turnover. Recent lessons from gene targeting and silencing methodologies have implicated the ESCRT in normal development, cell differentiation, and growth, as well as in the budding of certain enveloped viruses. Furthermore, it is becoming apparent that the dysregulation of ESCRT proteins is involved in the development of various human diseases, including many types of cancers and neurodegenerative disorders. Here, we summarize the roles of ESCRT proteins in MVB sorting processes and the regulation of tumor cells, and we discuss some of their other functions that are unrelated to vesicular transport.
Collapse
Affiliation(s)
- Nobuyuki Tanaka
- Department of Microbiology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | |
Collapse
|
5
|
Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? ENVIRONMENT INTERNATIONAL 2006; 32:967-76. [PMID: 16859745 DOI: 10.1016/j.envint.2006.06.014] [Citation(s) in RCA: 682] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nanotechnology is a major innovative scientific and economic growth area, which may present a variety of hazards for environmental and human health. The surface properties and very small size of nanoparticles and nanotubes provide surfaces that may bind and transport toxic chemical pollutants, as well as possibly being toxic in their own right by generating reactive radicals. There is a wealth of evidence for the harmful effects of nanoscale combustion-derived particulates (ultrafines), which when inhaled can cause a number of pulmonary pathologies in mammals and humans. However, release of manufactured nanoparticles into the aquatic environment is largely an unknown. This review addresses the possible hazards associated with nanomaterials and harmful effects that may result from exposure of aquatic animals to nanoparticles. Possible nanoparticle association with naturally occurring colloids and particles is considered together with how this could affect their bioavailability and uptake into cells and organisms. Uptake by endocytotic routes are identified as probable major mechanisms of entry into cells; potentially leading to various types of toxic cell injury. The higher level consequences for damage to animal health, ecological risk and possible food chain risks for humans are also considered based on known behaviours and toxicities for inhaled and ingested nanoparticles in the terrestrial environment. It is concluded that a precautionary approach is required with individual evaluation of new nanomaterials for risk to the health of the environment. Although current toxicity testing protocols should be generally applicable to identify harmful effects associated with nanoparticles, research into new methods is required to address the special properties of nanomaterials.
Collapse
Affiliation(s)
- M N Moore
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
| |
Collapse
|
6
|
Kolter T, Sandhoff K. Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu Rev Cell Dev Biol 2006; 21:81-103. [PMID: 16212488 DOI: 10.1146/annurev.cellbio.21.122303.120013] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sphingolipids and glycosphingolipids are membrane components of eukaryotic cell surfaces. Their constitutive degradation takes place on the surface of intra-endosomal and intra-lysosomal membrane structures. During endocytosis, these intra-lysosomal membranes are formed and prepared for digestion by a lipid-sorting process during which their cholesterol content decreases and the concentration of the negatively charged bis(monoacylglycero)phosphate (BMP)--erroneously also called lysobisphosphatidic acid (LBPA)--increases. Glycosphingolipid degradation requires the presence of water-soluble acid exohydrolases, sphingolipid activator proteins, and anionic phospholipids like BMP. The lysosomal degradation of sphingolipids with short hydrophilic head groups requires the presence of sphingolipid activator proteins (SAPs). These are the saposins (Saps) and the GM2 activator protein. Sphingolipid activator proteins are membrane-perturbing and lipid-binding proteins with different specificities for the bound lipid and the activated enzyme-catalyzed reaction. Their inherited deficiency leads to sphingolipid- and membrane-storage diseases. Sphingolipid activator proteins not only facilitate glycolipid digestion but also act as glycolipid transfer proteins facilitating the association of lipid antigens with immunoreceptors of the CD1 family.
Collapse
Affiliation(s)
- Thomas Kolter
- Kekulé-Institut für Organische Chemie und Biochemie der Universität, 53121 Bonn, Germany.
| | | |
Collapse
|
7
|
Fabbri M, Di Meglio S, Gagliani MC, Consonni E, Molteni R, Bender JR, Tacchetti C, Pardi R. Dynamic partitioning into lipid rafts controls the endo-exocytic cycle of the alphaL/beta2 integrin, LFA-1, during leukocyte chemotaxis. Mol Biol Cell 2005; 16:5793-803. [PMID: 16207819 PMCID: PMC1289422 DOI: 10.1091/mbc.e05-05-0413] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 09/20/2005] [Accepted: 09/23/2005] [Indexed: 01/18/2023] Open
Abstract
Cell migration entails the dynamic redistribution of adhesion receptors from the cell rear toward the cell front, where they form new protrusions and adhesions. This process may involve regulated endo-exocytosis of integrins. Here we show that in primary neutrophils unengaged alphaL/beta2 integrin (LFA-1) is internalized and rapidly recycled upon chemoattractant stimulation via a clathrin-independent, cholesterol-sensitive pathway involving dynamic partitioning into detergent-resistant membranes (DRM). Persistent DRM association is required for recycling of the internalized receptor because 1) >90% of endocytosed LFA-1 is associated with DRM, and a large fraction of the internalized receptor colocalizes intracellularly with markers of DRM and the recycling endocytic compartment; 2) a recycling-defective mutant (alphaL/beta2Y735A) dissociates rapidly from DRM upon being endocytosed and is subsequently diverted into a late endosomal pathway; and 3) a dominant negative Rab11 mutant (Rab11S25N) induces intracellular accumulation of endocytosed alphaL/beta2 and prevents its enrichment in chemoattractant-induced lamellipodia. Notably, chemokine-induced migration of neutrophils over immobilized ICAM-1 is abrogated by cholesterol-sequestering agents. We propose that DRM-associated endocytosis allows efficient retrieval of integrins, as they detach from their ligands, followed by polarized recycling to areas of the plasma membrane, such as lamellipodia, where they establish new adhesive interactions and promote outside-in signaling events.
