1
|
Qu M, Guo X, Ando T, Yang Q. Functional role of carbohydrate-binding modules in multi-modular chitinase OfChtII. J Biol Chem 2024; 300:107622. [PMID: 39098522 PMCID: PMC11402056 DOI: 10.1016/j.jbc.2024.107622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024] Open
Abstract
The primary distinction between insect and bacterial chitin degradation systems lies in the presence of a multi-modular endo-acting chitinase ChtII, in contrast to a processive exo-acting chitinase. Although the essential role of ChtII during insect development and its synergistic action with processive chitinase during chitin degradation has been established, the mechanistic understanding of how it deconstructs chitin remains largely elusive. Here OfChtII from the insect Ostrinia furnacalis was investigated employing comprehensive approaches encompassing biochemical and microscopic analyses. The results demonstrated that OfChtII truncations with more carbohydrate-binding modules (CBMs) exhibited enhanced hydrolysis activity, effectively yielding a greater proportion of fibrillary fractions from the compacted chitin substrate. At the single-molecule level, the CBMs in these OfChtII truncations have been shown to primarily facilitate chitin substrate association rather than dissociation. Furthermore, a greater number of CBMs was demonstrated to be essential for the enzyme to effectively bind to chitin substrates with high crystallinity. Through real-time imaging by high-speed atomic force microscopy, the OfChtII-B4C1 truncation with three CBMs was observed to shear chitin fibers, thereby generating fibrillary fragments and deconstructing the compacted chitin structure. This work pioneers in revealing the nanoscale mechanism of endo-acting multi-modular chitinase involved in chitin degradation, which provides an important reference for the rational design of chitinases or other glycoside hydrolases.
Collapse
Affiliation(s)
- Mingbo Qu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China; Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Xiaoxi Guo
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Ezzine A, Ben Hadj Mohamed S, Bezzine S, Aoudi Y, Hajlaoui MR, Baciou L, Smaali I. Improved Expression of a Thermostable GH18 Bacterial Chitinase in Two Different Escherichia coli Strains and Its Potential Use in Plant Protection and Biocontrol of Phytopathogenic Fungi. Mol Biotechnol 2024; 66:2635-2647. [PMID: 38265740 DOI: 10.1007/s12033-023-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024]
Abstract
Chitinases are enzymes that can break down chitin, a major component of the exoskeleton of insects and fungi. This feature makes them potential biopesticides in agriculture since they are considered a safe and environmentally friendly alternative to synthetic pesticides. In this work, we performed a comparative study between two different bacterial expression strains to produce a recombinant chitinase with improved stability. Escherichia coli strains Origami B and BL21 (DE3) were selected for their distinct cytosolic environment to express BhChitA chitinase of Bacillus halodurans C-125 and to investigate the role of disulfide bond formation and proper folding on its stability and activity. Expression of the recombinant BhChitA in bacterial strain containing oxidative cytosol (Origami B) improved its activity and stability. Although both expression systems have comparable biochemical properties (temperature range 20-80 °C and pH spectrum 3-10), BhChitA expressed in Origami strain seems more stable than expressed in BL21. Furthermore, the optimal expression conditions of the recombinant BhChitA has been carried out at 30 °C during 6 h for the Origami strain, against 20 °C during 2 h for BL21. On the other hand, no significant differences were detected between the two enzymes when the effect of metal ions was tested. These findings correlate with the analysis of the overall structure of BhChitA. The model structure permitted to localize disulfide bond, which form a stable connection between the substrate-binding residues and the hydrophobic core. This link is required for efficient binding of the chitin insertion domain to the substrate. BhChitA exhibited in vitro antifungal effect against phytopathogenic fungi and suppressed necrosis of Botrytis cinerea on detached tomato leaves. In vitro assays showed the influence of BhChitA on growth suppression of Botrytis cinerea (53%) Aspergillus niger (65%), Fusarium graminearum (25%), and Fusarium oxysporum (34%). Our results highlight the importance of the bacterial expression system with oxidative cytosol in producing promising biopesticides that can be applied for post-harvest processing and crop protection.
Collapse
Affiliation(s)
- Aymen Ezzine
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia.
- Higher Institute of Preparatory Studies in Biology and Geology (ISEP-BG), 49 Avenue 13 Août, Choutrana II, 2036, Soukra, Tunisia.
| | - Safa Ben Hadj Mohamed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
| | - Sofiane Bezzine
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
- Higher Institute of Preparatory Studies in Biology and Geology (ISEP-BG), 49 Avenue 13 Août, Choutrana II, 2036, Soukra, Tunisia
| | - Yosra Aoudi
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, 183-8509, Fuchu, Japan
| | - Mohamed Rabeh Hajlaoui
- National Institute of Agronomic Research (INRAT), Laboratory of Biotechnology Applied to Agriculture, 1004, El Menzah, Tunis, Tunisia
| | - Laura Baciou
- Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Issam Smaali
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
| |
Collapse
|
3
|
Rabadiya D, Behr M. The biology of insect chitinases and their roles at chitinous cuticles. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104071. [PMID: 38184175 DOI: 10.1016/j.ibmb.2024.104071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Chitin is one of the most prevalent biomaterials in the natural world. The chitin matrix formation and turnover involve several enzymes for chitin synthesis, maturation, and degradation. Sequencing of the Drosophila genome more than twenty years ago revealed that insect genomes contain a number of chitinases, but why insects need so many different chitinases was unclear. Here, we focus on insect GH18 family chitinases and discuss their participation in chitin matrix formation and degradation. We describe their variations in terms of temporal and spatial expression patterns, molecular function, and physiological consequences at chitinous cuticles. We further provide insight into the catalytic mechanisms by discussing chitinase protein domain structures, substrate binding, and enzymatic activities with respect to structural analysis of the enzymatic GH18 domain, substrate-binding cleft, and characteristic TIM-barrel structure.
Collapse
Affiliation(s)
- Dhyeykumar Rabadiya
- Cell & Developmental Biology, Institute for Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103, Leipzig, Germany
| | - Matthias Behr
- Cell & Developmental Biology, Institute for Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103, Leipzig, Germany.
| |
Collapse
|
4
|
Zi X, Li Y, Li G, Jia B, Jeppesen E, Zeng Q, Gu X. A molting chemical cue (N-acetylglucosamine-6-phosphate) contributes to cannibalism of Chinese mitten crab Eriocheir sinensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106666. [PMID: 37660581 DOI: 10.1016/j.aquatox.2023.106666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Under high-density culture, cannibalism occurs frequently during the molting of the Chinese mitten crabs Eriocheir sinensis, resulting in a large reduction in production. We found that the leakage of molting fluid from sexually immature crabs informs conspecifics that they are in a molting process. This hypothesis was verified through metabolomics analyses combined with behavioral experiments. The GlcNAc-6-P was identified as a molting biomarker from the differential metabolites by non-targeted metabolomics. In addition, we found that the concentration of GlcNAc-6-P in the molting fluid was significantly higher than other molting metabolites at different molting stages, reaching 5.84 μmol L-1, indicating that the molting fluid was the source of GlcNAc-6-P. Moreover, the behavioral experiments showed that crabs were actively approached to high concentrations of GlcNAc-6-P (1 μmol L-1), but had no obvious choice tendency at different concentrations of UTP, 20-HE and low concentrations of GlcNAc-6-P (0.1 μmol L-1, 0.01 μmol L-1) compared with the control groups. In conclusion, that E. sinensis by sensing the concentration change of GlcNAc-6-P can locate the source of GlcNAc-6-P release and actively approach the high concentration GlcNAc-6-P area and attack the molting crab, causing cannibalism. Blocking the reception pathway of molting chemical cues in E. sinensis, thereby preventing the perception of signals originating from conspecifics' molting in the vicinity, could lead to a reduction in cannibalistic behavior and an increase in overall production. Additionally, this method presents a prospective solution for addressing cannibalism in other crustacean species where such behavior is prevalent.
Collapse
Affiliation(s)
- Xinyuan Zi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifan Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gang Li
- Nanjing Zechun Water Engineering Co., Ltd, 211300, China
| | - Bingchan Jia
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Århus, Denmark; Sino-Danish Centre for Education and Research, Beijing, China; Limnology Laboratory, Department of Biological Sciences, and Centre for Ecosystem Research and Implementation (EKOSAM), Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
5
|
Thakur D, Bairwa A, Dipta B, Jhilta P, Chauhan A. An overview of fungal chitinases and their potential applications. PROTOPLASMA 2023; 260:1031-1046. [PMID: 36752884 DOI: 10.1007/s00709-023-01839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023]
Abstract
Chitin, the world's second most abundant biopolymer after cellulose, is composed of β-1,4-N-acetylglucosamine (GlcNAc) residues. It is the key structural component of many organisms, including crustaceans, mollusks, marine invertebrates, algae, fungi, insects, and nematodes. There has been a significant increase in the generation of chitinous waste from seafood businesses, resulting in a big amount of scrap. Although several organisms, such as plants, crustaceans, insects, nematodes, and animals, produce chitinases, microorganisms are promising candidates and a sustainable option that mediates chitin degradation. Fungi are the dominant group of chitinase producers among microorganisms. In fungi, chitinases are involved in morphogenesis, cell division, autolysis, chitin acquisition for nutritional purposes, and mycoparasitism. Many efficient chitinolytic fungi with potential applications have been identified in a variety of environments, including soil, water, marine wastes, and plants. The current review highlights the key sources of chitinolytic fungi and the characterization of fungal chitinases. It also discusses the applications of fungal chitinases and the cloning of fungal chitinase genes.
Collapse
Affiliation(s)
- Deepali Thakur
- Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Aarti Bairwa
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| | - Prakriti Jhilta
- Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Anjali Chauhan
- Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| |
Collapse
|
6
|
An S, Liu W, Fu J, Zhang Z, Zhang R. Molecular identification of the chitinase genes in Aedes albopictus and essential roles of AaCht10 in pupal-adult transition. Parasit Vectors 2023; 16:120. [PMID: 37005671 PMCID: PMC10068161 DOI: 10.1186/s13071-023-05733-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/11/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Aedes albopictus is an increasingly serious threat in public health due to it is vector of multiple arboviruses that cause devastating human diseases, as well as its widening distribution in recent years. Insecticide resistance is a serious problem worldwide that limits the efficacy of chemical control strategies against Ae. albopictus. Chitinase genes have been widely recognized as attractive targets for the development of effective and environmentally safe insect management measures. METHODS Chitinase genes of Ae. albopictus were identified and characterized on the basis of bioinformatics search of the referenced genome. Gene characterizations and phylogenetic relationships of chitinase genes were investigated, and spatio-temporal expression pattern of each chitinase gene was evaluated using qRT-PCR. RNA interference (RNAi) was used to suppress the expression of AaCht10, and the roles of AaCht10 were verified based on phynotype observations, chitin content analysis and hematoxylin and eosin (H&E) stain of epidermis and midgut. RESULTS Altogether, 14 chitinase-related genes (12 chitinase genes and 2 IDGFs) encoding 17 proteins were identified. Phylogenetic analysis showed that all these AaChts were classified into seven groups, and most of them were gathered into group IX. Only AaCht5-1, AaCht10 and AaCht18 contained both catalytic and chitin-binding domains. Different AaChts displayed development- and tissue-specific expression profiling. Suppression of the expression of AaCht10 resulted in abnormal molting, increased mortality, decreased chitin content and thinning epicuticle, procuticle and midgut wall of pupa. CONCLUSIONS Findings of the present study will aid in determining the biological functions of AaChts and also contribute to using AaChts as potential target for mosquito management.
