1
|
Zhang F, Li X, Zhao Z, Kong B, Cao C, Zhang H, Shao J, Liu Q. Changes of structural characteristics, functional properties and volatile compounds of Tenebrio molitor larvae protein after sustainable defatting process: Influence of the different volume ratios of n-hexane to ethanol. Food Res Int 2024; 195:114974. [PMID: 39277240 DOI: 10.1016/j.foodres.2024.114974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
This work aimed to study the effect of defatting via the mixture of n-hexane and ethanol under different volume ratio on the changes of structural characteristics, functional properties and volatile compounds of Tenebrio molitor larvae protein (TMLP). The results showed that 1:0.6 vol ratio of n-hexane to ethanol rendered the highest defatting rate (P < 0.05), as well as led to the highest EAA/AA contents, sulfhydryl contents, surface hydrophobicity, solubility, water/oil holding capacities and emulsifying properties of TMLP (P < 0.05). However, higher volume ratio of n-hexane to ethanol led to negative impacts on functionalities of TMLP. Moreover, the contents of aldehydes and hydrocarbons which rendered off-flavour to TMLP significantly decreased with the increasing volume ratio of n-hexane to ethanol (P < 0.05), while the contents of pleasure flavour (hydrocarbons and ester compounds) were obviously enhanced. This study provides an eco-friendly defatting method on the processing of TMLP with superior quality attributes.
Collapse
Affiliation(s)
- Fengxue Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; School of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Xin Li
- Sharable Platform of Large-Scale Instruments & Equipments, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zihan Zhao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chuanai Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hongwei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Liaoning 110000, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
2
|
Park J, Scheler U, Messinger RJ. Molecular-Level Understanding of Phase Stability in Phase-Change Nanoemulsions for Thermal Energy Storage by NMR Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21814-21823. [PMID: 39348334 PMCID: PMC11483738 DOI: 10.1021/acs.langmuir.4c02997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
Phase change materials (PCMs) are latent heat storage materials that can store or release thermal energy while undergoing thermodynamic phase transitions. Organic PCMs can be emulsified in water in the presence of surfactants to enhance thermal conductivity and enable applications as heat transfer fluids. However, PCM nanoemulsions often become unstable during thermal cycling. To better understand the molecular origins of phase stability in PCM nanoemulsions, we designed a model PCM nanoemulsion system and studied how the molecular-level environments and dynamics of the surfactants and oil phase changed upon thermal cycling using liquid-state nuclear magnetic resonance (NMR) spectroscopy. The model system used octadecane as the oil phase, stearic acid as the surfactant, and aqueous NaOH as the continuous phase. The liquid fraction of octadecane within the nanoemulsions was quantified noninvasively during thermal cycling by liquid-state 1H single-pulse NMR measurements, revealing the extent of octadecane supercooling as a function of temperature. The mean droplet size of the PCM nanoemulsions, measured by dynamic light scattering (DLS), was correlated with the liquid content of octadecane to explain phase instability in the solid-liquid coexistence region. Quantitative 13C single-pulse NMR experiments established that the carbonyl surfactant head groups were present in multiple distinct environments during thermal cycling. After repeated thermal cycling, the 13C signal intensity of the carbonyl surfactant head groups decreased, indicating that the surfactant head groups lost molecular mobility. The results explain, in part, the origin of phase instability of PCM nanoemulsions upon thermal cycling.
Collapse
Affiliation(s)
- Jungeun Park
- Department
of Chemical Engineering, The City College
of New York, CUNY, New York, New York 10031, United States
| | - Ulrich Scheler
- Center
for Multi-Scale Characterization, Leibniz-Institut
für Polymerforschung Dresden e.V., Dresden 01069, Germany
| | - Robert J. Messinger
- Department
of Chemical Engineering, The City College
of New York, CUNY, New York, New York 10031, United States
| |
Collapse
|
3
|
Li Y, Mao M, Yuan X, Zhao J, Ma L, Chen F, Liao X, Hu X, Ji J. Natural Gastrointestinal Stable Pea Albumin Nanomicelles for Capsaicin Delivery and Their Effects for Enhanced Mucus Permeability at Small Intestine. Biomater Res 2024; 28:0065. [PMID: 39157812 PMCID: PMC11327615 DOI: 10.34133/bmr.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Natural nanodelivery systems are highly desirable owing to their biocompatibility and biodegradability. However, these delivery systems face challenges from potential degradation in the harsh gastrointestinal environment and limitations imposed by the intestinal mucus barrier, reducing their oral delivery efficacy. Here, gastrointestinal stable and mucus-permeable pea albumin nanomicelles (PANs) with a small particle size (36.42 nm) are successfully fabricated via pre-enzymatic hydrolysis of pea albumin isolate (PAI) using trypsin. Capsaicin (CAP) is used as a hydrophobic drug model and loaded in PAN with a loading capacity of 20.02 μg/mg. PAN exhibits superior intestinal stability, with a 40% higher CAP retention compared to PAI in simulated intestinal digestion. Moreover, PAN displays unrestricted movement in intestinal mucus and can effectively penetrate it, since it increases the mucus permeability of CAP by 2.5 times, indicating an excellent ability to overcome the mucus barrier. Additionally, PAN enhances the cellular uptake and transcellular transport of CAP with endoplasmic reticulum/Golgi and Golgi/plasma membrane pathways involved in the transcytosis and exocytosis. This study suggests that partially enzymatically formed PAN may be a promising oral drug delivery system, effectively overcoming the harsh gastrointestinal environment and mucus barrier to improve intestinal absorption and bioavailability of hydrophobic bioactive substances.
Collapse
Affiliation(s)
| | | | - Xin Yuan
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jiajia Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
4
|
MacWilliams SV, Clulow AJ, Gillies G, Beattie DA, Krasowska M. Recent advances in studying crystallisation of mono- and di-glycerides at oil-water interfaces. Adv Colloid Interface Sci 2024; 326:103138. [PMID: 38522289 DOI: 10.1016/j.cis.2024.103138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
This review focuses on the current understanding regarding lipid crystallisation at oil-water interfaces. The main aspects of crystallisation in bulk lipids will be introduced, allowing for a more comprehensive overview of the crystallisation processes within emulsions. Additionally, the properties of an emulsion and the impact of lipid crystallisation on emulsion stability will be discussed. The effect of different emulsifiers on lipid crystallisation at oil-water interfaces will also be reviewed, however, this will be limited to their impact on the interfacial crystallisation of monoglycerides and diglycerides. The final part of the review highlights the recent methodologies used to study crystallisation at oil-water interfaces.
