1
|
Zhang W, Luo P, Liu X, Cheng R, Zhang S, Qian X, Liu F. Roles of Fibroblast Growth Factors in the Axon Guidance. Int J Mol Sci 2023; 24:10292. [PMID: 37373438 DOI: 10.3390/ijms241210292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Fibroblast growth factors (FGFs) have been widely studied by virtue of their ability to regulate many essential cellular activities, including proliferation, survival, migration, differentiation and metabolism. Recently, these molecules have emerged as the key components in forming the intricate connections within the nervous system. FGF and FGF receptor (FGFR) signaling pathways play important roles in axon guidance as axons navigate toward their synaptic targets. This review offers a current account of axonal navigation functions performed by FGFs, which operate as chemoattractants and/or chemorepellents in different circumstances. Meanwhile, detailed mechanisms behind the axon guidance process are elaborated, which are related to intracellular signaling integration and cytoskeleton dynamics.
Collapse
Affiliation(s)
- Weiyun Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
- Medical Experimental Teaching Center, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Peiyi Luo
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Xiaohan Liu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ruoxi Cheng
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Shuxian Zhang
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Xiao Qian
- Queen Mary School, Medical College, Nanchang University, Nanchang 330000, China
| | - Fang Liu
- Department of Cell Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
2
|
Dmetrichuk JM, Carlone RL, Jones TRB, Vesprini ND, Spencer GE. Detection of endogenous retinoids in the molluscan CNS and characterization of the trophic and tropic actions of 9-cis retinoic acid on isolated neurons. J Neurosci 2008; 28:13014-24. [PMID: 19036995 PMCID: PMC6671795 DOI: 10.1523/jneurosci.3192-08.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 10/03/2008] [Accepted: 10/24/2008] [Indexed: 11/21/2022] Open
Abstract
Retinoic acid (RA) is an active metabolite of Vitamin A that plays an important role in the growth and differentiation of many cell types. All-trans RA (atRA) is the retinoic acid isomer that has been most widely studied in the nervous system, and can induce and direct neurite outgrowth from both vertebrate and invertebrate preparations. The presence and role of the 9-cis-RA isomer in the nervous system is far less well defined. Here, we used high-pressure liquid chromatography (HPLC) and mass spectrometry (MS) to show for the first time, the presence of both atRA and 9-cis-RA in the CNS of an invertebrate. We then demonstrated that 9-cis-RA was capable of exerting the same neurotrophic and chemotropic effects on cultured neurons as atRA. In this study, significantly more cells showed neurite outgrowth in 9-cis-RA versus the EtOH vehicle control, and 9-cis-RA significantly increased the number and length of neurites from identified neurons after 4 d in culture. 9-cis-RA also extended the duration of time that cells remained electrically excitable in culture. Furthermore, we showed for the first time in any species, that exogenous application of 9-cis-RA induced positive growth cone turning of cultured neurons. This study provides the first evidence for the presence of both atRA and 9-cis-RA in an invertebrate CNS and also provides the first direct evidence for a potential physiological role for 9-cis-RA in neuronal regeneration and axon pathfinding.
Collapse
|
3
|
Dmetrichuk JM, Carlone RL, Spencer GE. Retinoic acid induces neurite outgrowth and growth cone turning in invertebrate neurons. Dev Biol 2006; 294:39-49. [PMID: 16626686 DOI: 10.1016/j.ydbio.2006.02.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 11/22/2005] [Accepted: 02/14/2006] [Indexed: 11/20/2022]
Abstract
Identification of molecules involved in neurite outgrowth during development and/or regeneration is a major goal in the field of neuroscience. Retinoic acid (RA) is a biologically important metabolite of vitamin A that acts as a trophic factor and has been implicated in neurite outgrowth and regeneration in many vertebrate species. Although abundant in the CNS of many vertebrates, the precise role of RA in neural regeneration has yet to be determined. Moreover, very little information is available regarding the role of RA in invertebrate nervous systems. Here, we demonstrate for the first time that RA induces neurite outgrowth from invertebrate neurons. Using individually identified neurons isolated from the CNS of Lymnaea stagnalis, we demonstrated that a significantly greater proportion of cells produced neurite outgrowth in RA. RA also extended the duration of time that cells remained electrically excitable in vitro, and we showed that exogenously applied RA acted as a chemoattractive factor and induced growth cone turning toward the source of RA. This is the first demonstration that RA can induce turning of an individual growth cone. These data strongly suggest that the actions of RA on neurite outgrowth and cell survival are highly conserved across species.