Collapse
Affiliation(s)
- Sha An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China
| | - Wenjuan Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China
| | - Jingwen Fu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China
| | - Zhong Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China.
| | - Ruiling Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250000, China.
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China.
- School of Laboratory Animal (Shandong Laboratory Animal Center), Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, 250117, China.
| |
Collapse
|
7
|
Tan D, Hu H, Tong X, Han M, Gai T, Lou J, Yan Z, Xiong G, Lu C, Dai F. Mutation of a lepidopteran-specific PMP-like protein, BmLSPMP-like, induces a stick body shape in silkworm, Bombyx mori. PEST MANAGEMENT SCIENCE 2022; 78:5334-5346. [PMID: 36039742 DOI: 10.1002/ps.7156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lepidoptera is one of the largest orders of insects, some of which are major pests of crops and forests. The cuticles of lepidopteran pests play important roles in defense against insecticides and pathogens, and are indispensable for constructing and maintaining extracellular structures and locomotion during their life cycle. Lepidopteran-specific cuticular proteins could be potential targets for lepidopteran pest control. But information on this is limited. Our research aimed to screen the lepidopteran-specific cuticular proteins using the lepidopteran model, the silkworm, to explore the molecular mechanism underlying the involvement of cuticular proteins in body shape construction. RESULTS Positional cloning showed that BmLSPMP-like, a gene encoding a lepidopteran-specific peritrophic matrix protein (PMP) like protein which includes a peritrophin A-type chitin-binding domain (CBM_14), is responsible for the stick (sk) mutation. BmLSPMP-like is an evolutionarily conserved gene that exhibits synteny in Lepidoptera and underwent purifying selection during evolution. Expression profiles demonstrated that BmLSPMP-like is expressed in chitin-forming tissues, testis and ovary, and accumulates in the cuticle. BmLSPMP-like knockout, generated with CRISPR/Cas9, resulted in a stick-like larval body shape phenotype. Over-expression of BmLSPMP-like in the sk mutant rescued its abnormal body shape. The results showed that BmLSPMP-like may be involved in assemblage in the larval cuticle. CONCLUSION Our results suggested that the dysfunction of BmLSPMP-like may result in a stick body shape phenotype in silkworm, through the regulation of the arrangement of the chitinous laminae and cuticle thickness. Our study provides new evidence of the effects of LSPMP-likes on lepidopteran body shape formation, metamorphosis and mortality, which could be an eco-friendly target for lepidopteran pest management. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duan Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Tingting Gai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jinghou Lou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhengwen Yan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Gao Xiong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Li C, Ul Haq I, Khurshid A, Tao Y, Quandahor P, Zhou JJ, Liu CZ. Effects of abiotic stresses on the expression of chitinase-like genes in Acyrthosiphon pisum. Front Physiol 2022; 13:1024136. [PMID: 36505077 PMCID: PMC9727142 DOI: 10.3389/fphys.2022.1024136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
Insect chitinases play a crucial part to digest chitin in the exoskeleton during the molting process. However, research on insect chitinase related to the environmental stress response is very limited. This study was the first conducted to expression analysis of chitinase- related genes in A. pisum under abiotic stresses. Here, we identified five chitinase-like proteins (ApIDGF, ApCht3, ApCht7, ApCht10 and ApENGase), and clustered them into five groups (group II, III, V, Ⅹ, and ENGase). Developmental expression analysis revealed that the five A. pisum chitinase-related genes were expressed at whole developmental stages with different relative expression patterns. When aphids were exposed to various abiotic stresses including temperature, insecticide and the stress 20-hydroxyecdysone (20E), all five chitinase genes were differentially expressed in A. pisum. The results showed that insecticide such as imidacloprid down-regulated the expression of these five Cht-related genes. Analysis of temperature stress of A. pisum chitinase suggested that ApCht7 expression was high at 10°C, which demonstrates its important role in pea aphids under low temperature. Conversely, ApCht10 was more active under high temperature stress, as it was significantly up-regulated at 30°C. Besides, 20E enhanced ApCht3 and ApCht10 expression in A. pisum, but reduced ApCht7 expression. These findings provide basic information and insights for the study of the role of these genes under abiotic stress, which advances our knowledge in the management of pea aphids under multiple stresses.
Collapse
Affiliation(s)
- Chunchun Li
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Inzamam Ul Haq
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Aroosa Khurshid
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Yan Tao
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Peter Quandahor
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- CSIR-Savanna Agricultural Research Institute, Tamale, Ghana
| | - Jing-Jiang Zhou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, China
| | - Chang-Zhong Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
Gama MDVF, Moraes CS, Gomes B, Diaz-Albiter HM, Mesquita RD, Seabra-Junior E, Azambuja P, Garcia EDS, Genta FA. Structure and expression of Rhodnius prolixus GH18 chitinases and chitinase-like proteins: Characterization of the physiological role of RpCht7, a gene from subgroup VIII, in vector fitness and reproduction. Front Physiol 2022; 13:861620. [PMID: 36262251 PMCID: PMC9574080 DOI: 10.3389/fphys.2022.861620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Chitinases are enzymes responsible for the hydrolysis of glycosidic linkages within chitin chains. In insects, chitinases are typically members of the multigenic glycoside hydrolase family 18 (GH18). They participate in the relocation of chitin during development and molt, and in digestion in detritivores and predatory insects, and they control the peritrophic membrane thickness. Chitin metabolism is a promising target for developing vector control strategies, and knowledge of the roles of chitinases may reveal new targets and illuminate unique aspects of their physiology and interaction with microorganisms. Rhodnius prolixus is an important vector of Chagas disease, which is caused by the parasite Trypanosoma cruzi. In this study, we performed annotation and structural characterization of nine chitinase and chitinase-like protein genes in the R. prolixus genome. The roles of their corresponding transcripts were studied in more depth; their physiological roles were studied through RNAi silencing. Phylogenetic analysis of coding sequences showed that these genes belong to different subfamilies of GH18 chitinases already described in other insects. The expression patterns of these genes in different tissues and developmental stages were initially characterized using RT-PCR. RNAi screening showed silencing of the gene family members with very different efficiencies. Based on the knockdown results and the general lack of information about subgroup VIII of GH18, the RpCht7 gene was chosen for phenotype analysis. RpCht7 knockdown doubled the mortality in starving fifth-instar nymphs compared to dsGFP-injected controls. However, it did not alter blood intake, diuresis, digestion, molting rate, molting defects, sexual ratio, percentage of hatching, or average hatching time. Nevertheless, female oviposition was reduced by 53% in RpCht7-silenced insects, and differences in oviposition occurred within 14–20 days after a saturating blood meal. These results suggest that RpCht7 may be involved in the reproductive physiology and vector fitness of R. prolixus.
Collapse
Affiliation(s)
| | | | - Bruno Gomes
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Hector Manuel Diaz-Albiter
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- El Colegio de la Frontera Sur, ECOSUR, Campeche, Mexico
| | - Rafael Dias Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eloy Seabra-Junior
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Universidade Federal Fluminense, UFF, Rio de Janeiro, Brazil
| | - Eloi de Souza Garcia
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- *Correspondence: Fernando Ariel Genta, ,
| |
Collapse
|
10
|
Yu HZ, Xie YX, Wang J, Wang Y, Du YM, Wang HG, Zhong BL, Zhu B, Yu XD, Lu ZJ. Integrated transcriptome sequencing and RNA interference reveals molecular changes in Diaphorina citri after exposure to validamycin. INSECT SCIENCE 2021; 28:1690-1707. [PMID: 33118290 DOI: 10.1111/1744-7917.12880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Validamycin has been widely used as a specific competitive inhibitor of trehalase. In our previous research, validamycin significantly inhibited trehalase activity and chitin synthesis in Diaphorina citri, resulting in abnormal phenotypes. However, the mechanism of validamycin's action on D. citri remains unclear. Here, using a comparative transcriptome analysis, 464 differentially expressed genes (DEGs) in D. citri were identified after validamycin treatment. A Gene Ontology enrichment analysis revealed that these DEGs were mainly involved in "small molecule process", "structural molecule activity" and "transition metal ion binding". DEGs involved in chitin metabolism, cuticle synthesis and insecticide detoxification were validated by reverse transcription quantitative polymerase chain reaction. The RNA interference of D. citri chitinase-like protein ENO3 and D. citri cuticle protein 7 genes significantly affected D. citri molting. Moreover, the recombinant chitinase-like protein ENO3 exhibited a chitin-binding property, and an antimicrobial activity against Bacillus subtilis. This study provides a first insight into the molecular changes in D. citri after exposure to validamycin and identifies two effective RNA interference targets for D. citri control.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Yan-Xin Xie
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Jie Wang
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Ying Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Yi-Min Du
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - He-Gui Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Ba-Lian Zhong
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Bo Zhu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Xiu-Dao Yu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| | - Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi Province, China
- National Navel Orange Engineering Research Center, Ganzhou, Jiangxi Province, China
| |
Collapse
|
11
|
Park BJ, Yoon YB, Lee DH, Shin C, Juakali L, Cho SJ, Park SC. Transcriptional upregulation of multiple earthworm chitinase genes following bacterial challenge suggests their implications in innate immunity. Genes Genomics 2021; 43:1497-1502. [PMID: 34762288 DOI: 10.1007/s13258-021-01183-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chitinase is a multi-functional enzyme that catalyzes the hydrolysis of β-1,4-linkages between N-acetylglucosamines (GlcNAc) in chitin. Recent studies imply that earthworm chitinase is implicated in self-defense immunity against chitin-containing pathogens. However, a direct relationship of earthworm chitinase with innate immunity has not yet been established. OBJECTIVE In this study, earthworm (Eisenia andrei) chitinase expression was examined following bacterial challenge by Bacillus subtilis. METHODS RNA sequencing (RNA-seq) and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to quantitatively evaluate mRNA expression changes in response to bacterial stimulation. RESULTS Multiple chitinase-related mRNAs were found to be upregulated, among which EaChi3, EaChi4, and EaChi2 were upregulated by approximately eightfold, eightfold, and 2.5-fold, respectively. This strongly suggested that earthworm chitinases may act as inducible humoral effectors in earthworm innate immunity. The primary structures of all three chitinases contained an N-terminal glycol_18 domain with two chitin-binding and chitin-catalyzing domains, and a C-terminal proline, glycine, serine, threonine (PGST)-rich domain. In addition, EaChi2 had a chitin-binding peritrophin-A domain at the end of the C-terminus with 5 cysteine residues possibly contributing two intradomain disulfide bonds. Multiple sequence alignment of the catalytic domain centers of glycol_18 domain displayed highly conserved chitin-binding and chitin-catalyzing domains in which three essential amino acid residues (D, D, E) for catalyzing activity are well conserved except EaChi4. The critical glutamic acid (E) residue was substituted for glutamine (Q) in EaChi4 indicating that it is devoid of catalytic activity. CONCLUSIONS To our knowledge, this is the first report providing direct evidence that multiple earthworm chitinases are bacteria-responsive, strongly suggesting that earthworm chitinases are inducible humoral effectors in earthworm innate immunity. In addition, our results possibly suggest that earthworm EaChi4 may function as a pattern recognition molecule modulating the downstream immune pathway.