Collapse
Affiliation(s)
- Stephanie V MacWilliams
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
| | - Andrew J Clulow
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Graeme Gillies
- Fonterra Research and Development Centre, Dairy Farm Road, Fitzherbert, Palmerston North 4442, New Zealand
| | - David A Beattie
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | - Marta Krasowska
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
5
|
Sarfraz M, Shabbir K, Adnan Q, Khan HMS, Shirazi JH, Sabir H, Mehmood N, Bin Jardan YA, Khan KU, Basit A. Fabrication, organoleptic evaluation and in vitro characterization of cream loaded with Carica papaya seed extract. J Cosmet Dermatol 2024; 23:1045-1054. [PMID: 38050657 DOI: 10.1111/jocd.16066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE The current study aimed to provide preliminary insights into potential biopharmaceutical applications of Carica papaya seed extract by evaluating its phytochemical and biological profiles. Furthermore, the study aimed to develop a stable oil-in-water (O/W) emulsion for the effective delivery of antioxidant-rich biologicals for cosmetic purposes. METHODS The hydroethanolic (ethanol 80%: 20% water) extract of C. papaya seeds was prepared via maceration technique. The chemical composition was carried out through preliminary phytochemical screening and estimation of total phenolic contents (TPC) and total flavonoid contents (TFC). The biological profile of the extract was explored using various in-vitro antioxidant methods. The homogenization procedure was used to create a cream of O/W and various tests were applied to assess the stability of the emulsion. By keeping the emulsion at different storage conditions (8 ± 0.5°C, 25 ± 0.5°C, 40 ± 0.5°C, and 40 ± 0.5°C ± 75% relative humidity [RH]) for a period of 28 days), the physical stability parameters of the emulsion, including pH, viscosity, centrifugation, phase separation, and conductivity, as well as rheological parameters and organoleptic parameters (odor, color, liquefaction, and creaming), were assessed. RESULTS The preliminary phytochemical screening assay revealed the presence of various plant secondary metabolites including alkaloids, phenolics, flavonoids, tannins, saponins, and quinones. The extract was found to be rich in TPC and TFC. The in vitro antioxidant study gave maximum activity in the DPPH method. The plant extract containing cosmetic cream exhibited remarkable stability during the entire research. Data gathered indicated that no phase separation or liquefaction was seen after the experimental period. Throughout the experimental period, a small variation in the pH and conductivity values of the base and formulation was seen. CONCLUSION The findings suggest that the seed extract of C. papaya is a rich source of polyphenols with antioxidant potential and can be a promising alternative for the treatment of various ailments. The stability of emulsion paves the way for its utilization as a carrier for the delivery of 3% C. papaya seed extract and applications in cosmetics products.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Kanwal Shabbir
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Qazi Adnan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Haji Muhammad Shoaib Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Jafir Hussain Shirazi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hamna Sabir
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Nimrah Mehmood
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
6
|
Zhao M, Chen L, Liu F, Zhong F, Chen M, Jin H, Kang J, Wu J, Xu J. The impact of glycerol monostearate's similarity to fats and fatty acid composition of fats on fat crystallization, destabilization, and texture properties of ice cream. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6837-6848. [PMID: 37278491 DOI: 10.1002/jsfa.12768] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Fat significantly affects the properties of ice cream. Prior studies have investigated the correlation between fat crystallization, fat destabilization, and ice cream quality. However, the role of fatty acid composition, the similarity between fat and emulsifier in these characteristics, and their impact on final product quality remains unclear. RESULTS To investigate the influence of the fatty acid composition of fats, as well as their similarity to glycerol monostearate (GMS), on fat crystallization and destabilization during the aging and freezing stages, ice creams were formulated using a combination of two types of fats (coconut oil and palm olein) in five different ratios. In oil phases, decreased saturation of fatty acids (from 93.38% to 46.69%) and increased similarity to GMS (from 11.96% to 46.01%) caused a reduction in the maximum solid fat content. Moreover, the rise in unsaturated long-chain fatty acids (from 34.61% to 99.57%) and similarity to GMS enhanced the formation of rare and coarse fat crystals, leading to a sparse crystalline network. This, in turn, reduced the crystallization rate and the stiffness of the fat in emulsions. Assuming consistent overrun across all ice creams, the enhanced interactions between fat globules in ice cream improved its hardness, melting properties, and shrinkage. CONCLUSION The crystalline properties of fat in emulsions were influenced by oil phases, impacting fat destabilization and ultimately enhancing the quality of ice cream. The present study offers valuable insights for the optimization of fat and monoglyceride fatty acid ester selection, with the potential to improve ice cream quality. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengdi Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Ling Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fei Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Fang Zhong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Maoshen Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Huajin Jin
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Yinuo Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Jingran Kang
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Yinuo Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Juan Wu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Yinuo Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Jun Xu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Yinuo Technology (Shanghai) Co., Ltd., Shanghai, China
| |
Collapse
|
7
|
Nejadmansouri M, Eskandari MH, Yousefi GH, Riazi M, Hosseini SMH. Promising application of probiotic microorganisms as Pickering emulsions stabilizers. Sci Rep 2023; 13:15915. [PMID: 37741896 PMCID: PMC10517997 DOI: 10.1038/s41598-023-43087-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023] Open
Abstract
The purpose of this work was to study the ability of nineteen food-grade microorganisms as Pickering emulsion (PE) stabilizers. Medium-chain triacylglycerol (MCT) oil-in-water (50:50) PEs were fabricated by 10 wt% or 15 wt% of thermally-inactivated yeast, cocci, Bacillus spp. and lactobacilli cells. The characteristics of microorganisms related to "Pickering stabilization" including morphology, surface charge, interfacial tension, and "contact angle" were firstly studied. After that, the cells-stabilized PEs were characterized from both kinetic and thermodynamic viewpoints, microstructure and rheological properties. The interfacial tension and "contact angle" values of various microorganisms ranged from 16.33 to 38.31 mN/m, and from 15° to 106°, respectively. The mean droplet size of PEs ranged from 11.51 to 57.69 µm. Generally, the physical stability of cell-stabilized PEs followed this order: lactobacilli > Bacillus spp. > cocci > yeast. These variations were attributed to the morphology and cell wall composition. Increasing the microorganism concentration significantly increased the physical stability of PEs from a maximum of 12 days at 10 wt% to 35 days at 15 wt% as a result of better interface coverage. Shear-thinning and dominant elastic behaviors were observed in PEs. Physical stability was affected by the free energy of detachment. Therefore, food-grade microorganisms are suggested for stabilizing PEs.