Collapse
Affiliation(s)
- Jennifer M Dmetrichuk
- Department of Biology, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
| | | | | |
Collapse
|
4
|
Tonge DA, Pountney DJ, Leclere PG, Zhu N, Pizzey JA. Neurotrophin-independent attraction of growing sensory and motor axons towards developing Xenopus limb buds in vitro. Dev Biol 2004; 265:169-80. [PMID: 14697361 DOI: 10.1016/j.ydbio.2003.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanisms for directing axons to their targets in developing limbs remain largely unknown though recent studies in mice have demonstrated the importance of neurotrophins in this process. We now report that in co-cultures of larval Xenopus laevis limb buds with spinal cords and dorsal root ganglia of Xenopus and axolotl (Ambystoma mexicanum) axons grow directly to the limb buds over distances of up to 800 microm and in particular to sheets of epidermal cells which migrate away from the limb buds and also tail segments in culture. This directed axonal growth persists in the presence of trk-IgG chimeras, which sequester neurotrophins, and k252a, which blocks their actions mediated via trk receptors. These findings indicate that developing limb buds in Xenopus release diffusible factors other than neurotrophins, able to attract growth of sensory and motor axons over long distances.
Collapse
Affiliation(s)
- David A Tonge
- GKT School of Biomedical Sciences, King's College London, Guy's Hospital Campus, London Bridge, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
5
|
Webber CA, Hyakutake MT, McFarlane S. Fibroblast growth factors redirect retinal axons in vitro and in vivo. Dev Biol 2003; 263:24-34. [PMID: 14568544 DOI: 10.1016/s0012-1606(03)00435-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Growth factors have been shown previously to participate in the process of axon target recognition. We showed that fibroblast growth factor receptor (FGFR) signaling is required for Xenopus laevis retinal ganglion cell (RGC) axons to recognize their major midbrain target, the optic tectum [neuron 17 (1996), 245]. Therefore, we have hypothesized that a change in expression of a fibroblast growth factor (FGF) at the entrance of the optic tectum, the border between the diencephalon and mesencephalon, may serve as a signal to RGC axons that they have reached their target. To determine whether RGC axons can sense changes in FGF levels, we asked whether they altered their behavior upon encountering an ectopic source of FGF. We found that in vivo RGC growth cones avoided FGF-misexpressing cells along their path, and that FGF-2 directly repelled RGC growth cones in an in vitro growth cone turning assay. These data support the idea that RGC axons can sense changes in FGF levels, and as such provide a mechanism by which FGFR signaling is involved in RGC axon target recognition.
Collapse
Affiliation(s)
- C A Webber
- Department of Cell Biology and Anatomy, Genes and Development Research Group, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | | | | |
Collapse
|
6
|
Abstract
Brn3a/Brn-3.0 is a POU-domain transcription factor expressed in primary sensory neurons of the cranial and dorsal root ganglia and in specific neurons in the caudal CNS. Mice lacking Brn3a undergo extensive sensory neural death late in gestation and die at birth. To further examine Brn3a expression and the abnormalities that accompany its absence, we constructed a transgene containing 11 kb of Brn3a upstream regulatory sequence linked to a LacZ reporter. Here we show that these regulatory sequences direct transgene expression specifically to Brn3a peripheral sensory neurons of the cranial and dorsal root ganglia. Furthermore, expression of the 11 kb/LacZ reporter in the sensory neurons of the mesencephalic trigeminal, but not other Brn3a midbrain neurons, demonstrates that cell-specific transgene expression is targeted to a functional class of neurons rather than to an anatomical region. We then interbred the 11 kb/LacZ reporter strain with mice carrying a null mutant allele of Brn3a to generate 11 kb/LacZ, Brn3a knock-out mice. beta-Galactosidase expression in these mice reveals significant axonal growth defects, including excessive and premature branching of the major divisions of the trigeminal nerve and a failure to correctly innervate whisker follicles, all of which precede sensory neural death in these mice. These defects in Brn3a(-/-) mice resemble strongly those seen in mice lacking the mediators of sensory pathfinding semaphorin 3A and neuropilin-1. Here we show, however, that sensory neurons are able to express neuropilin-1 in the absence of Brn3a.