Collapse
Affiliation(s)
- Beom Jun Park
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yoo Bin Yoon
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dong Ho Lee
- Da Vinci College of General Education, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chuog Shin
- Department of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Louis Juakali
- Department EGRA, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Chungbuk, 28644, Republic of Korea.
| | - Soon Cheol Park
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
12
|
Ren XC, Liu QH. LvCPG2 facilitated WSSV infection by interaction with VP26 and VP28. FISH & SHELLFISH IMMUNOLOGY 2021; 118:313-320. [PMID: 34562580 DOI: 10.1016/j.fsi.2021.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Chondroitin sulfate proteoglycans (CSP), widely distributed in extracellular matrices, have several important functions in vertebrates. In certain viruses, CSP acts as a receptor to promote infection. However, chondroitin proteoglycans lack sulfate are poorly understood in invertebrates. In this study, chondroitin proteoglycan 2 of Litopenaeus vannamei (LvCPG2) was cloned. The open reading frame of LvCPG2 cDNA is 2133 bp, which encodes a protein of 710 amino acids. LvCPG2 contained eight Chitin-binding domain type 2 (ChtBD2). LvCPG2 had the highest expression in lymphoid and significantly increased after WSSV challenge. The relative expression of IE1 and VP28, as well as the viral copy numbers were decreased significantly in LvCPG2-silenced shrimp. The far-western blotting result showed that LvCPG2 interacted with VP26 and VP28. Molecular docking complexes showed that N-terminal of LvCPG2 interacted with C-terminal VP26, while C-terminal of LvCPG2 combined with N-terminal of VP28. Flow cytometry analysis indicated that LvCPG2 could facilitate WSSV adhesion and penetration of shrimp hemocytes. Collectively, these findings suggested that LvCPG2 was involved in WSSV infection by interaction with VP26 and VP28.
Collapse
Affiliation(s)
- Xing-Chao Ren
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Qing-Hui Liu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, China.
| |
Collapse
|
13
|
Qu MB, Sun SP, Liu YS, Deng XR, Yang J, Yang Q. Insect group II chitinase OfChtII promotes chitin degradation during larva-pupa molting. INSECT SCIENCE 2021; 28:692-704. [PMID: 32306549 DOI: 10.1111/1744-7917.12791] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/24/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
The insect group II chitinase (ChtII, also known as Cht10) is a unique chitinase with multiple catalytic and chitin-binding domains. It has been proven genetically to be an essential chitinase for molting. However, ChtII's role in chitin degradation during insect development remains poorly understood. Obtaining this knowledge is the key to fully understanding the chitin degradation system in insects. Here, we investigated the role of OfChtII during the molting of Ostrinia furnacalis, a model lepidopteran pest insect. OfChtII was expressed earlier than OfChtI (OfCht5) and OfChi-h, at both the gene and protein levels during larva-pupa molting as evidenced by quantitative polymerase chain reaction and western blot analyses. A truncated OfChtII, OfChtII-B4C1, was recombinantly expressed in Pichia pastoris cells and purified to homogeneity. The recombinant OfChtII-B4C1 loosened compacted chitin particles and produced holes in the cuticle surface as evidenced by scanning electron microscopy. It synergized with OfChtI and OfChi-h when hydrolyzing insoluble α-chitin. These findings suggested an important role for ChtII during insect molting and also provided a strategy for the coordinated degradation of cuticular chitin during insect molting by ChtII, ChtI and Chi-h.
Collapse
Affiliation(s)
- Ming-Bo Qu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shao-Peng Sun
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yuan-Sheng Liu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Xiao-Rui Deng
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Jun Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Identification of a novel tailor-made chitinase from white shrimp Fenneropenaeus merguiensis. Colloids Surf B Biointerfaces 2021; 203:111747. [PMID: 33839476 DOI: 10.1016/j.colsurfb.2021.111747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022]
Abstract
Fenneropenaeus merguiensis (commonly named banana shrimp) is one of the most important farmed crustacean worldwide species for the fisheries and aquaculture industry. Besides its nutritional value, it is a good source of chitinase, an enzyme with excellent biological and catalytic properties for many industrial applications. In the present study, a putative chitinase-encoding cDNA was synthesized from mRNA from F. merguiensis hepatopancreas tissue. Subsequently, the corresponding cDNA was cloned, sequenced and functionally expressed in Escherichia coli, and the recombinant F. merguiensis chitinase (rFmCHI) was purified by His-tag affinity chromatography. The bioinformatics analysis of aminoacid sequence of rFmCHI displayed a cannonical multidomain architecture in chitinases which belongs to glycoside hydrolase family 18 (GH18 chitinase). Biochemical characterization revealed rFmCHI as a monomeric enzyme of molecular weight 52 kDa with maximum activity at 40 °C and pH 6.0 Moreover, the recombinant enzyme is also stable up to 60 °C, and in the pH range 5.0-8.0. Steady-state kinetic studies for colloidal chitin revealed KM, Vmax and kcat values of 78.18 μM, 0.07261 μM. min-1 and 43.37 s-1, respectively. Overall, our results aim to demonstrate the potential of rFmCHI as suitable catalyst for bioconversion of chitin waste.
Collapse
|
15
|
Su H, Gao L, Sun J, Mao X. Engineering a carbohydrate binding module to enhance chitinase catalytic efficiency on insoluble chitinous substrate. Food Chem 2021; 355:129462. [PMID: 33848938 DOI: 10.1016/j.foodchem.2021.129462] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/25/2020] [Accepted: 02/22/2021] [Indexed: 11/15/2022]
Abstract
Development of a high-performance chitinase for efficient biotransformation of insoluble chitinous substrate would be highly valuable in industry. In this study, the chitin-binding domains (ChBDs) of chitinase SaChiA4 were successfully modified to improve the enzymatic activity. The engineered substitution variant R-SaChiA4, which had the exogenous ChBD of chitinase ChiA1 from Bacillus circulans WL-12 (ChBDChiA1) substituted for its original ChBDChiA4, increased its activity by nearly 54% (28.0 U/mg) towards chitin powder, and by 49% towards colloidal chitin, compared with the wild-type. The substrate-binding assay demonstrated that the ChBD could enhance the capacity of enzymatic hydrolysis by promoting substrate affinity, and molecular dynamics simulations indicated that this could be due to hydrophobic interactions in different substrate binding modes. This work advances the understanding of the role of the ChBD, and provides a step towards the achievement of industrial-scale hydrolysis and utilization of insoluble chitin.
Collapse
Affiliation(s)
- Haipeng Su
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Li Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
16
|
Chitin Synthesis and Degradation in Crustaceans: A Genomic View and Application. Mar Drugs 2021; 19:md19030153. [PMID: 33804177 PMCID: PMC8002005 DOI: 10.3390/md19030153] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022] Open
Abstract
Chitin is among the most important components of the crustacean cuticular exoskeleton and intestinal peritrophic matrix. With the progress of genomics and sequencing technology, a large number of gene sequences related to chitin metabolism have been deposited in the GenBank database in recent years. Here, we summarized the genes and pathways associated with the biosynthesis and degradation of chitins in crustaceans based on genomic analyses. We found that chitin biosynthesis genes typically occur in single or two copies, whereas chitin degradation genes are all multiple copies. Moreover, the chitinase genes are significantly expanded in most crustacean genomes. The gene structure and expression pattern of these genes are similar to those of insects, albeit with some specific characteristics. Additionally, the potential applications of the chitin metabolism genes in molting regulation and immune defense, as well as industrial chitin degradation and production, are also summarized in this review.
Collapse
|
17
|
Montroni D, Sparla F, Fermani S, Falini G. Influence of proteins on mechanical properties of a natural chitin-protein composite. Acta Biomater 2021; 120:81-90. [PMID: 32439612 DOI: 10.1016/j.actbio.2020.04.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/04/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
In many biogenic materials, chitin chains are assembled in fibrils that are wrapped by a protein fold. In them, the mechanical properties are supposed to be related to intra- and inter- interactions among chitin and proteins. This hypothesis has been poorly investigated. Here, this research theme is studied using the pen of Loligo vulgaris as a model material of chitin-protein composites. Chemical treatments were used to change the interactions involving only the proteic phase, through unfolding and/or degradation processes. Successively, structural and mechanical parameters were examined using spectroscopy, microscopy, X-ray diffractometry, and tensile tests. The data analysis showed that chemical treatments did not modify the structure of the chitin matrix. This allowed to derive from the mechanical test analysis the following conclusions: (i) the maximum stress (σmax) relies on the presence of the disulfide bonds; (ii) the Young's modulus (E) relies on the overall correct folding of the proteins; (iii) the whole removal of proteins induces a decrease of E (> 90%) and σmax (> 80%), and an increase in the maximum elongation. These observations indicate that in the chitin matrix the proteins act as a strengthener, which efficacy is controlled by the presence of disulfide bridges. This reinforcement links the chitin fibrils avoiding them to slide one on the other and maximizing their resistance and stiffness. In conclusion, this knowledge can explain the physio-chemical properties of other biogenic polymeric composites and inspire the design of new materials. STATEMENT OF SIGNIFICANCE: To date, no study has addressed on how proteins influence chitin-composite material's mechanical properties. Here we show that the Young's modulus and the maximum stress mainly rely on protein disulfide bonds, the inter-proteins ones and those controlling the folding of chitin-binding domains. The removal of protein matrix induce a reduction of Young's modulus and maximum stress, leaving the chitin matrix structurally unaltered. The measure of the maximum elongation shows that the chitin fibrils slide on each other only after removing the protein matrix. In conclusion, this research shows that the proteins act as a stiff matrix reinforced by di-sulfide bridges that link crystalline chitin fibrils avoiding them to slide one on the other.
Collapse
|
18
|
Lu Y, Dai W, Huang J, Chen X, Yao Y. A Biomimetic Glue Protein Modulates Hepatic Gene Expression. Macromol Biosci 2021; 21:e2000303. [PMID: 33393184 DOI: 10.1002/mabi.202000303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/22/2020] [Indexed: 01/08/2023]
Abstract
Glue protein as secretion from fruit fly larva plays a significant role in metamorphosis as cementing material for pupation sites. However, the biochemical composition of this macromolecule remains obscure. This study takes the advantage of high-resolution proteomic analysis to unveil the protein compositions. A glue protein group is identified as chitin-binding motifs by bioinformatic analysis. Computational modeling analysis of representative proteins illustrates the binding site between protein and chitin. A biosynthetic approach is used to fabricate a glue protein by a modified Escherichia coli recombinant system. The as-biosynthesized biomimetic glue protein is applied as an extracellular matrix to investigate its biocompatibility and functionality. It is found that the purified recombinant protein shows enhanced performance to cellular viability. This finding provides a potential biomacromolecule candidate as an extracellular matrix for cell culture.
