1
|
Aamer NA, El-Moaty ZA, Augustyniak M, El-Samad LM, Hussein HS. Impacts of Combining Steinernema carpocapsae and Bracon hebetor Parasitism on Galleria mellonella Larvae. INSECTS 2024; 15:588. [PMID: 39194793 DOI: 10.3390/insects15080588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
The greater wax moth, Galleria mellonella, is a significant pest in apiculture and a well-established model organism for immunological and ecotoxicological studies. This investigation explores the individual and combined effects of the ectoparasite Bracon hebetor (B.h.) and the entomopathogenic nematode Steinernema carpocapsae (S.c.) on G. mellonella larvae. We evaluated the activity of oxidative stress enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST), malondialdehyde (MDA) levels, cytochrome P450 activity, cell viability using Annexin V-FITC, DNA damage via comet assay, and larval morphology through scanning electron microscopy (SEM). Control larvae exhibited higher GPx and GST activities compared to those treated with B.h., S.c., or the B.h. + S.c. combination. Conversely, MDA levels displayed the opposite trend. SOD activity was reduced in the B.h. and S.c. groups but significantly higher in the combined treatment. Cytochrome P450 activity increased in response to parasitism by B. hebetor. The Annexin V-FITC assay revealed decreased cell viability in parasitized groups (B.h. 79.4%, S.c. 77.3%, B.h. + S.c. 70.1%) compared to controls. DNA damage analysis demonstrated significant differences between groups, and SEM observations confirmed severe cuticle abnormalities or malformations in G. mellonella larvae. These findings highlight the complex interactions between B. hebetor, S. carpocapsae, and their host, G. mellonella. Additionally, they illuminate the intricate physiological responses triggered within the host larvae.
Collapse
Affiliation(s)
- Neama A Aamer
- Department of Applied Entomology and Zoology, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Zeinab A El-Moaty
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsaa 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University, Moharam Bey, Alexandria 21511, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Moharam Bey, Alexandria 21511, Egypt
| | - Hanaa S Hussein
- Department of Applied Entomology and Zoology, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|
2
|
Salvia R, Scieuzo C, Boschi A, Pezzi M, Mistri M, Munari C, Chicca M, Vogel H, Cozzolino F, Monaco V, Monti M, Falabella P. An Overview of Ovarian Calyx Fluid Proteins of Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae): An Integrated Transcriptomic and Proteomic Approach. Biomolecules 2023; 13:1547. [PMID: 37892230 PMCID: PMC10605793 DOI: 10.3390/biom13101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The larval stages of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae), are parasitized by the endophagous parasitoid wasp, Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae). During the injections of eggs, this parasitoid wasp also injects into the host body the secretion of the venom gland and the calyx fluid, which contains a polydnavirus (T. nigriceps BracoVirus: TnBV) and the Ovarian calyx fluid Proteins (OPs). The effects of the OPs on the host immune system have recently been described. In particular, it has been demonstrated that the OPs cause hemocytes to undergo a number of changes, such as cellular oxidative stress, actin cytoskeleton modifications, vacuolization, and the inhibition of hemocyte encapsulation capacity, which results in both a loss of hemocyte functionality and cell death. In this study, by using a combined transcriptomic and proteomic analysis, the main components of T. nigriceps ovarian calyx fluid proteins were identified and their possible role in the parasitic syndrome was discussed. This study provides useful information to support the analysis of the function of ovarian calyx fluid proteins, to better understand T. nigriceps parasitization success and for a more thorough understanding of the components of ovarian calyx fluid proteins and their potential function in combination with other parasitoid factors.
Collapse
Affiliation(s)
- Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Andrea Boschi
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
| | - Marco Pezzi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Michele Mistri
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Cristina Munari
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.P.); (M.M.); (C.M.)
| | - Milvia Chicca
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Straße 8, D-07745 Jena, Germany;
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (F.C.); (V.M.)