Collapse
|
7
|
Abstract
Limb amputation in urodele amphibia is followed by formation of a blastema, which subsequently develops into a complete limb with normal pattern of innervation. In this study, we investigated the effects of axolotl limb blastemas on axonal growth in gels of collagen and extracellular matrix (matrigel). When peripheral nerves with attached dorsal root ganglia were cultured in collagen gels together with blastemas, axonal outgrowth was markedly increased compared with control preparations. Blastemas contain fibroblast growth factors, and may also contain neurotrophic factors such as nerve growth factor, brain-derived neurotrophic factor, neurotrophin 3, neurotrophin 4, glial cell line-derived neurotrophic factor and hepatocyte growth factor/scatter factor, since these factors are expressed in developing limbs in other vertebrates. In collagen gels the neurotrophins and glial cell line-derived neurotrophic factor stimulated axonal growth, but outgrowing axons were shorter than in co-cultures with blastemas. The tyrosine kinase inhibitor K252a blocked the stimulatory effects of the neurotrophins on axonal growth but had relatively little effect on axonal growth in co-cultures with blastemas. In experiments in which peripheral nerves, with attached dorsal root ganglia, were cultured in matrigel, axons grew towards blastemas over distances of about 1mm. Directed axonal growth even occurred in these co-cultures after addition of high concentrations of all the above neurotrophic factors, suggesting that blastemas may release a different factor which stimulates axonal growth. The results indicate that during early stages of limb regeneration in amphibia, factor(s) are released which are capable of attracting the growth of peripheral nerves and may play an important role in the development of innervation of regenerated limbs. The identity of the factor(s) remains to be determined.
Collapse
Affiliation(s)
- D A Tonge
- Neural Damage and Repair Group, Centre for Neuroscience Research, King's College London, Guy's Hospital Campus, SE1 1UL, London, UK.
| | | |
Collapse
|
8
|
Brandner C, Vantini G, Schenk F. Enhanced visuospatial memory following intracerebroventricular administration of nerve growth factor. Neurobiol Learn Mem 2000; 73:49-67. [PMID: 10686123 DOI: 10.1006/nlme.1999.3917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present work assessed the effects of intracerebroventricular injections of rh recombined human nerve growth factor (rh NGF) (5 micrograms/2.5 microl) at postnatal days 12 and 13 upon the development of spatial learning capacities. The treated rats were trained at the age of 22 days to escape onto an invisible platform at a fixed position in space in a Morris navigation task. For half of the subjects, the training position was also cued, a procedure aimed at facilitating escape and at reducing attention to the distant spatial cues. Later, at the age of 6 months, all the rats were trained in a radial-arm maze task. Treatment effects were found in both immature and adult rats. The injection of NGF improved the performance in the Morris navigation task in both training conditions. There was a significant reduction in the escape latency and an increased bias toward the training platform quadrant during probe trials. The most consistent effect was the precocious development of an adult-like spatial memory. In the radial-arm maze, the NGF-treated rats made significantly fewer reentries than vehicle rats and this effect was particularly marked in the treated female rats. Taken together, these experiments reveal that the development and the maintenance of an accurate spatial representation are tightly related to the development of brain structures facilitated by the action of NGF. Moreover, these experiments demonstrate that an acute pharmacological treatment that leads to a transient modification in the choline acetyltransferase activity can induce a behavioral change long after the treatment.
Collapse
Affiliation(s)
- C Brandner
- Institut de Physiologie, Bugnon 7, Lausanne, CH-1005, Switzerland.
| | | | | |
Collapse
|
9
|
Abstract
The extension of neurites is a major task of developing neurons, requiring a significant metabolic effort to sustain the increase in molecular synthesis necessary for plasma membrane expansion. In addition, neurite extension involves changes in the subsets of expressed proteins and reorganization of the cytomatrix. These phenomena are driven by environmental cues which activate signal transduction processes as well as by the intrinsic genetic program of the cell. The present review summarizes some of the most recent progress made in the elucidation of the molecular mechanisms underlying these processes.
Collapse
Affiliation(s)
- F Valtorta
- Department of Neuroscience, San Raffaele Scientific Institute, CNR Center for Cellular and Molecular Pharmacology, Milano, Italy
| | | |
Collapse
|
10
|
Abstract
The initial outgrowth of peripheral axons in developing embryos is thought to occur independently of neurotrophins. However, the degree to which peripheral neurons can extend axons and elaborate axonal arborizations in the absence of these molecules has not been studied directly because of exquisite survival requirements for neurotrophins at early developmental stages. We show here that embryonic sensory neurons from BAX-deficient mice survived indefinitely in the absence of neurotrophins, even in highly dissociated cultures, allowing assessment of cell autonomous axon outgrowth. At embryonic day 11 (E11)-E13, stages of rapid axon growth toward targets in vivo, Bax-/- sensory neurons cultured without neurotrophins were almost invariably unipolar and extended only a rudimentary axon. Addition of neurotrophins caused outgrowth of a second axon and a marked, dose-dependent elongation of both processes. Surprisingly, morphological responses to individual neurotrophins differed substantially. Neurotrophin-3 (NT-3) supported striking terminal arborization of subsets of Bax-/- neurons, whereas NGF produced predominantly axon elongation in a different subset. We conclude that axon growth in vitro is neurotrophin dependent from the earliest stages of sensory neuron development. Furthermore, neurotrophins support the appearance of distinct axonal morphologies that characterize different sensory neuron subpopulations.