Collapse
Affiliation(s)
- Yi Lu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Wentao Dai
- Shanghai Industrial Technology Institute, 1278 Keyuan Road, Shanghai, 201203, China
| | - Jianhua Huang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Xuexin Chen
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| |
Collapse
|
19
|
Dong W, Gao YH, Zhang XB, Moussian B, Zhang JZ. Chitinase 10 controls chitin amounts and organization in the wing cuticle of Drosophila. INSECT SCIENCE 2020; 27:1198-1207. [PMID: 32129536 DOI: 10.1111/1744-7917.12774] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Wings are essential for insect fitness. A number of proteins and enzymes have been identified to be involved in wing terminal differentiation, which is characterized by the formation of the wing cuticle. Here, we addressed the question whether chitinase 10 (Cht10) may play an important role in chitin organization in the wings of the fruit fly Drosophila melanogaster. Initially, we first found that Cht10 expression coincides with the expression of the chitin synthase coding gene kkv. This suggests that the respective proteins may cooperate during wing differentiation. In tissue-specific RNA interference experiments, we demonstrate that suppression of Cht10 causes an excess in chitin amounts in the wing cuticle. Chitin organization is severely disrupted in these wings. Based on these data, we hypothesize that Cht10 restricts chitin amounts produced by Kkv in order to ensure normal chitin organization and wing cuticle formation. In addition, we found by scanning electron microscopy that Cht10 suppression also affects the cuticle surface. In turn, cuticle inward permeability is enhanced in Cht10-less wings. Moreover, flies with reduced Cht10 function are unable to fly. In conclusion, Cht10 is essential for wing terminal differentiation and function.
Collapse
Affiliation(s)
- Wei Dong
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Ying-Hao Gao
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Xu-Bo Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Bernard Moussian
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, Nice, CEDEX 2, France
| | - Jian-Zhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
20
|
Paek A, Kim MJ, Park HY, Yoo JG, Jeong SE. Functional expression of recombinant hybrid enzymes composed of bacterial and insect's chitinase domains in E. coli. Enzyme Microb Technol 2020; 136:109492. [PMID: 32331713 DOI: 10.1016/j.enzmictec.2019.109492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/04/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
Abstract
To elucidate the functional alteration of the recombinant hybrid chitinases composed of bacterial and insect's domains, we cloned the constitutional domains from chitinase-encoding cDNAs of a bacterial species, Bacillus thuringiensis (BtChi) and a lepidopteran insect species, Mamestra brassicae (MbChi), respectively, swapped one's leading signal peptide (LSP) - catalytic domain (CD) - linker region (LR) (LCL) with the other's chitin binding domain (ChBD) between the two species, and confirmed and analyzed the functional expression of the recombinant hybrid chitinases and their chitinolytic activities in the transformed E. coli strains. Each of the two recombinant cDNAs, MbChi's LCL connected with BtChi's ChBD (MbLCL-BtChBD) and BtChi's LCL connected with MbChi's ChBD (BtLCL-MbChBD), was successfully introduced and expressed in E. coli BL21 strain. Although both of the two hybrid enzymes were found to be expressed by SDS-PAGE and Western blotting, the effects of the introduced genes on the chitin metabolism appear to be dramatically different between the two transformed E. coli strains. BtLCL-MbChBD remarkably increased not only the cell proliferation rate, extracellular and cellular chitinolytic activity, but also cellular glucosamine and N-acetylglucosamine levels, while MbLCL-BtChBD showed about the same profiles in the three tested subjects as those of the strains transformed with each of the two native chitinases, indicating that a combination of the bacterial CD of TIM barrel structure with characteristic six cysteine residues and insect ChBD2 including a conserved six cysteine-rich region (6C) enhances the attachment of the enzyme molecule to chitin compound by MbChBD, and so increases the catalytic efficiency of bacterial CD.
Collapse
Affiliation(s)
- Aron Paek
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea
| | - Min Jae Kim
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea
| | - Hee Yun Park
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea
| | - Je Geun Yoo
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea
| | - Seong Eun Jeong
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea.
| |
Collapse
|
21
|
He L, Ou-Yang YY, Li N, Chen Y, Liu SQ, Huang GH. Regulation of Chitinase in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) During Infection by Heliothis virescens ascovirus 3h (HvAV-3h). Front Physiol 2020; 11:166. [PMID: 32210833 PMCID: PMC7077506 DOI: 10.3389/fphys.2020.00166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
Insect chitinases play essential roles in the molting and metamorphosis of insects. The virus Heliothis virescens ascovirus 3h (HvAV-3h) can prolong the total duration of the larval stage in its host larvae. In this study, the molecular character and function of chitinase and chitin-binding domain (CBD) were analyzed in larvae of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). In detecting the chitinase activity of mock-infected and HvAV-3h-infected larval whole bodies and four different larval tissues, the results showed that larval chitinase activity was significantly decreased at 48 h post infection (hpi) and that the chitinase activity of HvAV-3h-infected larval fat body and cuticle was notably decreased at 144 and 168 hpi. The transcription level of S. exigua chitinase 7 (SeCHIT7) was down-regulated at the 6, 9, 12, 48, 72, and 96 hpi sample times, the S. exigua chitinase 11 (SeCHIT11) was down-regulated at 3-96 hpi, while both S. exigua chitinases (SeCHITs) were up-regulated at 120-168 hpi. Further tissue-specific detection of SeCHIT7 and SeCHIT11 transcription showed that SeCHIT7 was down-regulated at 144 and 168 hpi in the fat body and cuticle. SeCHIT11 was down-regulated at 168 hpi in the fat body, midgut, and cuticle. Additionally, the transcription and expression of S. exigua chitin-binding domain (SeCBD) could not be detected in HvAV-3h-infected larvae. The in vitro analyses of SeCHIT7N, SeCHIT11, and SeCBD showed that SeCHIT7N and SeCHIT11 were typical chitinases. Conversely, no chitinase activity was detected with SeCBD. SeCBD, however, could significantly increase the activity of SeCHIT7N and SeCHIT11. In conclusion, HvAV-3h not only interfered with the transcription and expression of SeCHITs but also affected the normal transcription and expression of SeCBD and, in doing so, influenced the host larval chitinase activity. These results will aid in providing a foundation for further studies on the pathogenesis of HvAV-3h.
Collapse
Affiliation(s)
- Lei He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yi-Yi Ou-Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ni Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ying Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Shuang-Qing Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China.,College of Plant Protection, Hunan Agricultural University, Changsha, China
| |
Collapse
|
22
|
Song L, Lv J, Wang L, Sun D, Gao B, Liu P. Characterization of a chitinase-1 gene (PtCht-1) from a marine crab Portunus trituberculatus and its response to immune stress. Gene 2020; 741:144523. [PMID: 32142858 DOI: 10.1016/j.gene.2020.144523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 01/05/2023]
Abstract
Chitinases play an important role in many biological processes in crustaceans, including molting, digestion, and immunity. In order to further explore the immune defense mechanism of chitinase in Portunus trituberculatus, the PtCht-1 gene was cloned by RACE (rapid-amplification of cDNA ends). This cDNA with a full length of 1910 bp, and an ORF (open reading frame) 1749 bp, coded for 582 amino acid residues and was classified into P. trituberculatus chitinase GH18-group4. It had the typical structural characteristics of GH18 chitinase family. Real-time PCR was used to analyze the expression of PtCht-1 in different tissues, molting stages, after pathogen infection, and low salinity (11‰). PtCht-1 was expressed in all tissues, with the highest expression in the hepatopancreas. In the hepatopancreas of different molting stages, the expression level decreased successively during post-molt stages (A/B), pre-molt stage (D) and inter-molt stage (C). Under normal circumstances, after artificial infection with WSSV and Vibrio parahaemolyticus, the expression of PtCht-1 in hepatopancreas reached the maximum at 48 h, and in hemolymph at 72 h and 24 h, respectively. Overall PtCht-1 expression was up-regulated compared with the control group. Low salinity stress significantly inhibited the expression of PtCht-1, up to 42 folds. Under low salinity stress, the time when WSSV infection reached the peak was markedly delayed by at least 24 h. The results of this study indicate that PtCht-1, as an immune factor, is likely involved in pathogen defense of P. trituberculatus, the immune function of which may be inhibited to some extent after low salinity stress.
Collapse
Affiliation(s)
- Liu Song
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jianjian Lv
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lei Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Dongfang Sun
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Baoquan Gao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ping Liu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
23
|
Zhang L, Guan Z, Pan Z, Ge H, Zhou D, Xu J, Zhang W. Functional expression of the Spodoptera exigua chitinase to examine the virtually screened inhibitor candidates. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:741-751. [PMID: 31113496 DOI: 10.1017/s0007485319000191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chitinase is responsible for insect chitin hydrolyzation, which is a key process in insect molting and pupation. However, little is known about the chitinase of Spodoptera exigua (SeChi). In this study, based on the SeChi gene (ADI24346) identified in our laboratory, we constructed the recombinant baculovirus P-Chi for the expression of recombinant SeChi (rSeChi) in Hi5 cells. The rSeChi was purified by chelate affinity chromatography, and the purified protein showed activity comparable with that of a commercial SgChi, suggesting that we harvested active SeChi for the first time. The purified protein was subsequently tested for enzymatic properties and revealed to exhibit its highest activity at pH 8 and 40 C. Using homology modeling and molecular docking techniques, the three-dimensional model of SeChi was constructed and screened for inhibitors. In two rounds of screening, twenty compounds were selected. With the purified rSeChi, we tested each of the twenty compounds for inhibitor activity against rSeChi, and seven compounds showed obvious activity. This study provided new information for the chitinase of beet armyworm and for chitinase inhibitor development.
Collapse
Affiliation(s)
- L Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Z Guan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Z Pan
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - H Ge
- Medical College, Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, China
| | - D Zhou
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - J Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - W Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
24
|
Ren D, Guo W, Yang P, Song J, He J, Zhao L, Kang L. Structural and functional differentiation of a fat body-like tissue adhering to testis follicles facilitates spermatogenesis in locusts. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 113:103207. [PMID: 31421206 DOI: 10.1016/j.ibmb.2019.103207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
The fat body is distributed throughout the body of insects, playing the essential role in intermediary metabolism and nutrient storage. However, the function of differentiation of fat bodies adhering to different tissues remains largely unknown. Here, we identified a fat body-like tissue (FLT) surrounding testis follicles and described its features at morphological, cellular and molecular levels. The FLT is morphologically distinguished with the abdominal fat body (FB) and dominated by diploid cells instead of polyploid cells. The transcriptomic analysis demonstrated that the FLT and FB have dramatically different gene expression profiles. Moreover, genes in the cell cycle pathway, which include both DNA replication- and cell division-related genes, were successively active during development of the FLT, suggesting that FLT cells possibly undergo a mitotic cycle rather than an endocycle. Deprivation of the FLT resulted in distortion of the testis follicles, disappearance of sperm bundles, reduction of total sperm number and increase of dead sperm, indicating a critical role of the FLT in the spermatogenesis in testis follicles. The special functional differentiation of the two similar tissues suggested that FLT-FB cells are able to establish a promising system to study mitotic-to-endocycle transition.