Collapse
Affiliation(s)
- Monica Fabbri
- Unit of Leukocyte Biology, Vita-Salute San Raffaele University School of Medicine, DIBIT-Scientific Institute San Raffaele, 20132 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Staneva G, Angelova MI, Koumanov K. Phospholipase A2 promotes raft budding and fission from giant liposomes. Chem Phys Lipids 2004; 129:53-62. [PMID: 14998727 DOI: 10.1016/j.chemphyslip.2003.11.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 11/30/2003] [Indexed: 11/26/2022]
Abstract
Cellular processes involving membrane vesiculation are related to cellular transport and membrane components trafficking. Endocytosis, formation of caveolae and caveosomes, as well as Golgi membranes traffic have been linked to the existence and dynamics of particular types of lipid/protein membrane domains, enriched in sphingolipids and cholesterol, called rafts [Nature 387 (1997) 569; Trends Cell Biol. 12 (2002) 296; Biochemistry 27 (1988) 6197]. In addition, the participation of phospholipases in the vesiculation of Golgi and other membranes has been already established [Traffic 1 (2000) 504] essentially in their role in the production of second messenger molecules. In this work we illustrate with raft-containing giant lipid vesicles a mechanism for raft-vesicle expulsion from the membrane due to the activity of a single enzyme-phospholipase A(2) (PLA(2)). This leads to the hypothesis that the PLA(2), apart from its role in second messenger generation, might play a direct and general role in the vesiculation processes underlying the intermembrane transport of rafts through purely physicochemical mechanisms. These mechanisms would be: enzyme adsorption leading to membrane curvature generation (budding), and enzyme activity modulation of the line tension at the raft boundaries, which induces vesicle fission.
Collapse
Affiliation(s)
- Galya Staneva
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl.21, 1113 Sofia, Bulgaria
| | | | | |
Collapse
|
9
|
Sandhoff K, Kolter T. Biosynthesis and degradation of mammalian glycosphingolipids. Philos Trans R Soc Lond B Biol Sci 2003; 358:847-61. [PMID: 12803917 PMCID: PMC1693173 DOI: 10.1098/rstb.2003.1265] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glycolipids are a large and heterogeneous family of sphingolipids that form complex patterns on eukaryotic cell surfaces. This molecular diversity is generated by only a few enzymes and is a paradigm of naturally occurring combinatorial synthesis. We report on the biosynthetic principles leading to this large molecular diversity and focus on sialic acid-containing glycolipids of the ganglio-series. These glycolipids are particularly concentrated in the plasma membrane of neuronal cells. Their de novo synthesis starts with the formation of the membrane anchor, ceramide, at the endoplasmic reticulum (ER) and is continued by glycosyltransferases of the Golgi complex. Recent findings from genetically engineered mice are discussed. The constitutive degradation of glycosphingolipids (GSLs) occurs in the acidic compartments, the endosomes and the lysosomes. Here, water-soluble glycosidases sequentially cleave off the terminal carbohydrate residues from glycolipids. For glycolipid substrates with short oligosaccharide chains, the additional presence of membrane-active sphingolipid activator proteins (SAPs) is required. A considerable part of our current knowledge about glycolipid degradation is derived from a class of human diseases, the sphingolipidoses, which are caused by inherited defects within this pathway. A new post-translational modification is the attachment of glycolipids to proteins of the human skin.
Collapse
Affiliation(s)
- Konrad Sandhoff
- Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | | |
Collapse
|
10
|
Felberbaum-Corti M, Van Der Goot FG, Gruenberg J. Sliding doors: clathrin-coated pits or caveolae? Nat Cell Biol 2003; 5:382-4. [PMID: 12724770 DOI: 10.1038/ncb0503-382] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Jaglarz MK, Nowak Z, Biliński SM. The Balbiani body and generation of early asymmetry in the oocyte of a tiger beetle. Differentiation 2003; 71:142-51. [PMID: 12641568 DOI: 10.1046/j.1432-0436.2003.710205.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The developmental changes within the Balbiani body in previtellogenic and early vitellogenic oocytes of a tiger beetle, Pseudoxycheila angustata, are described. Our study showed that the Balbiani body forms in a juxtanuclear position in previtellogenic oocytes. Subsequently, it disperses within the ooplasm while multivesicular bodies, a prominent component of the Balbiani body in this species, segregate out and are targeted to the posterior pole of the oocyte. We demonstrated that the Balbiani body is a temporary site of organelle accumulation and sorting and it is involved in the creation of an early polarity during oogenesis. Our data suggest that the multivesicular bodies, initially associated with the Balbiani body, may ultimately contribute to the formation of the pole plasm (oosome). Our study is the first description of the presence of the Balbiani body in oocytes of an insect with a meroistic ovary and only the second known example of the Balbiani body in insects in general. In addition, we showed, for the first time, that the components of Balbiani body participate in the formation of the pole plasm in insects. Interestingly, the oocytes of a European species of tiger beetles do not develop the Balbiani body. We discuss the developmental and evolutionary aspects of this finding.
Collapse
|
12
|
Tixier-Vidal A. Les compartiments membranaires de la cellule eucaryote. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/200218101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|