Collapse
Affiliation(s)
- Maryam Nejadmansouri
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Gholam Hossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Riazi
- Enhanced Oil Recovery (EOR) Research Centre, IOR/EOR Research Institute, Shiraz University, Shiraz, Iran
- Department of Petroleum Engineering, School of Chemical and Petroleum Eng, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
8
|
Wei X, Zhang H, Cheong L, Gong J, Xu X, Bi Y. Effects of monoacylglycerols with different saturation degrees on physical and whipping properties of milk fat-based whipping creams. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2468-2476. [PMID: 37424572 PMCID: PMC10326237 DOI: 10.1007/s13197-023-05769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/18/2023] [Accepted: 05/11/2023] [Indexed: 07/11/2023]
Abstract
Milk fat-based whipping cream is primarily comprised of cream and whole milk. It has melt-in-the-mouth texture and unique milk flavor. However, milk fat-based whipping cream suffers from poor emulsion stability and foam firmness. The effects of monoacylglycerols (MAGs) with different saturation degrees (M1: 98% saturation, M2: 70% saturation and M3: 30% saturation) on emulsion properties (average particle size, viscosity, and emulsion stability) and whipping properties (overrun, firmness, shape retention ability, and foam stability) of milk fat-based whipping creams were investigated in this study. MAGs significantly decreased particle sizes (from 2.84 to 1.16 μm) and enhanced viscosity (from 350 to 490 cP) of the milk fat-based emulsions (emulsion without MAGs: M0, 5.01 μm, 298 cP) (P < 0.05). MAGs increased the stability of the milk fat-based emulsions with lesser phase separation during centrifugation tests and lower changes in particle sizes and viscosities during temperature cycling tests. Emulsion M1 with highest degree of saturation is less likely to destabilize and phase inverse. The decrease sharply in conductivity can be attributed to the entrapment of large amounts of air. Following that, the conductivity of M1 with low variation indicating high whipping resistance and less likely to coalescence and phase separation. Adding MAGs can significantly enhance overrun (M1: 205.3%, M2: 198.5%, M3: 141.4%) as compared to the control sample (M0: 97.9%) (P < 0.05). In emulsions containing MAGs with high degree of saturation (M1 and M2), firmness (M1: 95 g, M2: 109 g) and shape retention ability of the whipped creams were reduced as compared to control emulsion without MAG (M0: 173 g), but the foam stability (M1: 89%, M2: 91%) was enhanced (M0: 81%); M3 (firmness: 507 g; foam stability: 66%) has the contrasted effects. Whipping cream M2 demonstrated the best whipping properties with high overrun (198.46%), good firmness (109 g), shape retention ability and foam stability (91%). Good quality whipping creams can be obtained by selecting suitable MAGs.
Collapse
Affiliation(s)
- Xueli Wei
- College of Food Science and Technology, Henan University of Technology, Lianhua Road, Zhengzhou, 450001 China
| | - Hong Zhang
- College of Food Science and Technology, Henan University of Technology, Lianhua Road, Zhengzhou, 450001 China
- Wilmar Biotechnology Research and Development Center (Shanghai) Co., Ltd., 118 Gaodong Road, Pudong New District, Shanghai, 200137 China
| | - Lingzhi Cheong
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, 315211 China
| | - Jingjing Gong
- Wilmar Biotechnology Research and Development Center (Shanghai) Co., Ltd., 118 Gaodong Road, Pudong New District, Shanghai, 200137 China
| | - Xuebing Xu
- College of Food Science and Technology, Henan University of Technology, Lianhua Road, Zhengzhou, 450001 China
- Wilmar Biotechnology Research and Development Center (Shanghai) Co., Ltd., 118 Gaodong Road, Pudong New District, Shanghai, 200137 China
| | - Yanlan Bi
- College of Food Science and Technology, Henan University of Technology, Lianhua Road, Zhengzhou, 450001 China
| |
Collapse
|
9
|
Gao Y, Mao J, Meng Z. Network Structure and Nanoplatelet Characterization of the Edible Fat Crystallization in Low-Fat W/O Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37339351 DOI: 10.1021/acs.langmuir.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Fat crystals provided the strength of the colloidal network in W/O emulsions and stabilized water droplets. To understand the stabilizing effect of fat-regulated emulsions, W/O emulsions with different edible fats were fabricated. The result indicated that more stable W/O emulsions were produced by palm oil (PO) and palm stearin (PS), whose proportions of fatty acids were similar. Meanwhile, water droplets inhibited the crystallization of emulsified fats but participated in the formation of the colloidal network with fat crystals in emulsions, and the Avrami equation showed a slower crystallization rate of emulsified fats than the corresponding fat blends. However, water droplets participated in the formation of a colloidal network of fat crystals in emulsions, and the adjacent fat crystals were connected through a bridge constructed by water droplets. Fats in the emulsion containing palm stearin crystallized faster and more easily formed the β-polymorph. The small-angle X-ray scattering (SAXS) data were interpreted by the unified fit model to determine the average size of crystalline nanoplatelets (CNPs). The larger CNPs (>100 nm) with a rough surface of emulsified fats and a uniform distribution of their aggregates was confirmed.
Collapse
Affiliation(s)
- Yujie Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jixian Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| |
Collapse
|
10
|
Zhong M, Ma L, Liu X, Liu Y, Wei S, Gao Y, Wang Z, Chu S, Dong S, Yang Y, Gao S, Li S. Exploring the influence of ultrasound on the antibacterial emulsification stability of lysozyme-oregano essential oil. ULTRASONICS SONOCHEMISTRY 2023; 94:106348. [PMID: 36871524 PMCID: PMC9988396 DOI: 10.1016/j.ultsonch.2023.106348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
A lysozyme-oregano essential oil (Lys-OEO) antibacterial emulsion was developed via ultrasonic treatment. Based on the general emulsion materials of ovalbumin (OVA) and inulin (IN), the addition of Lys and OEO successfully inhibited the growth of E. coli and S. aureus, two representatives of which were Gram-negative and Gram-positive bacteria respectively. The emulsion system in this study was designed to compensate for the limitation that Lys could only act on Gram-positive bacteria, and the stability of the emulsion was improved using ultrasonic treatment. The optimal amounts among OVA, Lys and OEO were found to be the mass ratio of 1:1 (Lys to OVA) and 20% (w/w) OEO. The ultrasonic treatment at the power of 200, 400, 600, and 800 W and time length of 10 min improved the stability of emulsion, in which the surface tension was below 6.04 mN/m and the Turbiscan stability index (TSI) did not exceed 10. The multiple light scattering showed that sonicated emulsions were less prone to delamination; salt stability and pH stability of emulsions were improved, CLSM image showed emulsion as oil-in-water type. In the meantime, the particles of the emulsions were found to become smaller and more uniform with ultrasonic treatment. The best dispersion and stability of the emulsion were both achieved at 600 W with a zeta potential of 7.7 mV, the smallest particle size and the most uniform particle distribution.