Collapse
Affiliation(s)
- Dani Ren
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Yang
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Juan Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lianfeng Zhao
- Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute of Life Science, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Lyu Z, Chen J, Li Z, Cheng J, Wang C, Lin T. Knockdown of β-N-acetylglucosaminidase gene disrupts molting process in Heortia vitessoides Moore. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21561. [PMID: 31218752 DOI: 10.1002/arch.21561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
β-N-acetylglucosaminidase (NAG) is a key enzyme in insect chitin metabolism and plays an important role in many physiological activities of insects. The HvNAG1 gene was identified from the Heortia vitessoides Moore (Lepidoptera: Crambidae) cDNA library and its expression patterns were determined using quantitative real-time polymerase chain reaction. The results indicated that HvNAG1 mRNA levels were high in the midgut and before molting, and 20E could induce its expression. Subsequently, the HvNAG1 gene was knocked down via RNA interference to identify its functions. We found that 3 μg of dsNAG1 resulted in optimal interference at 48 and 72 hr after injection, causing a decrease in NAG1 protein content, which resulted in abnormal or lethal phenotypes, and a sharp decrease in the survival rate. These results indicate that HvNAG1 plays a key role in the molting process of H. vitessoides. However, the silencing of HvNAG1 had no significant effect on the chitin metabolism-related genes tested in this study. Our present study provides a reference for further research on the utility of key genes involved in the chitin metabolic pathway in the insect molting process.
Collapse
Affiliation(s)
- Zihao Lyu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jingxiang Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zhixing Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jie Cheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Chunyan Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Tong Lin
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
26
|
Muthukrishnan S, Merzendorfer H, Arakane Y, Yang Q. Chitin Organizing and Modifying Enzymes and Proteins Involved In Remodeling of the Insect Cuticle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:83-114. [DOI: 10.1007/978-981-13-7318-3_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Cloning, characterization and substrate degradation mode of a novel chitinase from Streptomyces albolongus ATCC 27414. Food Chem 2018; 261:329-336. [PMID: 29739601 DOI: 10.1016/j.foodchem.2018.04.068] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 11/21/2022]
Abstract
A novel chitinase gene was cloned from Streptomyces albolongus ATCC 27414, and expressed successfully in Escherichia coli BL21. The recombinant enzyme (SaChiA4) belongs to glycoside hydrolases (GH) family 18 and consists of a catalytic domain and a chitin binding domain (CBD) in its C-terminus. SaChiA4 was purified homogeneously (specific activity of 66.2 U/mg with colloidal chitin as substrate), and showed a molecular mass of approximately 47 kDa. SaChiA4 showed its optimal activity at pH 5.0 and 55 °C and exhibited remarkable pH and temperature stability. SaChiA4 has been proved to have a higher specificity toward glycosides containing acetyl groups and hydrolyzes the substrates in a non-processive manner with higher ability to produce (GlcNAc)2 and GlcNAc. The results indicated that SaChiA4 is a novel endo-type chitinase, which has potential applications in the treatment of chitin wastes and the production of (GlcNAc)2.
Collapse
|
28
|
Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y. A chitinase with two catalytic domains is required for organization of the cuticular extracellular matrix of a beetle. PLoS Genet 2018; 14:e1007307. [PMID: 29590098 PMCID: PMC5891080 DOI: 10.1371/journal.pgen.1007307] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/09/2018] [Accepted: 03/12/2018] [Indexed: 01/10/2023] Open
Abstract
Insect cuticle or exoskeleton is an extracellular matrix formed primarily from two different structural biopolymers, chitin and protein. During each molt cycle, a new cuticle is deposited simultaneously with degradation of the inner part of the chitinous procuticle of the overlying old exoskeleton by molting fluid enzymes including epidermal chitinases. In this study we report a novel role for an epidermal endochitinase containing two catalytic domains, TcCHT7, from the red flour beetle, Tribolium castaneum, in organizing chitin in the newly forming cuticle rather than in degrading chitin present in the prior one. Recombinant TcCHT7 expressed in insect cells is membrane-bound and capable of hydrolyzing an extracellular chitin substrate, whereas in vivo, this enzyme is also released from the plasma membrane and co-localizes with chitin in the entire procuticle. RNAi of TcCHT7 reveals that this enzyme is nonessential for any type of molt or degradation of the chitinous matrix in the old cuticle. In contrast, TcCHT7 is required for maintaining the integrity of the cuticle as a compact structure of alternating electron-dense and electron-lucent laminae. There is a reduction in thickness of elytral and leg cuticles after RNAi for TcCHT7. TcCHT7 is also required for formation of properly oriented long chitin fibers inside pore canals that are vertically oriented columnar structures, which contribute to the mechanical strength of a light-weight, yet rigid, adult cuticle. The conservation of CHT7-like proteins harboring such a unique domain configuration among many insect and other arthropod species indicates a critical role for the group III class of chitinases in the higher ordered organization of chitin fibers for development of the structural integrity of many invertebrate exoskeletons. Insect cuticle or exoskeleton is an extracellular matrix consisting of three major morphologically distinct layers, the water-proofing envelope, the protein-rich epicuticle and the chitin/protein-rich procuticle. To accommodate growth, insects must periodically replace their cuticles in a process called “molting or ecdysis”. During each molt cycle a new cuticle is deposited simultaneously with degradation of the inner part of the chitinous procuticle of the old one by molting fluid enzymes including epidermal chitinases. We show that a chitinase, CHT7, from the red flour beetle, Tribolium castaneum, belonging to a subfamily (group III) of chitinases that have two catalytic domains, is necessary for organization of chitin-containing structures in nascent cuticle, which contributes to the rigidity of the extracellular matrix. This unexpected function is distinct from that of other groups of epidermal chitinases that catalyze the turnover of chitin in old cuticle during the molting process. Because group III chitinases are highly conserved among insect and other arthropod species, we propose that these enzymes have a novel function in processing nascent chitin chains during cuticle assembly and organization into higher order structures that include horizontally stacked laminae and vertically oriented pore canals of many invertebrate cuticular extracellular matrices.
Collapse
Affiliation(s)
- Mi Young Noh
- Department of Applied Biology, Chonnam National University, Gwangju, South Korea
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Karl J. Kramer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Yasuyuki Arakane
- Department of Applied Biology, Chonnam National University, Gwangju, South Korea
- * E-mail:
| |
Collapse
|
29
|
Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y. Group I chitin deacetylases are essential for higher order organization of chitin fibers in beetle cuticle. J Biol Chem 2018; 293:6985-6995. [PMID: 29567838 DOI: 10.1074/jbc.ra117.001454] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/14/2018] [Indexed: 11/06/2022] Open
Abstract
Roles in the organization of the cuticle (exoskeleton) of two chitin deacetylases (CDAs) belonging to group I, TcCDA1 and TcCDA2, as well as two alternatively spliced forms of the latter, TcCDA2a and TcCDA2b, from the red flour beetle, Tribolium castaneum, were examined in different body parts using transmission EM and RNAi. Even though all TcCDAs are co-expressed in cuticle-forming cells from the hardened forewing (elytron) and ventral abdomen, as well as in the softer hindwing and dorsal abdomen, there are significant differences in the tissue specificity of expression of the alternatively spliced transcripts. Loss of either TcCDA1 or TcCDA2 protein by RNAi causes abnormalities in organization of chitinous horizontal laminae and vertical pore canals in all regions of the procuticle of both the hard and soft cuticles. Simultaneous RNAi for TcCDA1 and TcCDA2 produces the most serious abnormalities. RNAi of either TcCDA2a or TcCDA2b affects cuticle integrity to some extent. Following RNAi, there is accumulation of smaller disorganized fibers in both the horizontal laminae and pore canals, indicating that TcCDAs play a critical role in elongation/organization of smaller nanofibers into longer fibers, which is essential for structural integrity of both hard/thick and soft/thin cuticles. Immunolocalization of TcCDA1 and TcCDA2 proteins and effects of RNAi on their accumulation indicate that these two proteins function in concert exclusively in the assembly zone in a step involving the higher order organization of the procuticle.
Collapse
Affiliation(s)
- Mi Young Noh
- From the Department of Applied Biology, Chonnam National University, Gwangju 500-757, South Korea and
| | - Subbaratnam Muthukrishnan
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Karl J Kramer
- the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Yasuyuki Arakane
- From the Department of Applied Biology, Chonnam National University, Gwangju 500-757, South Korea and
| |
Collapse
|
30
|
Chen W, Qu M, Zhou Y, Yang Q. Structural analysis of group II chitinase (ChtII) catalysis completes the puzzle of chitin hydrolysis in insects. J Biol Chem 2018; 293:2652-2660. [PMID: 29317504 PMCID: PMC5827449 DOI: 10.1074/jbc.ra117.000119] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/05/2018] [Indexed: 12/17/2022] Open
Abstract
Chitin is a linear homopolymer of N-acetyl-β-d-glucosamines and a major structural component of insect cuticles. Chitin hydrolysis involves glycoside hydrolase family 18 (GH18) chitinases. In insects, chitin hydrolysis is essential for periodic shedding of the old cuticle ecdysis and proceeds via a pathway different from that in the well studied bacterial chitinolytic system. Group II chitinase (ChtII) is a widespread chitinolytic enzyme in insects and contains the greatest number of catalytic domains and chitin-binding domains among chitinases. In Lepidopterans, ChtII and two other chitinases, ChtI and Chi-h, are essential for chitin hydrolysis. Although ChtI and Chi-h have been well studied, the role of ChtII remains elusive. Here, we investigated the structure and enzymology of OfChtII, a ChtII derived from the insect pest Ostrinia furnacalis We present the crystal structures of two catalytically active domains of OfChtII, OfChtII-C1 and OfChtII-C2, both in unliganded form and complexed with chitooligosaccharide substrates. We found that OfChtII-C1 and OfChtII-C2 both possess long, deep substrate-binding clefts with endochitinase activities. OfChtII exhibited structural characteristics within the substrate-binding cleft similar to those in OfChi-h and OfChtI. However, OfChtII lacked structural elements favoring substrate binding beyond the active sites, including an extra wall structure present in OfChi-h. Nevertheless, the numerous domains in OfChtII may compensate for this difference; a truncation containing one catalytic domain and three chitin-binding modules (OfChtII-B4C1) displayed activity toward insoluble polymeric substrates that was higher than those of OfChi-h and OfChtI. Our observations provide the last piece of the puzzle of chitin hydrolysis in insects.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Mingbo Qu
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Yong Zhou
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China
| | - Qing Yang
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
31
|
Ma XL, Milne RI, Zhou HX, Fang JY, Zha HG. Floral nectar of the obligate outcrossing Canavalia gladiata (Jacq.) DC. (Fabaceae) contains only one predominant protein, a class III acidic chitinase. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:749-759. [PMID: 28544154 DOI: 10.1111/plb.12583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Floral nectar can affect the fitness of insect-pollinated plants, through both attraction and manipulation of pollinators. Self-incompatible insect-pollinated plants receive more insect visits than their self-compatible relatives, and the nectar of such species might face increased risk of infestation by pathogens carried by pollinators than self-compatible plants. Proteins in nectar (nectarins) play an important role in protecting the nectar, but little is known regarding nectarins in self-incompatible species. The nectarins from a self-incompatible and insect-pollinated leguminous crop, Canavalia gladiata, were separated using two-dimensional electrophoresis and analysed using mass spectrometry. The predominant nectarin gene was cloned and the gene expression pattern investigated using quantitative real-time PCR. Chitinolytic activity in the nectar was tested with different substrates. The C. gladiata nectar proteome only has one predominant nectarin, an acidic class III chitinase (CaChi3). The full-length CaChi3 gene was cloned, coding for a protein of 298 amino acids with a predicted signal peptide. CaChi3 is very similar to members of the class III chitinase family, whose evolution is dominated by purifying selection. CaChi3 was expressed in both nectary and leaves. CaChi3 has thermostable chitinolytic activity according to glycol-chitin zymography or a fluorogenic substratem but has no lysozyme activity. Chitinase might be a critical protein component in nectar. The extremely simple nectar proteome in C. gladiata disproves the hypothesis that self-incompatible species always have more complex nectar proteomes. Accessibility of nectar might be a significant determinant of the evolutionary pressure to develop nectar defence mechanisms.