Collapse
|
11
|
Affiliation(s)
- L A Barlow
- Department of Biological Sciences, University of Denver, Colorado 80208, USA.
| |
Collapse
|
12
|
Two New Pseudopod Morphologies Displayed by the Human Hematopoietic KG1a Progenitor Cell Line and by Primary Human CD34+Cells. Blood 1998. [DOI: 10.1182/blood.v92.10.3616] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractA primitive human hematopoietic myeloid progenitor cell line, KG1a, characterized by high expression of the CD34 surface antigen has been observed to extend long, thin pseudopodia. Once extended, these pseudopods may take on one of two newly described morphologies, tenupodia or magnupodia. Tenupodia are very thin and form in linear segments. They adhere to the substrate, can bifurcate multiple times, and often appear to connect the membranes of cells more than 300 μm apart. Magnupodia are much thicker and have been observed to extend more than 330 μm away from the cell. Magnupods are flexible and can exhibit rapid dynamic motion, extending or retracting in a few seconds. During retraction, the extended material often pools into a bulb located on the pod. Both morphologies can adhere to substrates coated with fibronectin, collagen IV, and laminin as well as plastic. The CD34 and CD44 antigens are also present on the surface of these podia. Primary human CD34+ cells from fetal liver, umbilical cord blood, adult bone marrow, and mobilized peripheral blood extend these podia as well. The morphology that these pseudopods exhibit suggest that they may play both sensory and mechanical roles during cell migration and homing after bone marrow transplantation.
Collapse
|
13
|
Rajnicek AM, Robinson KR, McCaig CD. The direction of neurite growth in a weak DC electric field depends on the substratum: contributions of adhesivity and net surface charge. Dev Biol 1998; 203:412-23. [PMID: 9808790 DOI: 10.1006/dbio.1998.9039] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the influence of the growth surface on the direction of Xenopus spinal neurite growth in the presence of a dc electric field of physiological magnitude. The direction of galvanotropism was determined by the substratum; neurites grew toward the negative electrode (cathode) on untreated Falcon tissue culture plastic or on laminin substrata, which are negatively charged, but neurites growing on polylysine, which is positively charged, turned toward the positive electrode (anode). Growth was oriented randomly on all substrata without an electric field. We tested the hypothesis that the charge of the growth surface was responsible for reversed galvanotropism on polylysine by growing neurons on tissue culture dishes with different net surface charges. Although neurites grew cathodally on both Plastek substrata, the frequency of anodal turning was greater on dishes with a net positive charge (Plastek C) than on those with a net negative charge (Plastek M). The charge of the growth surface therefore influenced the frequency of anodal galvanotropism but a reversal in surface charge was insufficient to reverse galvanotropism completely, possibly because of differences in the relative magnitude of the substratum charge densities. The influence of substratum adhesion on galvanotropism was considered by growing neurites on a range of polylysine concentrations. Growth cone to substratum adhesivity was measured using a blasting assay. Adhesivity and the frequency of anodal turning were graded over the range of polylysine concentrations (0 = 0.1 < 1 < 10 = 100 microg/ml). The direction of neurite growth in an electric field is therefore influenced by both substratum charge and growth cone-to-substratum adhesivity. These data are consistent with the idea that spatial or temporal variation in the expression of adhesion molecules in embryos may interact with naturally occurring electric fields to enhance growth cone pathfinding.
Collapse
Affiliation(s)
- A M Rajnicek
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom.
| | | | | |
Collapse
|
14
|
Two New Pseudopod Morphologies Displayed by the Human Hematopoietic KG1a Progenitor Cell Line and by Primary Human CD34+Cells. Blood 1998. [DOI: 10.1182/blood.v92.10.3616.422k19_3616_3623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A primitive human hematopoietic myeloid progenitor cell line, KG1a, characterized by high expression of the CD34 surface antigen has been observed to extend long, thin pseudopodia. Once extended, these pseudopods may take on one of two newly described morphologies, tenupodia or magnupodia. Tenupodia are very thin and form in linear segments. They adhere to the substrate, can bifurcate multiple times, and often appear to connect the membranes of cells more than 300 μm apart. Magnupodia are much thicker and have been observed to extend more than 330 μm away from the cell. Magnupods are flexible and can exhibit rapid dynamic motion, extending or retracting in a few seconds. During retraction, the extended material often pools into a bulb located on the pod. Both morphologies can adhere to substrates coated with fibronectin, collagen IV, and laminin as well as plastic. The CD34 and CD44 antigens are also present on the surface of these podia. Primary human CD34+ cells from fetal liver, umbilical cord blood, adult bone marrow, and mobilized peripheral blood extend these podia as well. The morphology that these pseudopods exhibit suggest that they may play both sensory and mechanical roles during cell migration and homing after bone marrow transplantation.
Collapse
|