Collapse
Affiliation(s)
- Mengzhen Zhong
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Lulu Ma
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Xin Liu
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ying Liu
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Shuaishuai Wei
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ying Gao
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Zhan Wang
- Key Laboratory of Fermentation Engineering, Ministry of Education, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shang Chu
- Key Laboratory of Fermentation Engineering, Ministry of Education, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shijian Dong
- Anhui Rongda Food Co., Ltd., Xuancheng 242000, China
| | - Yuping Yang
- Wuhan Institute for Drug and Medical Device Control, Wuhan 430075, China
| | - Sihai Gao
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shugang Li
- Engineering Research Center of Bio-process, Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
11
|
Emulsifier crystal formation and its role in periodic deformation-relaxation of emulsion droplets upon cooling. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
MacWilliams SV, Clulow AJ, Kirby NM, Miller R, Boyd BJ, Gillies G, Beattie DA, Krasowska M. Isolating the interface of an emulsion using X-ray scattering and tensiometry to understand protein-modulated alkylglyceride crystallisation. J Colloid Interface Sci 2023; 630:202-214. [DOI: 10.1016/j.jcis.2022.10.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/25/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
13
|
Controlling lipid crystallization across multiple length scales by directed shear flow. J Colloid Interface Sci 2023; 630:731-741. [DOI: 10.1016/j.jcis.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/11/2022]
|
14
|
Gao Y, Mao J, Meng Z. Tracing distribution and interface behavior of water droplets in W/O emulsions with fat crystals. Food Res Int 2023; 163:112215. [PMID: 36596144 DOI: 10.1016/j.foodres.2022.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/12/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
Sucrose palmitate (P170) and sucrose laurate (L195) were used as emulsifiers to control the crystallization behavior of AMF and to stabilize W/O emulsions. In this study, the P170 promoted crystallization and led to strong fat crystal networks with smaller AMF crystals (60-80 μm) in emulsions, retaining flocculation. Water droplets were squeezed into irregular shapes between the strong network but the P170 formed an interface layer with better strength to resist the aggregation. Contrarily, the L195 inhibited crystallization and formed larger AMF spherulites (more than 100 μm) resulting in a low strength of fat crystal networks and unstable emulsions. Meanwhile, the water droplets were easily fixed on the surface of AMF crystals because of the existence of sucrose esters. Protruding crystals on the surface of larger spherulites could pierce the water-oil interface, leading to a greater coalescence and forming larger water droplets. Therefore, a weak crystal network could not prevent the sedimentation and phase separation caused by gravity.
Collapse
Affiliation(s)
- Yujie Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jixian Mao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Aslan Türker D, Göksel Saraç M, Doğan M. Determination of the best interaction of inulin with different proteins by using interfacial rheology: the relationship with the emulsion activity and stability in emulsion systems. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This study aimed to develop functional emulsions with dietary fibre/proteins and to examine the role of interfacial rheological properties on the emulsion stability. Emulsions with inulin and various animal/vegetable proteins were prepared, and their emulsifying and interfacial rheological properties were appraised for their possible applications in stabilizing oil-in-water emulsions. Interfacial measurements including the frequency, time and strain sweep test were determined depending on the protein differences. The results revealed that the adsorption behaviour of proteins at the two interfaces was quite different. The apparent viscosity (η
50) of the emulsions ranged between 0.006 and 0.037 Pa s. The highest interfacial viscosity (η
i) values at low shear rates were determined in the mixture of egg protein-inulin at the oil/water interface. In particular, the interfacial properties of egg protein were not similar to those of other proteins. This study indicated that interfacial rheological properties and emulsifying properties of the proteins were influenced by the presence of inulin which contributes to the existing body of knowledge on the preparation of the prebiotic emulsions with proteins.
Collapse
Affiliation(s)
- Duygu Aslan Türker
- Department of Food Engineering , Erciyes University, Engineering College , 38039 Kayseri Türkiye
| | - Meryem Göksel Saraç
- Food Technology Department , Cumhuriyet University, Yıldızeli Vocational College , 58500 Sivas , Türkiye
| | - Mahmut Doğan
- Department of Food Engineering , Erciyes University, Engineering College , 38039 Kayseri Türkiye
| |
Collapse
|
16
|
Impact of polyelectrolyte complex layer on the stability of palm oil multiple emulsions encapsulating a water-soluble compound during heating, cooling, and storage processes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Reiner J, Walter E, Karbstein H. Assessment of droplet self-shaping and crystallization during temperature fluctuations exceeding the melting temperature of the dispersed phase. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Tarannum N, Pooja K. Recent trends and applications in the research and development activities of redispersible powder: a vision of twenty-first century. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Comprehensive review of the interfacial behavior of water/oil/surfactant systems using dissipative particle dynamics simulation. Adv Colloid Interface Sci 2022; 309:102774. [PMID: 36152373 DOI: 10.1016/j.cis.2022.102774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022]
Abstract
A comprehensive understanding of interfacial behavior in water/oil/surfactant systems is critical to evaluating the performance of emulsions in various industries, specifically in the oil and gas industry. To gain fundamental knowledge regarding this interfacial behavior, atomistic methods, e.g., molecular dynamics (MD) simulation, can be employed; however, MD simulation cannot handle phenomena that require more than a million atoms. The coarse-grained mesoscale methods were introduced to resolve this issue. One of the most effective mesoscale coarse-grained approaches for simulating colloidal systems is dissipative particle dynamics (DPD), which bridges the gap between macroscopic time and length scales and molecular-scale simulation. This work reviews the fundamentals of DPD simulation and its progress on colloids and interface systems, especially surfactant/water/oil mixtures. The effects of temperature, salt content, a water/oil ratio, a shear rate, and a type of surfactant on the interfacial behavior in water/oil/surfactant systems using DPD simulation are evaluated. In addition, the obtained results are also investigated through the lens of the chemistry of surfactants and emulsions. The outcome of this comprehensive review demonstrates the importance of DPD simulation in various processes with a focus on the colloidal and interfacial behavior of surfactants at water-oil interfaces.
Collapse
|
20
|
Gao Y, Meng Z. Crystallization of lipids and lipid emulsions treated by power ultrasound: A review. Crit Rev Food Sci Nutr 2022; 64:1882-1893. [PMID: 36073738 DOI: 10.1080/10408398.2022.2119365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The actual food system with fat is always complex and fat crystal and fat crystal networks have important effects on the physical properties of food. Recently, power ultrasound (PU) had been widely recognized as an auxiliary technology of fat crystallization to modify food properties. This review expounded on the mechanism of ultrasonic crystallization, and summarized effects of various factors in the process of ultrasonic treatment on fat crystallization. Based on the above, combined with the application of ultrasound in emulsions, the ultrasonic fat crystallization effect in the emulsion system was judged and described. Research results indicated that PU could shorten the induction time of crystallization, accelerate the formation of crystal nuclei, and change the polymorphism of fat crystals. The product treated by PU formed smaller and more uniform crystals to produce a more viscoelastic fat crystal network. In emulsion systems, ultrasonic treatments showed the same effect, but the effect of ultrasonic crystallization on the emulsion stability was different due to fat crystals in different emulsion systems. Meanwhile, the importance of ultrasonic crystallization in lipid emulsions was emphasized, thus ultrasonic crystallization had great potential in emulsion systems.
Collapse
Affiliation(s)
- Yujie Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
21
|
Wan L, Li L, Xiao J, He N, Zhang R, Li B, Zhang X. The interfacial digestion behavior of crystalline oil-in-water emulsions stabilized by sodium caseinate during in vitro gastrointestinal digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Li W, Chen Z, Wang W, Lan Y, Huang Q, Cao Y, Xiao J. Modulation of the spatial distribution of crystallizable emulsifiers in Pickering double emulsions. J Colloid Interface Sci 2022; 619:28-41. [DOI: 10.1016/j.jcis.2022.03.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/13/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
|
23
|
Zore A, Geng P, Van De Mark MR. Equilibrium and Dynamic Surface Tension Behavior in Colloidal Unimolecular Polymers (CUP). Polymers (Basel) 2022; 14:polym14112302. [PMID: 35683974 PMCID: PMC9183089 DOI: 10.3390/polym14112302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Studies of the interfacial behavior of pure aqueous nanoparticles have been limited due tothe difficulty of making contaminant-free nanoparticles while also providing narrow size distribution. Colloidal unimolecular polymers (CUPs) are a new type of single-chain nanoparticle with a particle size ranging from 3 to 9 nm, which can be produced free of surfactants and volatile organic contents (VOCs). CUP particles of different sizes and surface charges were made. The surface tension behavior of these CUP particles in water was studied using a maximum bubble pressure tensiometer. The equilibrium surface tension decreased with increasing concentration and the number of charges present on the surface of the CUP particles influences the magnitude of the interfacial behavior. The effect of electrostatic repulsion between the particles on the surface tension was related. At higher concentrations, surface charge condensation started to dominate the surface tension behavior. The dynamic surface tension of CUP particles shows the influence of the diffusion of the particles to the interface on the relaxation time. The relaxation time of the CUP polymer was 0.401 s, which is closer to the diffusion-based relaxation time of 0.133s for SDS (sodium dodecyl sulfate).