Collapse
Affiliation(s)
- X L Ma
- College of Life and Environment Sciences, Huangshan University, Anhui, China
| | - R I Milne
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
- Royal Botanic Garden, Edinburgh, UK
| | - H X Zhou
- College of Life and Environment Sciences, Huangshan University, Anhui, China
| | - J Y Fang
- College of Life and Environment Sciences, Huangshan University, Anhui, China
| | - H G Zha
- College of Life and Environment Sciences, Huangshan University, Anhui, China
| |
Collapse
|
32
|
Qu M, Ren Y, Liu Y, Yang Q. Studies on the chitin/chitosan binding properties of six cuticular proteins analogous to peritrophin 3 from Bombyx mori. INSECT MOLECULAR BIOLOGY 2017; 26:432-439. [PMID: 28432772 DOI: 10.1111/imb.12308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chitin deacetylation is required to make the cuticle rigid and compact through chitin chain crosslinking. Thus it is presumed that specialized proteins are required to bind deacetylated chitin chains together. However, deacetylated-chitin binding proteins have not ever been reported. In a previous work, six cuticular proteins analogous to peritrophin 3 (CPAP3s) were found to be abundant in the moulting fluid of Bombyx mori. In this study, these BmCPAP3s (BmCPAP3-A1, BmCPAP3-A2, BmCPAP3-B, BmCPAP3-C, BmCPAP3-D1 and BmCPAP3-D2) were cloned and expressed in Escherichia coli and purified using metal-chelating affinity chromatography. Their binding activities demonstrated that although all of the BmCPAP3s showed similar binding abilities toward crystalline chitin and colloidal chitin, they differed in their affinities toward partially and fully deacetylated chitin. Amongst them, BmCPAP3-D1 exhibited the highest binding activity toward deacetylated chitin. The gene expression pattern of BmCPAP3-D1 was similar to BmCPAP3-A1 and BmCPAP3-C at most stages except that it was dramatically upregulated at the beginning of the pupa to adult transition stage. This work is the first report of a chitin-binding protein, BmCPAP3-D1, which exhibits high binding affinity to deacetylated chitin.
Collapse
Affiliation(s)
- M Qu
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Y Ren
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Y Liu
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Q Yang
- State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Chang CL. Laboratory evaluation on a potential birth control diet for fruit fly sterile insect technique (SIT). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 140:42-50. [PMID: 28755693 DOI: 10.1016/j.pestbp.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/12/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
Sterile insect technique (SIT) is one of the most effective fruit fly control technologies. Irradiation has been used to sterilize male fruit flies before release to the field to compete with the wild males for females. Imagine an environmental and cost effective method using a rearing diet that can make insects sterile indefinitely, by feeding for 7days before release. This could replace costly irradiation process. A potential birth control diet was evaluated on fertility, mating, survival, and protein analysis for fruit fly species in Hawaii. Insects were continuously fed an agar diet with lufenuron (LFN) for 7d after emergence and then switched to a control diet to simulate the actual field condition. The influence on egg hatch was dose dependent. With dose of 2-4mg/g in the diet, egg hatch from LFN-fed was almost 100% suppressed for 24 experimental days if adults of Ceratitia capitate (Widemann), Bactrocera dorsalis (Hendel), and B. latifrons (Hendel) continued to feed on LFN diet. B. cucurbitae (Coquillett) was not affected by LFN. However, egg hatch from LFN fed B. latifrons and B. dorsalis were suppressed for at least 2weeks after switching to the control diet at 7d. Egg hatch did not recover >4% up to 24d. Proteome analysis revealed that ABD-4 protein was under expressed by 70-83% on LFN fed females and males of B. latifrons and B. dorsalis while Pbprp2 protein was significantly over expressed by 6-12 fold on LFN fed males only. These two proteins were not expressed in C. capitata and B. cucurbitae. Therefore, this report focused more on B. latifrons and B. dorsalis. This finding suggested a great potential for one alternative to sterilize fruit flies for SIT without irradiation.
Collapse
|
34
|
Fan XJ, Yang C, Zhang C, Ren H, Zhang JD. Cloning, Site-Directed Mutagenesis, and Functional Analysis of Active Residues in Lymantria dispar Chitinase. Appl Biochem Biotechnol 2017; 184:12-24. [PMID: 28577192 DOI: 10.1007/s12010-017-2524-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
Chitinases are glycosyl hydrolases that catalyze the hydrolysis of β-(1,4)-glycosidic bonds in chitin, the major structural polysaccharide presented in the cuticle and gut peritrophic matrix of insects. Two aspartate residues (D143, D145) and one tryptophan (W146) in the Lymantria dispar chitinase are highly conserved residues observed within the second conserved motif of the family 18 chitinase catalytic region. In this study, a chitinase cDNA, LdCht5, was cloned from L. dispar, and the roles of the three residues were investigated using site-directed mutagenesis and substituting them with three other amino acids. Seven mutant proteins, D143E, D145E, W146G, D143E/D145E, D143E/W146G, D145E/W146G, and D143E/D145E/W146G, as well as the wild-type enzyme, were produced using the baculovirus-insect cell line expression system. The enzymatic and kinetic properties of these mutant enzymes were measured using the oligosaccharide substrate MU-(GlcNAc)3. Among the seven mutants, the D145E, D143E/D145E, and D145E/W146G mutations kept some extant catalytic activity toward MU-(GlcNAc)3, while the D143E, W146G, D143E/W146G, and D143E/D145E/W146G mutant enzymes were inactivated. Compared with the mutant enzymes, the wild-type enzyme had higher values of k cat and k cat / K m . A study of the multiple point mutations in the second conserved catalytic region would help to elucidate the role of the critical residues and their relationships.
Collapse
Affiliation(s)
- Xiao-Jun Fan
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Chun Yang
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Chang Zhang
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Hui Ren
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Jian-Dong Zhang
- Department of Biological and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, Shanxi, 030024, People's Republic of China.
| |
Collapse
|
35
|
Gao C, Cai X, Zhang Y, Su B, Song H, Wenqi W, Li C. Characterization and expression analysis of chitinase genes (CHIT1, CHIT2 and CHIT3) in turbot (Scophthalmus maximus L.) following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2017; 64:357-366. [PMID: 28286313 DOI: 10.1016/j.fsi.2017.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Chitinases are hydrolytic enzymes which have been employed to breakdown chitin coats of pathogenic microorganisms, thereby weaken the defense system of several pathogens and insects. In this regard, we identified the chitinase genes of turbot and characterized their expression patterns in mucosal tissues following Vibrio anguillarum and Streptococcus iniae challenge. In present study, transcripts of three chitinase genes (CHIT1, CHIT2 and CHIT3) were captured, as well as their protein structures and expression patterns following different bacterial infection were also characterized. The chitinases were widely expressed in all tested tissues with the highest expression levels of CHIT1 and CHIT2 in intestine, and CHIT3 in skin. Finally, these three genes showed different expression patterns following bacterial challenge. The significant quick induction of chitinases in mucosal surfaces against infection indicated their key roles to prevent pathogen attachment and entry in mucosal immunity. Functional studies should further characterize the chitinases and avail utilization of their function to increase the disease resistance in maintaining the integrity of the mucosal barriers against infection and facilitating the disease resistant family/strain selection in turbot.
Collapse
Affiliation(s)
- Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Cai
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Baofeng Su
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Huanhuan Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Wang Wenqi
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
36
|
Zhou K, Zhou F, Huang J, Yang Q, Jiang S, Qiu L, Yang L, Zhu C, Jiang S. Characterization and expression analysis of a chitinase gene (PmChi-4) from black tiger shrimp (Penaeus monodon) under pathogen infection and ambient ammonia nitrogen stress. FISH & SHELLFISH IMMUNOLOGY 2017; 62:31-40. [PMID: 28089896 DOI: 10.1016/j.fsi.2017.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/30/2016] [Accepted: 01/07/2017] [Indexed: 06/06/2023]
Abstract
Chitinase is a multi-gene family, which play important physiological roles in crustaceans, involved in several biological processes, including digestion, molting and defense against viruses. In the present study, a chitinase-4 gene (PmChi-4) was cloned from Penaeus monodon by rapid amplification of cDNA ends (RACE). The full length of PmChi-4 cDNA was 2178 bp, including an 1815 bp open reading frame (ORF) which encoded 604 amino acid residues. The predicted PmChi-4 protein was 67.7 kDa and shared 61%-88% identity with the type of Chi-4s from other crustaceans. Quantitative real-time (qRT-PCR) analysis indicated that PmChi-4 was expressed ubiquitously with the high expression level in hepatopancreas. PmChi-4 was expressed throughout the whole larvae stages, and the highest level of PmChi-4 transcripts was detected at Mysis3 stage, which indicated that PmChi-4 may be involved in larval metamorphosis. In order to know whether PmChi-4 was related to the immune response of shrimp, Streptococcus agalactiae and Vibrio harveyi were chosen to challenge the shrimp, PmChi-4 transcripts were significantly increased and reached to the maximum at 6 h in hepatopancreas and at 12 h in gill, respectively. The results suggested that PmChi-4 participated in the immune defenses to pathogen infection. Besides, the ammonia nitrogen stress treatment was also carried out, PmChi-4 transcripts were significantly decreased in hepatopancreas and gill and the result showed that PmChi-4 may be involved in ammonia nitrogen stress in P. monodon. Overall, our present study lay a foundation for further research into the biological function and regulation of chitinase in P. monodon.