- CEINGE Advanced Biotechnologies Franco Salvatore, 80145 Naples, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (A.B.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
3
|
Salvia R, Scieuzo C, Grimaldi A, Fanti P, Moretta A, Franco A, Varricchio P, Vinson SB, Falabella P. Role of Ovarian Proteins Secreted by Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) in the Early Suppression of Host Immune Response. INSECTS 2021; 12:insects12010033. [PMID: 33466542 PMCID: PMC7824821 DOI: 10.3390/insects12010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Toxoneuron nigriceps is an endoparasitoid of the tobacco budworm Heliothis virescens. Parasitoid strategies to survive involve different regulating factors that are injected into the host body together with the egg: the venom and the calyx fluid, containing a Polydnavirus (PDV) and Ovarian Proteins (OPs). The combination of these factors increases the success of parasitism. Although many studies have been reported on venom protein components and the knowledge on PDVs is increasing, little is known on OPs. These secretions are able to interfere early with the host cellular immune response, acting specifically on host haemocytes, cells involved in immune response. Our results show that OPs induce several alterations on haemocytes, including cellular oxidative stress condition and modifications of actin cytoskeleton, so inducing both a loss of haemocyte functionality and cell death. Overall, in synergy with PDV and venom, OPs positively contribute to the evasion of the host immune response by T. nigriceps. Abstract Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) is an endophagous parasitoid of the larval stages of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera, Noctuidae). During oviposition, T. nigriceps injects into the host body, along with the egg, the venom, the calyx fluid, which contains a Polydnavirus (T. nigriceps BracoVirus: TnBV), and the Ovarian Proteins (OPs). Although viral gene expression in the host reaches detectable levels after a few hours, a precocious disruption of the host metabolism and immune system is observed right after parasitization. This alteration appears to be induced by female secretions including TnBV venom and OPs. OPs, originating from the ovarian calyx cells, are involved in the induction of precocious symptoms in the host immune system alteration. It is known that OPs in braconid and ichneumonid wasps can interfere with the cellular immune response before Polydnavirus infects and expresses its genes in the host tissues. Here we show that T. nigriceps OPs induce several alterations on host haemocytes that trigger cell death. The OP injection induces an extensive oxidative stress and a disorganization of actin cytoskeleton and these alterations can explain the high-level of haemocyte mortality, the loss of haemocyte functionality, and so the reduction in encapsulation ability by the host.
Collapse
Affiliation(s)
- Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (C.S.); (P.F.); (A.M.); (A.F.)
- Spinoff XFlies s.r.l, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (C.S.); (P.F.); (A.M.); (A.F.)
- Spinoff XFlies s.r.l, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy;
| | - Paolo Fanti
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (C.S.); (P.F.); (A.M.); (A.F.)
| | - Antonio Moretta
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (C.S.); (P.F.); (A.M.); (A.F.)
| | - Antonio Franco
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (C.S.); (P.F.); (A.M.); (A.F.)
- Spinoff XFlies s.r.l, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Paola Varricchio
- Department of Agricultural Sciences, University of Naples “Federico II”, 80055 Portici, Italy;
| | - S. Bradleigh Vinson
- Department of Entomology, Texas A&M University, 370 Olsen Blvd, College Station, TX 77843-2475, USA;
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (R.S.); (C.S.); (P.F.); (A.M.); (A.F.)