Collapse
|
24
|
Pompilio da Capela A, Artigiani Lima Tribst A, Esteves Duarte Augusto P, Ricardo de Castro Leite Júnior B. Use of physical processes to maximize goat milk cream hydrolysis: Impact on structure and enzymatic hydrolysis. Food Res Int 2022; 156:111343. [DOI: 10.1016/j.foodres.2022.111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
|
25
|
Javad S, Gopirajah R, Rizvi SSH. High internal phase oil-in-water emulsions stabilized by supercritical carbon dioxide extruded whey protein concentrate. Food Chem 2022; 372:131362. [PMID: 34818751 DOI: 10.1016/j.foodchem.2021.131362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/04/2022]
Abstract
High Internal Phase Emulsions (HIPEs) were stabilized by functionalized whey protein concentrate (WPC-80). Functionalization of WPC-80 was done by supercritical CO2 assisted extrusion technology. HIPEs were formed by 80% oil and 1-4 wt% of control (untreated) whey protein concentrate, extruded/functionalized whey protein concentrates (f-WPC-80) at pH 3.0 and 5.4, and sodium caseinate (NaCas) separately and were characterized for their stability at two temperatures (25 and 40 °C) for 20 days. Results indicated that f-WPC-80-pH3.0 formed self-standing gels at 1 wt% concentrations which were more stable, without phase separation, than those stabilized by commercially used stabilizer NaCas and native c-WPC. At 4% concentration of f-WPC-80-pH3.0, the compressed droplets produced emulsions with self-standing and viscoelastic features. While control WPC-80, could not form stable HIPEs at any investigated concentrations. The reported high internal phase oil-in-water emulsions, offer a potential new system for delivery of nutritionally superior and clean-label products of commercial utility.
Collapse
Affiliation(s)
- Sumera Javad
- Department of Food Science, Cornell University, Ithaca, NY, USA; Department of Botany, Lahore College for Women University, Lahore, Pakistan.
| | | | - Syed S H Rizvi
- Department of Food Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
26
|
Szumała P, Macierzanka A. Topical delivery of pharmaceutical and cosmetic macromolecules using microemulsion systems. Int J Pharm 2022; 615:121488. [DOI: 10.1016/j.ijpharm.2022.121488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 01/29/2023]
|
27
|
Wang W, Wang R, Yao J, Luo S, Wang X, Zhang N, Wang L, Zhu X. Effect of ultrasonic power on the emulsion stability of rice bran protein-chlorogenic acid emulsion. ULTRASONICS SONOCHEMISTRY 2022; 84:105959. [PMID: 35247681 PMCID: PMC8897710 DOI: 10.1016/j.ultsonch.2022.105959] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 05/07/2023]
Abstract
In this study, rice bran protein-chlorogenic acid (RBP-CA) emulsion was subjected to an ultrasonic-assisted treatment technique. The encapsulation efficiency and loading capacity of chlorogenic acid (CA), and the morphology, particle size, zeta (ζ)-potential, atomic force microscopy image, viscosity, turbidity, and interfacial protein content of the emulsion under different ultrasonic power were investigated. The results revealed that the emulsion exhibited an encapsulation efficiency and loading capacity of 86.26 ± 0.11% and 17.25 ± 0.06 g/100 g, respectively, at an ultrasonic power of 400 W. In addition, the size of the emulsion droplets decreased and became more evenly distributed. Furthermore, the viscosity of the emulsion decreased significantly, and it exhibited a turbidity and interfacial protein content of 24,758 and9.34 mg/m2, respectively. Next, the storage, oxidation, thermal, and salt ion stabilities of the emulsion were evaluated. The results revealed that the ultrasonic-assisted treatment considerably improved the stability of the emulsion.
Collapse
Affiliation(s)
- Weining Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Ruiying Wang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Jing Yao
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Shunian Luo
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Xue Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Na Zhang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Liqi Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
- Corresponding authors at: College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China.
| | - Xiuqing Zhu
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
- Corresponding authors at: College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China.
| |
Collapse
|
28
|
Park C, Campanella O, Maleky F. The effects of whey protein and oleogel interactions on mechanical properties of oleocolloids and hydro-oleocolloids matrices. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
29
|
Zhang Y, Yang C, Yuan S, Yao X, Chao Y, Cao Y, Song Q, Sauret A, Binks BP, Shum HC. Effects of particle size on the electrocoalescence dynamics and arrested morphology of liquid marbles. J Colloid Interface Sci 2022; 608:1094-1104. [PMID: 34879587 DOI: 10.1016/j.jcis.2021.09.187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
HYPOTHESIS The coalescence of bare droplets when surface tension dominates always results in one larger spherical droplet. In contrast, droplets coated with particles may be stabilized into non-spherical structures after arrested coalescence, which can be achieved by different approaches, such as changing the particle surface coverage. The size of particles coating the initial liquid marbles can be used to control the coalescence dynamics and the resulting morphology of arrested droplets. EXPERIMENT We characterized the electrocoalescence of liquid marbles coated with particles ranging from hundred nanometers to hundred micrometers. The electrocoalescence was recorded using high-speed imaging. FINDINGS When the electrocoalescence initiates, particles jam and halt the relaxation of the marbles at different stages, resulting in four possible final morphologies that are characterized using the Gaussian curvature at the neck region. The four regimes are total coalescence, arrested puddle coalescence, arrested saddle coalescence, and non-coalescence. The coalescence is initiated at the center of the contact zone, independent of the particle size. Small particles show little resistance to the coalescence, while marbles coated by large particles demonstrate a viscous-like behavior, indicated by the growth of the liquid bridge and the damping. The present study provides guidelines for applications that involve the formulation of liquid marbles with complex morphologies.
Collapse
Affiliation(s)
- Yage Zhang
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Chentianyi Yang
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Shuai Yuan
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Xiaoxue Yao
- Department of Biomedical Engineering, Shenzhen University, Shenzhen 518000, China.
| | - Youchuang Chao
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Yang Cao
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Qingchun Song
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Alban Sauret
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA.