Collapse
Affiliation(s)
- Kaimin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Falin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Jianhua Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Qibin Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Song Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Lihua Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Lishi Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Caiyan Zhu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Shigui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
37
|
Molecular characterization and expression analysis of chitinase from the pearl oyster Pinctada fucata. Comp Biochem Physiol B Biochem Mol Biol 2017; 203:141-148. [DOI: 10.1016/j.cbpb.2016.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 11/18/2022]
|
38
|
Toprak U, Erlandson M, Baldwin D, Karcz S, Wan L, Coutu C, Gillott C, Hegedus DD. Identification of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix proteins and enzymes involved in peritrophic matrix chitin metabolism. INSECT SCIENCE 2016; 23:656-674. [PMID: 25846407 DOI: 10.1111/1744-7917.12225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
The peritrophic matrix (PM) is essential for insect digestive system physiology as it protects the midgut epithelium from damage by food particles, pathogens, and toxins. The PM is also an attractive target for development of new pest control strategies due to its per os accessibility. To understand how the PM performs these functions, the molecular architecture of the PM was examined using genomic and proteomic approaches in Mamestra configurata (Lepidoptera: Noctuidae), a major pest of cruciferous oilseed crops in North America. Liquid chromatography-tandem mass spectrometry analyses of the PM identified 82 proteins classified as: (i) peritrophins, including a new class with a CBDIII domain; (ii) enzymes involved in chitin modification (chitin deacetylases), digestion (serine proteases, aminopeptidases, carboxypeptidases, lipases and α-amylase) or other reactions (β-1,3-glucanase, alkaline phosphatase, dsRNase, astacin, pantetheinase); (iii) a heterogenous group consisting of polycalin, REPATs, serpin, C-Type lectin and Lsti99/Lsti201 and 3 novel proteins without known orthologs. The genes encoding PM proteins were expressed predominantly in the midgut. cDNAs encoding chitin synthase-2 (McCHS-2), chitinase (McCHI), and β-N-acetylglucosaminidase (McNAG) enzymes, involved in PM chitin metabolism, were also identified. McCHS-2 expression was specific to the midgut indicating that it is responsible for chitin synthesis in the PM, the only chitinous material in the midgut. In contrast, the genes encoding the chitinolytic enzymes were expressed in multiple tissues. McCHS-2, McCHI, and McNAG were expressed in the midgut of feeding larvae, and NAG activity was present in the PM. This information was used to generate an updated model of the lepidopteran PM architecture.
Collapse
Affiliation(s)
- Umut Toprak
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Plant Protection, Faculty of Agriculture, University of Ankara, Ankara, Turkey
| | - Martin Erlandson
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Doug Baldwin
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Steve Karcz
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Lianglu Wan
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, SK, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Cedric Gillott
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
39
|
Ju Y, Wang X, Guan T, Peng D, Li H. Versatile glycoside hydrolase family 18 chitinases for fungi ingestion and reproduction in the pinewood nematode Bursaphelenchus xylophilus. Int J Parasitol 2016; 46:819-828. [PMID: 27641827 DOI: 10.1016/j.ijpara.2016.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 11/16/2022]
Abstract
The glycoside hydrolase family 18 (GH18) of chitinases is a gene family widely expressed in archaes, prokaryotes and eukaryotes, and hydrolyzes the β-1,4-linkages in chitin. The pinewood nematode Bursaphelenchus xylophilus is one of the organisms that produces GH18 chitinases. Notably, B. xylophilus has a higher number of GH18 chitinases compared with the obligate plant-parasitic nematodes Meloidogyne incognita and Meloidogyne hapla. In this study, seven GH18 chitinases were identified and cloned from B. xylophilus based on genomic analyses. The deduced amino acid sequences of all these genes contained an N-terminal signal peptide and a GH18 catalytic domain. Phylogenetic analysis showed that the origin of B. xylophilus GH18 chitinases was independent of those from fungi and bacteria. Real-time quantitative reverse transcription PCR analysis indicated that GH18 chitinase genes had discrete expression patterns, representing almost all the life stages of B. xylophilus. In situ hybridisation showed that the mRNA of GH18 chitinase genes of B. xylophilus were detected mainly in the spermatheca, esophageal gland cells, seminal vesicle and eggs. RNA interference (RNAi) results revealed different roles of GH18 chitinase genes in B. xylophilus. Bx-chi-1, Bx-chi-2 and Bx-chi-7 were associated with reproduction, fungal cell-wall degradation and egg hatching, respectively. Bx-chi-5 and Bx-chi-6 may be involved in sperm metabolism. In conclusion, this study demonstrates that GH18 chitinases have multiple functions in the life cycle of B. xylophilus.
Collapse
Affiliation(s)
- Yuliang Ju
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Tinglong Guan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Hongmei Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
40
|
Khan FI, Bisetty K, Singh S, Permaul K, Hassan MI. Chitinase from Thermomyces lanuginosus SSBP and its biotechnological applications. Extremophiles 2016; 19:1055-66. [PMID: 26462798 DOI: 10.1007/s00792-015-0792-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/03/2015] [Indexed: 12/30/2022]
Abstract
Chitinases are ubiquitous class of extracellular enzymes, which have gained attention in the past few years due to their wide biotechnological applications. The effectiveness of conventional insecticides is increasingly compromised by the occurrence of resistance; thus, chitinase offers a potential alternative to the use of chemical fungicides. The thermostable enzymes from thermophilic microorganisms have numerous industrial, medical, environmental and biotechnological applications due to their high stability for temperature and pH. Thermomyces lanuginosus produced a large number of chitinases, of which chitinase I and II are successfully cloned and purified recently. Molecular dynamic simulations revealed that the stability of these enzymes are maintained even at higher temperature. In this review article we have focused on chitinases from different sources, mainly fungal chitinase of T. lanuginosus and its industrial application.
Collapse
|
41
|
Li YL, Song HF, Zhang XY, Li DQ, Zhang TT, Ma EB, Zhang JZ. Heterologous expression and characterization of two chitinase 5 enzymes from the migratory locust Locusta migratoria. INSECT SCIENCE 2016; 23:406-416. [PMID: 26792119 DOI: 10.1111/1744-7917.12316] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/17/2016] [Indexed: 06/05/2023]
Abstract
Insect chitinases are involved in degradation of chitin from the exoskeleton or peritrophic metrix of midgut. In Locusta migratoria, two duplicated Cht5s (LmCht5-1 and LmCht5-2) have been shown to have distinct molecular characteristics and biological roles. To explore the protein properties of the two LmCht5s, we heterologously expressed both enzymes using baculovirus expression system in SF9 cells, and characterized kinetic and carbohydrate-binding properties of purified enzymes. LmCht5-1 and LmCht5-2 exhibited similar pH and temperature optimums. LmCht5-1 has lower Km value for the oligomeric substrate (4MU-(GlcNAc)3 ), and higher Km value for the longer substrate (CM-Chitin-RBV) compared with LmCht5-2. A comparison of amino acids and homology modeling of catalytic domain presented similar TIM barrel structures and differentiated amino acids between two proteins. LmCht5-1 has a chitin-binding domain (CBD) tightly bound to colloidal chitin, but LmCht5-2 does not have a CBD for binding to colloidal chitin. Our results suggested both LmCht5-1 and LmCht5-2, which have the critical glutamate residue in region II of catalytic domain, exhibited chitinolytic activity cleaving both polymeric and oligomeric substrates. LmCht5-1 had relatively higher activity against the oligomeric substrate, 4MU-(GlcNAc)3 , whereas LmCht5-2 exhibited higher activity toward the longer substrate, CM-Chitin-RBV. These findings are helpful for further research to clarify their different roles in insect growth and development.
Collapse
Affiliation(s)
- Ying-Long Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Hui-Fang Song
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Xue-Yao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Da-Qi Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Ting-Ting Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - En-Bo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Jian-Zhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
42
|
Zhu KY, Merzendorfer H, Zhang W, Zhang J, Muthukrishnan S. Biosynthesis, Turnover, and Functions of Chitin in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2016; 61:177-96. [PMID: 26982439 DOI: 10.1146/annurev-ento-010715-023933] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Chitin is a major component of the exoskeleton and the peritrophic matrix of insects. It forms complex structures in association with different assortments of cuticle and peritrophic matrix proteins to yield biocomposites with a wide range of physicochemical and mechanical properties. The growth and development of insects are intimately coupled with the biosynthesis, turnover, and modification of chitin. The genes encoding numerous enzymes of chitin metabolism and proteins that associate with and organize chitin have been uncovered by bioinformatics analyses. Many of these proteins are encoded by sets of large gene families. There is specialization among members within each family, which function in particular tissues or developmental stages. Chitin-containing matrices are dynamically modified at every developmental stage and are under developmental and/or physiological control. A thorough understanding of the diverse processes associated with the assembly and turnover of these chitinous matrices offers many strategies to achieve selective pest control.
Collapse
Affiliation(s)
| | | | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China;
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506; ,
| |
Collapse
|
43
|
Li X, Xu Z, Zhou G, Lin H, Zhou J, Zeng Q, Mao Z, Gu X. Molecular characterization and expression analysis of five chitinases associated with molting in the Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol B Biochem Mol Biol 2015; 187:110-20. [DOI: 10.1016/j.cbpb.2015.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 10/23/2022]
|
44
|
Tetreau G, Dittmer NT, Cao X, Agrawal S, Chen YR, Muthukrishnan S, Haobo J, Blissard GW, Kanost MR, Wang P. Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:127-41. [PMID: 25524298 PMCID: PMC9346963 DOI: 10.1016/j.ibmb.2014.12.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/22/2014] [Accepted: 12/03/2014] [Indexed: 05/06/2023]
Abstract
In insects, chitin is a major structural component of the cuticle and the peritrophic membrane (PM). In nature, chitin is always associated with proteins among which chitin-binding proteins (CBPs) are the most important for forming, maintaining and regulating the functions of these extracellular structures. In this study, a genome-wide search for genes encoding proteins with ChtBD2-type (peritrophin A-type) chitin-binding domains (CBDs) was conducted. A total of 53 genes encoding 56 CBPs were identified, including 15 CPAP1s (cuticular proteins analogous to peritrophins with 1 CBD), 11 CPAP3s (CPAPs with 3 CBDs) and 17 PMPs (PM proteins) with a variable number of CBDs, which are structural components of cuticle or of the PM. CBDs were also identified in enzymes of chitin metabolism including 6 chitinases and 7 chitin deacetylases encoded by 6 and 5 genes, respectively. RNA-seq analysis confirmed that PMP and CPAP genes have differential spatial expression patterns. The expression of PMP genes is midgut-specific, while CPAP genes are widely expressed in different cuticle forming tissues. Phylogenetic analysis of CBDs of proteins in insects belonging to different orders revealed that CPAP1s from different species constitute a separate family with 16 different groups, including 6 new groups identified in this study. The CPAP3s are clustered into a separate family of 7 groups present in all insect orders. Altogether, they reveal that duplication events of CBDs in CPAP1s and CPAP3s occurred prior to the evolutionary radiation of insect species. In contrast to the CPAPs, all CBDs from individual PMPs are generally clustered and distinct from other PMPs in the same species in phylogenetic analyses, indicating that the duplication of CBDs in each of these PMPs occurred after divergence of insect species. Phylogenetic analysis of these three CBP families showed that the CBDs in CPAP1s form a clearly separate family, while those found in PMPs and CPAP3s were clustered together in the phylogenetic tree. For chitinases and chitin deacetylases, most of phylogenetic analysis performed with the CBD sequences resulted in similar clustering to the one obtained by using catalytic domain sequences alone, suggesting that CBDs were incorporated into these enzymes and evolved in tandem with the catalytic domains before the diversification of different insect orders. Based on these results, the evolution of CBDs in insect CBPs is discussed to provide a new insight into the CBD sequence structure and diversity, and their evolution and expression in insects.