- Spinoff XFlies s.r.l, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Correspondence:
| |
Collapse
|
4
|
Salvia R, Nardiello M, Scieuzo C, Scala A, Bufo SA, Rao A, Vogel H, Falabella P. Novel Factors of Viral Origin Inhibit TOR Pathway Gene Expression. Front Physiol 2018; 9:1678. [PMID: 30534083 PMCID: PMC6275226 DOI: 10.3389/fphys.2018.01678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 11/08/2018] [Indexed: 01/06/2023] Open
Abstract
Polydnaviruses (PDVs) are obligate symbionts of endoparasitoid wasps, which exclusively attack the larval stages of their lepidopteran hosts. The Polydnavirus is injected by the parasitoid female during oviposition to selectively infect host tissues by the expression of viral genes without undergoing replication. Toxoneuron nigriceps bracovirus (TnBV) is associated with Toxoneuron nigriceps (Hymenoptera: Braconidae) wasp, an endoparasitoid of the tobacco budworm larval stages, Heliothis virescens (Lepidoptera: Noctuidae). Previous studies showed that TnBV is responsible for alterations in host physiology. The arrest of ecdysteroidogenesis is the main alteration which occurs in last (fifth) instar larvae and, as a consequence, prevents pupation. TnBV induces the functional inactivation of H. virescens prothoracic glands (PGs), resulting in decreased protein synthesis and phosphorylation. Previous work showed the involvement of the PI3K/Akt/TOR pathway in H. virescens PG ecdysteroidogenesis. Here, we demonstrate that this cellular signaling is one of the targets of TnBV infection. Western blot analysis and enzyme immunoassay (EIA) showed that parasitism inhibits ecdysteroidogenesis and the phosphorylation of the two targets of TOR (4E-BP and S6K), despite the stimulation of PTTH contained in the brain extract. Using a transcriptomic approach, we identified viral genes selectively expressed in last instar H. virescens PGs, 48 h after parasitization, and evaluated expression levels of PI3K/Akt/TOR pathway genes in these tissues. The relative expression of selected genes belonging to the TOR pathway (tor, 4e-bp, and s6k) in PGs of parasitized larvae was further confirmed by qRT-PCR. The down-regulation of these genes in PGs of parasitized larvae supports the hypothesis of TnBV involvement in blocking ecdysteroidogenesis, through alterations of the PI3K/Akt/TOR pathway at the transcriptional level.
Collapse
Affiliation(s)
- Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Marisa Nardiello
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Andrea Scala
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Asha Rao
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Patrizia Falabella
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
Zhang C, Wang CZ. cDNA Cloning and Molecular Characterization of a Cysteine-rich Gene fromCampoletis chlorideaePolydnavirus. ACTA ACUST UNITED AC 2009; 14:413-9. [PMID: 15018350 DOI: 10.1080/10425170310001608380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polydnavirus (PDV) of Campoletis chlorideae (CcIV) is very important for the successful development of the parasitoid progenies. Previous study revealed that the persistence and expression of CcIV in parasitized Helicoverpa armigera larvae continued for 5 days, and the 1.0 kb gene (CcIV 1.0) was most abundantly expressed. In this report, a cDNA library was constructed using the SMART cDNA Synthesis Method, and the CcIV 1.0 was cloned and identified by PCR, Southern blot hybridization and 5' end amplification, this gene is 936 bp long and encodes 207 amino acids with a signal peptide and a cysteine motif. Sequence comparison shows CcIV 1.0 has high identity with VHv 1.4, VHv 1.1 genes (86%, 88%) and WHv 1.6, WHv 1.0 genes (89%, 87%) of Campoletis sonorensis PDV, which might suggest that they have arisen from a common ancestral gene; the homology between CcIV and other PDV genes is not significant.
Collapse
Affiliation(s)
- Cong Zhang
- State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, 25 Beisihuan Xilu, Beijing 100080, China
| | | |
Collapse
|
6
|
Weber B, Annaheim M, Lanzrein B. Transcriptional analysis of polydnaviral genes in the course of parasitization reveals segment-specific patterns. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 66:9-22. [PMID: 17694561 DOI: 10.1002/arch.20190] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Polydnaviruses are symbiotic viruses of endoparasitic wasps, which are formed in their ovary and injected along with the eggs into the host. They manipulate the host in a way to allow successful parasitoid development. A hallmark of polydnaviruses is their segmented genome consisting of several circles of double-stranded DNA. We are studying the solitary egg-larval parasitoid Chelonus inanitus (Braconidae) parasitizing Spodoptera littoralis (Noctuidae). The polydnavirus of Chelonus inanitus (CiV) protects the parasitoid larva from encapsulation by the host's immune system, slightly modifies host nutritional physiology, and induces a developmental arrest of the host in the prepupal stage. Here we present data on newly identified CiV genes and their expression patterns in the course of parasitization. None of these genes has similarity to other genes and so far no gene families could be found. A rough estimation of transcript quantities revealed that even the most highly expressed CiV genes reach maximal values, which are 250 times lower than actin. This indicates that the CiV-induced alterations of the host are brought about by a concerted action of low levels of transcripts. In an overview, we show the expression patterns of all CiV genes analysed up to now; they indicate that several genes with similar expression patterns (early, persistent, intermediate, or late) are grouped together on the same segment. This is the first observation of this type. It suggests that one function of the segmentation of the polydnavirus genome may be the grouping together of genes, which are regulated in a similar manner.