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX, UK.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
30
|
The effect of emulsifier type on the secondary crystallisation of monoacylglycerol and triacylglycerols in model dairy emulsions. J Colloid Interface Sci 2022; 608:2839-2848. [PMID: 34801239 DOI: 10.1016/j.jcis.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022]
Abstract
Dairy emulsions contain an intrinsically heterogeneous lipid phase, whose components undergo crystallisation in a manner that is critical to dairy product formulation, storage, and sensory perception. Further complexity is engendered by the diverse array of interfacially-active molecules naturally present within the serum of dairy systems, and those that are added for specific formulation purposes, all of which interact at the lipid-serum interface and modify the impact of lipid crystals on dairy emulsion stability. The work described in this article addresses this complexity, with a specific focus on the impact of temperature cycling and the effect of emulsifier type on the formation and persistence of lipid crystals at lipid-solution interfaces. Profile analysis tensiometry experiments were performed using single droplets of the low melting fraction of dairy lipids, in the presence and absence of emulsifiers (Tween 80 and whey protein isolate, WPI) and during the temperature cycling, to study the formation of monoacylglycerol (MAG) crystals at the lipid-solution interface. Companion experiments on the same lipid systems, and at the same cooling and heating rates, were undertaken with synchrotron small angle X-ray scattering, to specifically analyse the effect of emulsifier type on the formation of triacylglycerol (TAG) crystals at the lipid-solution interface of a model dairy emulsion. These two complementary techniques have revealed that Tween 80 molecules delay MAG and TAG crystal formation by lowering the temperature at which the crystallisation occurs during two cooling cycles. WPI molecules delay the crystallisation of MAGs and TAGs during the first cooling cycle, while MAG crystals form without delay during the second cooling cycle at the same temperature as MAG crystals in an emulsifier free system. The crystallisation of TAGs is inhibited during the second cooling cycle. The observed differences in crystallisation behaviour at the interface upon temperature cycling can provide further insight into the impact of emulsifiers on the long-term stability of emulsion-based dairy systems during storage.
Collapse
|
31
|
Du X, Hu M, Liu G, Qi B, Zhou S, Lu K, Xie F, Zhu X, Li Y. Development and evaluation of delivery systems for quercetin: A comparative study between coarse emulsion, nano-emulsion, high internal phase emulsion, and emulsion gel. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Gmach O, Golda J, Kulozik U. Freeze-thaw stability of emulsions made with native and enzymatically modified egg yolk fractions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Reiner J, Ly TT, Liu L, Karbstein HP. Melt Emulsions: Influence of the Cooling Procedure on Crystallization and Recrystallization of Emulsion Droplets and their Influence on Dispersion Viscosity upon Storage. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202100143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jasmin Reiner
- Karlsruhe Institute of Technology Institute of Process Engineering in Life Sciences, Food Process Engineering Gotthard-Franz-Straße 3 76131 Karlsruhe Germany
| | - Tran T. Ly
- Karlsruhe Institute of Technology Institute of Process Engineering in Life Sciences, Food Process Engineering Gotthard-Franz-Straße 3 76131 Karlsruhe Germany
| | - Lingyue Liu
- Karlsruhe Institute of Technology Institute of Process Engineering in Life Sciences, Food Process Engineering Gotthard-Franz-Straße 3 76131 Karlsruhe Germany
| | - Heike P. Karbstein
- Karlsruhe Institute of Technology Institute of Process Engineering in Life Sciences, Food Process Engineering Gotthard-Franz-Straße 3 76131 Karlsruhe Germany
| |
Collapse
|
34
|
Jiao W, Li L, Yu A, Zan S, Chen Z, Liang Y, Liang K, Li B, Zhang X. Modulating the in vitro gastrointestinal digestibility of crystalline oil-in-water emulsion: Different fat crystal sizes and polymorphic forms under the same SFC. Food Chem 2022; 368:130723. [PMID: 34500352 DOI: 10.1016/j.foodchem.2021.130723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
The effects of the fat crystal structure on lipid droplets digestion behaviors were investigated using an in vitro digestion model. The crystalline oil-in-water emulsions containing the same solid fat content (SFC) with different fat crystal sizes and polymorphic forms were fabricated by different storage protocols: constant-temperature and inconstant-temperature storage. Oral and gastric processing led to a significant increase (p < 0.05) in the d4,3 values of the two emulsions, and the two emulsions underwent partial coalescence and flocculation/aggregation. The free fatty acid (FFA) release profiles showed that the lipolysis extent decreased due to a larger crystal size. In addition, the two emulsions showed differences in beta polymorphism. This work further demonstrated that the FFA release could be modulated by the physical properties of the fat.
Collapse
Affiliation(s)
- Wenjuan Jiao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, College Road 1, Dongguan 523808, China
| | - Anling Yu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Shengjie Zan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Zhiyi Chen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd., Maoming, Guangdong 525427, China
| | - Kexin Liang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
35
|
Formulation design, production and characterisation of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the encapsulation of a model hydrophobic active. FOOD HYDROCOLLOIDS FOR HEALTH 2022; 1:None. [PMID: 35028634 PMCID: PMC8721956 DOI: 10.1016/j.fhfh.2021.100024] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023]
Abstract
Lipid materials were chosen based on theoretical and experimental lipid screening. SLNs and NLCs with high curcumin loading were produced using the selected lipids. Nano-sized lipid particles fabricated by tuning the processing parameters. Lipid matrix component compatibility affects thermal properties as shown by DSC. Formation of distinct lipid structures in liquid lipid concentration-dependent manner.
Lipid nanoparticles have been widely investigated for their use as either carriers for poorly water soluble actives or as (Pickering) emulsion stabilisers. Recent studies have suggested that the fabrication of lipid nanostructures that can display both these performances concurrently, can enable the development of liquid formulations for multi-active encapsulation and release. Understanding the effects of different formulation variables on the microstructural attributes that underline both these functionalities is crucial in developing such lipid nanostructures. In this study, two types of lipid-based nanoparticles, solid lipid nanoparticles and nanostructured lipid carriers, were fabricated using varying formulation parameters, namely type of solid lipid, concentration of liquid lipid and type/concentration of surface active species. The impact of these formulation parameters on the size, thermal properties, encapsulation efficiency, loading capacity and long-term storage stability of the developed lipid systems, was studied. Preliminary lipid screening and processing conditions studies, focused on creating a suitable lipid host matrix of appropriate dimensions that could enable the high loading of a model hydrophobic active (curcumin). Informed by this, selected lipid nanostructures were then produced. These were characterised by encapsulation efficiency and loading capacity values as high as 99% and 5%, respectively, and particle dimensions within the desirable size range (100-200 nm) required to enable Pickering functionality. Compatibility between the lipid matrix components, and liquid lipid/active addition were shown to greatly influence the polymorphism/crystallinity of the fabricated particles, with the latter demonstrating a liquid lipid concentration-dependent behaviour. Successful long-term storage stability of up to 28 weeks was confirmed for certain formulations.