Collapse
Affiliation(s)
- Guillaume Tetreau
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Neal T Dittmer
- Department of Biochemistry & Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sinu Agrawal
- Department of Biochemistry & Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| | - Yun-Ru Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853-1801, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry & Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| | - Jiang Haobo
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Gary W Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853-1801, USA
| | - Michael R Kanost
- Department of Biochemistry & Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS 66506, USA
| | - Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA.
| |
Collapse
|
45
|
Yang B, Zhang M, Li L, Pu F, You W, Ke C. Molecular Analysis of Atypical Family 18 Chitinase from Fujian Oyster Crassostrea angulata and Its Physiological Role in the Digestive System. PLoS One 2015; 10:e0129261. [PMID: 26046992 PMCID: PMC4457423 DOI: 10.1371/journal.pone.0129261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 05/06/2015] [Indexed: 11/23/2022] Open
Abstract
Chitinolytic enzymes have an important physiological significance in immune and digestive systems in plants and animals, but chitinase has not been identified as having a role in the digestive system in molluscan. In our study, a novel chitinase homologue, named Ca-Chit, has been cloned and characterized as the oyster Crassostrea angulate. The 3998bp full-length cDNA of Ca-Chit consisted of 23bp 5-UTR, 3288 ORF and 688bp 3-UTR. The deduced amino acids sequence shares homologue with the chitinase of family 18. The molecular weight of the protein was predicted to be 119.389 kDa, with a pI of 6.74. The Ca-Chit protein was a modular enzyme composed of a glycosyl hydrolase family 18 domain, threonine-rich region profile and a putative membrane anchor domain. Gene expression profiles monitored by quantitative RT-PCR in different adult tissues showed that the mRNA of Ca-Chit expressed markedly higher visceral mass than any other tissues. The results of the whole mount in-situ hybridization displayed that Ca-Chit starts to express the visceral mass of D-veliger larvae and then the digestive gland forms a crystalline structure during larval development. Furthermore, the adult oysters challenged by starvation indicated that the Ca-Chit expression would be regulated by feed. All the observations made suggest that Ca-Chit plays an important role in the digestive system of the oyster, Crassostrea angulate.
Collapse
Affiliation(s)
- Bingye Yang
- Xiamen Medical College, Xiamen, 361008, PR China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, PR China
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361005, PR China
| | - Mingming Zhang
- College of Life Science, Xiamen University, Xiamen, 361005, PR China
| | - Lingling Li
- College of Life Science, Xiamen University, Xiamen, 361005, PR China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, PR China
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361005, PR China
| | - Weiwei You
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361005, PR China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, PR China
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361005, PR China
| |
Collapse
|
46
|
Effects of domains modification on the catalytic potential of chitinase from Pseudomonas aeruginosa. Int J Biol Macromol 2015; 78:266-72. [PMID: 25895958 DOI: 10.1016/j.ijbiomac.2015.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 11/21/2022]
Abstract
Chitinase, an important enzyme in chitin-degrading, have extensive biophysiological functions and immense potential applications. Here, a chitinase gene pachi was cloned from Pseudomonas aeruginosa and overexpressed in E. coli (DE3). The structural analysis showed that chitinase pachi consists of catalytic domain (CHC), chitin binding domain (CBD) and both of these are linked by connective domain (FN3). In this study, Pachi displayed optimal activity at temperature 65 °C and pH 6.5. To understand the structural and functional relationship of chitin-binding domain with catalytic domain, two mutants, CHA (without CBD) and CBD+FN3-pachi with additional CBD have been constructed. Though the results showed that the two mutants have similar characteristics with Pachi, it is interesting to note that the deficiency of CBD caused an increase in expression level as well as solubility of the CHA. Moreover, the catalytic efficiency of CHA was increased 1.26-fold and substrate affinity in the absence of CBD was decreased 1.85-fold. Thus, the improved solubility and activity of CHA by domain deficiency is an interesting pathway to study the relationship of structure and function of chitinase and support its potential use in commercial applications.
Collapse
|
47
|
Teng Z, Sun C, Liu S, Wang H, Zhang S. Functional characterization of chitinase-3 reveals involvement of chitinases in early embryo immunity in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:489-498. [PMID: 24968080 DOI: 10.1016/j.dci.2014.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 06/03/2023]
Abstract
The function and mechanism of chitinases in early embryonic development remain largely unknown. We show here that recombinant chitinase-3 (rChi3) is able to hydrolyze the artificial chitin substrate, 4-methylumbelliferyl-β-D-N,N',N″-triacetylchitotrioside, and to bind to and inhibit the growth of the fungus Candida albicans, implicating that Chi3 plays a dual function in innate immunity and chitin-bearing food digestion in zebrafish. This is further corroborated by the expression profile of Chi3 in the liver and gut, which are both immune- and digestion-relevant organs. Compared with rChi3, rChi3-CD lacking CBD still retains partial capacity to bind to C. albicans, but its enzymatic and antifungal activities are significantly reduced. By contrast, rChi3-E140N with the putative catalytic residue E140 mutated shows little affinity to chitin, and its enzymatic and antifungal activities are nearly completely lost. These suggest that both enzymatic and antifungal activities of Chi3 are dependent on the presence of CBD and E140. We also clearly demonstrate that in zebrafish, both the embryo extract and the developing embryo display antifungal activity against C. albicans, and all the findings point to chitinase-3 (Chi3) being a newly-identified factor involved in the antifungal activity. Taken together, a dual function in both innate immunity and food digestion in embryo is proposed for zebrafish Chi3. It also provides a new angle to understand the immune role of chitinases in early embryonic development of animals.
Collapse
Affiliation(s)
- Zinan Teng
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Chen Sun
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shousheng Liu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Hongmiao Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
48
|
Kim TK, Curran J, Mulenga A. Dual silencing of long and short Amblyomma americanum acidic chitinase forms weakens the tick cement cone stability. ACTA ACUST UNITED AC 2014; 217:3493-503. [PMID: 25189365 DOI: 10.1242/jeb.107979] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study demonstrates that Amblyomma americanum (Aam) constitutively and ubiquitously expresses the long (L) and short (S) putative acidic chitinases (Ach) that are distinguished by a 210 base pair (bp) deletion in AamAch-S. Full-length AamAch-L and AamAch-S cDNA are 1959 and 1718 bp long, containing 1332 and 1104 bp open reading frames that code for 443 and 367 amino acid residues proteins with the former predicted to be extracellular and the latter intracellular. Both AamAch-L and AamAch-S mRNA are expressed in multiple organs as revealed by qualitative RT-PCR analysis. Furthermore, quantitative reverse transcription polymerase chain reaction analysis revealed that AamAch-L mRNA was downregulated in the mid-gut, but was unchanged in the salivary gland and in other organs in response to feeding. Of significant interest, AamAch-L and/or AamAch-S functions are probably associated with formation and/or maintenance of stability of A. americanum tick cement cone. Dual RNA interference silencing of AamAch-L and/or AamAch-S mRNA caused ticks to loosely attach onto host skin as suggested by bleeding around tick mouthparts and ticks detaching off host skin with a light touch. AamAch-L may apparently encode an inactive chitinase as indicated by Pichia pastoris-expressed recombinant AamAch-L failing to hydrolyse chitinase substrates. Unpublished related work in our laboratory, and published work by others that found AamAch-L in tick saliva, suggest that native AamAch-L is a non-specific immunoglobulin binding tick saliva protein in that rAamAch-L non-specifically bound rabbit, bovine and chicken non-immune sera. We discuss findings in this study with reference to advancing knowledge on tick feeding physiology.
Collapse
Affiliation(s)
- Tae K Kim
- Texas A&M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA
| | - Janet Curran
- Texas A&M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA
| | - Albert Mulenga
- Texas A&M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, USA
| |
Collapse
|
49
|
Ioannidou ZS, Theodoropoulou MC, Papandreou NC, Willis JH, Hamodrakas SJ. CutProtFam-Pred: detection and classification of putative structural cuticular proteins from sequence alone, based on profile hidden Markov models. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:51-9. [PMID: 24978609 PMCID: PMC4143468 DOI: 10.1016/j.ibmb.2014.06.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 05/03/2023]
Abstract
The arthropod cuticle is a composite, bipartite system, made of chitin filaments embedded in a proteinaceous matrix. The physical properties of cuticle are determined by the structure and the interactions of its two major components, cuticular proteins (CPs) and chitin. The proteinaceous matrix consists mainly of structural cuticular proteins. The majority of the structural proteins that have been described to date belong to the CPR family, and they are identified by the conserved R&R region (Rebers and Riddiford Consensus). Two major subfamilies of the CPR family RR-1 and RR-2, have also been identified from conservation at sequence level and some correlation with the cuticle type. Recently, several novel families, also containing characteristic conserved regions, have been described. The package HMMER v3.0 (http://hmmer.janelia.org/) was used to build characteristic profile Hidden Markov Models based on the characteristic regions for 8 of these families, (CPF, CPAP3, CPAP1, CPCFC, CPLCA, CPLCG, CPLCW, Tweedle). In brief, these families can be described as having: CPF (a conserved region with 44 amino acids); CPAP1 and CPAP-3 (analogous to peritrophins, with 1 and 3 chitin-binding domains, respectively); CPCFC (2 or 3 C-x(5)-C repeats); and four of five low complexity (LC) families, each with characteristic domains. Using these models, as well as the models previously created for the two major subfamilies of the CPR family, RR-1 and RR-2 (Karouzou et al., 2007), we developed CutProtFam-Pred, an on-line tool (http://bioinformatics.biol.uoa.gr/CutProtFam-Pred) that allows one to query sequences from proteomes or translated transcriptomes, for the accurate detection and classification of putative structural cuticular proteins. The tool has been applied successfully to diverse arthropod proteomes including a crustacean (Daphnia pulex) and a chelicerate (Tetranychus urticae), but at this taxonomic distance only CPRs and CPAPs were recovered.
Collapse
Affiliation(s)
- Zoi S Ioannidou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
| | - Margarita C Theodoropoulou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
| | - Nikos C Papandreou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
| | - Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Stavros J Hamodrakas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece.
| |
Collapse
|
50
|
Chang CL, Geib S, Cho IK, Li QX, Stanley D. Dietary lufenuron reduces egg hatch and influences protein expression in the fruit fly Bactrocera latifrons (Hendel). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2014; 86:193-208. [PMID: 24753137 DOI: 10.1002/arch.21169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Lufenuron (LFN), a chitin synthase inhibitor, impacts the fertility of Ceratitis capitata, Bactrocera dorsalis, B. cucurbitae, and B. latifrons. We posed the hypothesis that LFN curtails egg hatch in the solanaceous fruit fly, B. latifrons. In this study, newly emerged virgin adults were sexed and fed for 12 days with varying concentrations of LFN-laced agar diets until sexual maturation. Eggs were collected from 12-d-old adults and the egg hatch was assessed. Egg hatch decreased in adults reared on LFN-treated diets. LFN-treated media did not influence fertility after one gender was reared on experimental and the other on control media before mating. Exposure to LFN-treated medium after mating led to reduced egg hatch. We infer that LFN is not a permanent sterilant, and reduced egg hatch depends on continuous exposure to dietary LFN after mating. Proteomic analysis identified two differentially expressed proteins, a pheromone binding protein and a chitin binding protein, between adults maintained on LFN-treated and control diets. Expression of two genes encoding chitin synthase 2, and chitin binding protein, was altered in adults exposed to dietary LFN. LFN treatments also led to increased expression of two odorant binding proteins one in females and one in males. We surmise these data support our hypothesis and provide insight into LFN actions.
Collapse
|