Collapse
|
36
|
Gao Y, Zheng J, Liu S, Shi L, Shao J. Effects of lipids on the properties of emulsified interfacial film of myofibrillar protein by Raman spectroscopy. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Gao
- College of Food Science Shenyang Agricultural University Shenyang PR China
| | - Jinyue Zheng
- College of Food Science Shenyang Agricultural University Shenyang PR China
| | - Sinong Liu
- College of Food Science Shenyang Agricultural University Shenyang PR China
| | - Lishuang Shi
- College of Food Science Shenyang Agricultural University Shenyang PR China
| | - Jun‐Hua Shao
- College of Food Science Shenyang Agricultural University Shenyang PR China
| |
Collapse
|
37
|
Bacterial Complexity of Traditional Mountain Butter Is Affected by the Malga-Farm of Production. Microorganisms 2021; 10:microorganisms10010017. [PMID: 35056468 PMCID: PMC8778680 DOI: 10.3390/microorganisms10010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
Bacteria can play different roles affecting flavors and food characteristics. Few studies have described the bacterial microbiota of butter. In the present paper, next-generation sequencing was used to determine bacterial diversity, together with aromatic characteristics, in raw cow milk butter processed by traditional fermentation, in fourteen small farms called “Malga”, located in the Trentino province (Alpine region, North-East of Italy). The physicochemical and aromatic characterization of traditional mountain butter (TMB) showed a low moisture level depending on the Malga producing the butter. Counts of lactic acid bacteria, Staphylococci, and coliforms, as well as diacetyl/acetoin concentrations exhibited changes according to the geographical origin of Malga and the residual humidity of butter. MiSeq Illumina data analysis revealed that the relative abundance of Lactococcus was higher in TMB samples with the highest values of acetoin (acetoin higher than 10 mg/kg). The traditional mountain butter bacterial community was characterized by a “core dominance” of psychrotrophic genera, mainly Acinetobacter and Pseudomonas, but according to ANCOM analysis, a complex bacterial population emerged and specific bacterial genera were able to characterize the TMB bacteria community, with their high abundance, based on the Malga producing the butter.
Collapse
|
38
|
Xu H, Yang L, Chen Y, Shi L, Zhang J, Jin J, Wei W, Jin Q, Wang X. WITHDRAWN: Effects of MCC to CMC ratios on room temperature-storage stabilities and whipping capabilities of whipping creams. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Thermal and structural study of drying method effect in high amylose starch- beta-carotene nanoparticles prepared with cold gelatinization. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Patel V, Andrade J, Rousseau D. Fat crystal-stabilized water-in-oil emulsion breakdown and marker release during in vitro digestion. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Logan A, Lopez C, Xu M, Day L, Oiseth S, Augustin MA. Tempering governs the milk fat crystallisation and viscoelastic behaviour of unprocessed and homogenised creams. Food Res Int 2021; 147:110557. [PMID: 34399534 DOI: 10.1016/j.foodres.2021.110557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022]
Abstract
The crystallisation behaviour of milk fat plays an important role in the functionality and sensory properties of fat-rich dairy products. In this study, we investigated the impact of tempering to 25 °C on the viscoelastic properties, particle size and thermal behaviour of 20% w/w unprocessed and homogenised creams prepared from bovine milk. The crystallisation properties were examined by synchrotron X-ray diffraction (XRD) at small (SAXS) and wide angle (WAXS) and differential scanning calorimetry (DSC). Oscillation rheology was performed to characterise the cream's viscoelastic properties. Homogenisation (35 MPa) reduced the average droplet size from 4.4 to 1.3 µm. After 24 h storage at 4 °C, milk fat structures showed triacylglycerol (TAG) 2L and 3L(001, 002, 003, 005) lamellar stacking orders associated predominantly with the α and β' polymorphic forms. Tempering to 25 °C induced the complete melting of the 3L crystals and led to an irreversible loss in the elastic modulus (G') and a reduction in the viscous modulus (G'') once returned to refrigerated conditions, due to changes in the particle-particle interactions and structure of the reformed milk fat crystals. The results demonstrate that crystallisation behaviour of milk fat is influenced by droplet size and the rearrangement of triacylglycerol (TAG) upon tempering, and lead to changes in the viscoelastic behaviour of dairy products containing a high level of milk fat.
Collapse
Affiliation(s)
- Amy Logan
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia.
| | | | - Mi Xu
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia.
| | - Li Day
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia.
| | - Sofia Oiseth
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia.
| | - Mary Ann Augustin
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, Victoria 3030, Australia.
| |
Collapse
|
42
|
Soo YT, Ng SW, Tang TK, Ab Karim NA, Phuah ET, Lee YY. Preparation of palm (Elaeis oleifera) pressed fibre cellulose nanocrystals via cation exchange resin: characterisation and evaluation as Pickering emulsifier. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4161-4172. [PMID: 33428211 DOI: 10.1002/jsfa.11054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Palm pressed fibre (PPF) is a cellulose-rich biomass residue produced during palm oil extraction. Its high cellulose content allows the isolation of cellulose nanocrystal (CNC). CNC has attracted scientific interest due to its biodegradability, biocompatibility and low cost. The present study isolated CNC from PPF using a cation exchange resin, which is an environmentally friendly and less harsh hydrolysis method than conventional mineral acid hydrolysis. Isolated CNC was used to stabilise an oil-in-water emulsion and the emulsion stability was evaluated in terms of droplet size, morphology and physical stability. RESULTS PPF was subjected to alkali and bleach treatment prior to hydrolysis, which successfully removed 54% and 75% of non-cellulosic components (hemicellulose and lignin, respectively). Hydrolysis conditions of 5 h, 15:1 (w/w) resin-to-pulp ratio and 50 °C produced CNC particles of 50-100 nm in length. CNC had a crystallinity index of 42% and appeared rod-like morphologically. CNC-stabilised emulsion had better stability when used in combination with soy lecithin (SL), a well-established, commonly used food stabiliser. Emulsion stabilised by the binary mixture of CNC and SL had droplet size, morphology and physical stability comparable to those of emulsion stabilised using SL. CONCLUSIONS CNC was successfully isolated from PPF through a cation exchange resin. This offers an alternative usage for the underutilised PPF to be converted into value-added products. Isolated CNC was also found to have promising potential in the stabilisation of Pickering emulsions. These results provide useful information indicating CNC as a natural and sustainable stabiliser for food, cosmeceutical and pharmaceutical applications. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yee-Theng Soo
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Shi-Wan Ng
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Teck-Kim Tang
- Natural Medicines and Product Research Laboratory (NaturMeds), International Joint Laboratory on Plant Oils Processing and Safety (POPS) JNU-UPM Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nur Azwani Ab Karim
- Sime Darby Research Sdn Bhd, R&D Carey Island-Upstream, Carey Island, Malaysia
| | - Eng-Tong Phuah
- Department and Agriculture and Food Science, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- Monash-Industry Palm Oil Education and Research Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
43
|
García-González DO, Yánez-Soto B, Dibildox-Alvarado E, Ornelas-Paz JDJ, Pérez-Martínez JD. The effect of interfacial interactions on the rheology of water in oil emulsions oleogelled by candelilla wax and saturated triacylglycerols. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Li G, Lee WJ, Liu N, Lu X, Tan CP, Lai OM, Qiu C, Wang Y. Stabilization mechanism of water-in-oil emulsions by medium- and long-chain diacylglycerol: Post-crystallization vs. pre-crystallization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Silva TJ, Barrera-Arellano D, Ribeiro APB. Oleogel-based emulsions: Concepts, structuring agents, and applications in food. J Food Sci 2021; 86:2785-2801. [PMID: 34160057 DOI: 10.1111/1750-3841.15788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/23/2021] [Accepted: 05/02/2021] [Indexed: 01/03/2023]
Abstract
This review discusses the application of oleogel technology in emulsified systems. In these systems of mimetic fats, water-in-oil or oil-in-water emulsions can be obtained, but, here, we cover emulsions with an oil continuous phase in detail. Depending on the percentage of water added to the oleogels, systems with different textures and rheological properties can be developed. These properties are affected by the characteristics and concentration of the added components and emulsion preparation methods. In addition, some gelators exhibit interfacial properties, resulting in more stable emulsions than those of conventional emulsions. Oleogel-based emulsion are differentiated by continuous and dispersed phases and the structuring/emulsification components. Crucially, these emulsions could be applied by the food industry for preparing, for example, meat products and margarines, as well as by the cosmetics industry. We present the different processes of emulsion elaboration, the main gelators used, the influence of the water content on the structuring of water-in-oleogel emulsions, and the structuring mechanisms (Pickering, network, and combined Pickering and network stabilization). Finally, we highlight the applications of these systems as alternatives for reducing processed food lipid content and saturated fat levels.
Collapse
Affiliation(s)
- Thais J Silva
- Laboratory of Oils and Fats, Department of Food Technology, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Daniel Barrera-Arellano
- Laboratory of Oils and Fats, Department of Food Technology, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana Paula B Ribeiro
- Laboratory of Oils and Fats, Department of Food Technology, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
46
|
Thermal degradation and kinetics stability studies of oil palm (Elaeis Guineensis) biomass-derived lignin nanoparticle and its application as an emulsifying agent. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
47
|
Tasneem R, Khan HMS, Zaka HS, Khan P. Development and cosmeceutical evaluation of topical emulgel containing Albizia lebbeck bark extract. J Cosmet Dermatol 2021; 21:1588-1595. [PMID: 34021684 DOI: 10.1111/jocd.14244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Antioxidants are widely used in cosmetic products as they have beneficial effects on skin and prevent skin from harmful effects of environment. Albizia lebbeck has a significant potential to be used in cosmeceuticals due to its antioxidant activity. OBJECTIVES The aim of this study was to formulate a stable and effective o/w emulsion-based emulgel containing Albizia lebbeck bark extract, which have considerable antioxidant activity. METHODOLOGY Antioxidant activity of Albizia lebbeck bark extract was determined by DPPH (2,2-diphenyl-1-picrylhydrazyl) method. Emulgel containing 3% extract was developed by mixing o/w emulsion in Carbopol gel along with a placebo emulgel without extract (base). In vitro evaluation of these emulgels, that is, liquefaction, color, phase separation, centrifugation, and pH change were carried out for a period of 8 weeks at different storage conditions, that is, 8ºC, 25ºC, 40ºC, and 40ºC & 75% relative humidity (RH). In vivo evaluation of emulgels was carried out on 13 healthy female volunteers by measuring various parameters of skin, that is, melanin level, erythema level, moisture content, sebum content, and elasticity at regular time intervals after applying emulgel (both base and test formulation) for 8 weeks. RESULTS Antioxidant activity of Albizia lebbeck bark extract was 84.7%. Both emulgels (base and test formulation) were stable at all storage conditions. Statistical analysis showed that test formulation produced significant effects (p < 0.05) on melanin, erythema level, moisture content, sebum level, and elasticity of skin. CONCLUSION It can be concluded that a stable topical emulgel containing 3% Albizia lebbeck bark extract has significant antioxidant effects on human skin.
Collapse
Affiliation(s)
- Rabia Tasneem
- Department of Pharmaceutics, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Haji Muhammad Shoaib Khan
- Department of Pharmaceutics, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Saqib Zaka
- Department of Pharmaceutics, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Palwasha Khan
- Department of Pharmaceutics, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
48
|
Wakui R, Kamigaki T, Nishino Y, Ito Y, Miyazawa A, Shiota M. Effect of Sucrose Esterified Fatty Acid Moieties on the Crystal Nanostructure and Physical Properties of Water-in-oil Palm-based Fat Blends. J Oleo Sci 2021; 70:479-490. [PMID: 33692235 DOI: 10.5650/jos.ess20210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of sucrose ester of fatty acid (SEF) on the nanostructure and the physical properties of water-in-oil (W/O)-type emulsified semisolid fats were investigated. Model emulsions including palm-based semisolid fats and fully hydrogenated rapeseed oils with 0.5% SEF or fractionated lecithin, were prepared by rapidly cooling crystallization using 0.5% monoacylglycerol as an emulsifier. The SEFs used in this study were functionalized with various fatty acids, namely, lauric, palmitic, stearic, oleic, and erucic acids. Cryogenic transmission electron microscopy (cryo-TEM) was used to observe the sizes of the solvent- extracted nanoplatelets. The solid fat content (SFC), oil migration value, and storage elastic modulus were also determined. The average crystal size, which was measured in length, of the fat blends with SEFs containing saturated fatty acids (namely, palmitic and stearic acids) was smaller than that of the SEFs containing unsaturated fatty acids (namely, oleic and erucic acids). The effects exerted by these fatty acid moieties on the spherulite size in the corresponding bulk fat blends were observed via polarized microscopy (PLM). The results suggest that nanostructure formation upon the addition of SEF ultimately influenced these aggregated microstructures. Generally, smaller platelets resulted in higher SFC in the fat phase, and a high correlation between the SFC and the G' values in W/O emulsion fats was observed (R2 = 0.884) at 30°C. In contrast, the correlation was low at 10℃. Furthermore, samples with larger nanocrystals had a higher propensity for oil migration. Thus, the addition of SEF regulated the fat crystal nanostructure during nucleation and crystal growth, which could ultimately influence the physical properties of commercially manufactured fat products such as margarine.
Collapse
Affiliation(s)
- Ryota Wakui
- Milk Science Institute, Megmilk Snow Brand, Co., Ltd
| | | | - Yuri Nishino
- Graduate School of Life Science, University of Hyogo
| | - Yoshiko Ito
- Graduate School of Life Science, University of Hyogo
| | | | - Makoto Shiota
- Milk Science Institute, Megmilk Snow Brand, Co., Ltd
| |
Collapse
|
49
|
Oleogel-structured emulsion for enhanced oxidative stability of perilla oil: Influence of crystal morphology and cooling temperature. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Miyagawa Y, Nagamizu H, Ogawa T, Adachi S. Phase behavior of a binary mixture of rapeseed and soybean oils. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yayoi Miyagawa
- Faculty of Bio-environmental Science, Kyoto University of Advanced Science
| | - Hironori Nagamizu
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Takenobu Ogawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Shuji Adachi
- Faculty of Bio-environmental Science, Kyoto University of Advanced Science
| |
Collapse
|