Collapse
Affiliation(s)
- Benjamin Weber
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
7
|
Falabella P, Caccialupi P, Varricchio P, Malva C, Pennacchio F. Protein tyrosine phosphatases of Toxoneuron nigriceps bracovirus as potential disrupters of host prothoracic gland function. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 61:157-69. [PMID: 16482584 DOI: 10.1002/arch.20120] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The genomic sequence of the bracovirus associated with the wasp Toxoneuron nigriceps (Hymenoptera, Braconidae) (TnBV), an endophagous parasitoid of the tobacco budworm larvae, Heliothis virescens (Lepidoptera, Noctuidae), contains a large gene family coding for protein tyrosine phosphatases (PTPs). Here we report the characterization of cDNAs for two of the viral PTPs isolated by screening a cDNA library from haemocytes of parasitized host larvae. The two encoded proteins show 70% amino acid identity and are expressed in the fat body of parasitized hosts. In addition, one was expressed in inactivated prothoracic glands (PTGs), 24 h after parasitoid oviposition. The rapid block of ecdysteroidogenesis does not appear to be due to inhibition of general protein synthesis, as indirectly indicated by the unaltered S6 kinase activity in the cytosolic extracts of basal PTGs from parasitized host larvae. Rather, TnBV PTP over-expression in inactivated host PTGs suggests that gland function may be affected by the disruption of the phosphorylation balance of key proteins regulating points upstream from the ribosomal S6 phosphorylation in the PTTH signaling cascade.
Collapse
Affiliation(s)
- Patrizia Falabella
- Dipartimento di Biologia, Difesa e Biotecnologie Agro-Forestali, Università della Basilicata, Potenza, Italy
| | | | | | | | | |
Collapse
|
8
|
Gill TA, Fath-Goodin A, Maiti II, Webb BA. Potential Uses of Cys‐Motif and Other Polydnavirus Genes in Biotechnology. Adv Virus Res 2006; 68:393-426. [PMID: 16997018 DOI: 10.1016/s0065-3527(06)68011-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Exploiting the ability of insect pathogens, parasites, and predators to control natural and damaging insect populations is a cornerstone of biological control. Here we focus on an unusual group of viruses, the polydnaviruses (PDV), which are obligate symbionts of some hymenopteran insect parasitoids. PDVs have a variety of important pathogenic effects on their parasitized hosts. The genes controlling some of these pathogenic effects, such as inhibition of host development, induction of precocious metamorphosis, slowed or reduced feeding, and immune suppression, may have use for biotechnological applications. In this chapter, we consider the physiological functions of both wasp and viral genes with emphasis on the Cys-motif gene family and their potential use for insect pest control.
Collapse
Affiliation(s)
- Torrence A Gill
- Department of Entomology, S-225 Agricultural Science Building North University of Kentucky, Lexington, Kentucky 40546, USA
| | | | | | | |
Collapse
|
9
|
Lapointe R, Wilson R, Vilaplana L, O'Reilly DR, Falabella P, Douris V, Bernier-Cardou M, Pennacchio F, Iatrou K, Malva C, Olszewski JA. Expression of a Toxoneuron nigriceps polydnavirus-encoded protein causes apoptosis-like programmed cell death in lepidopteran insect cells. J Gen Virol 2005; 86:963-971. [PMID: 15784889 DOI: 10.1099/vir.0.80834-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The polydnavirus Toxoneuron nigriceps bracovirus (TnBV) is an obligate symbiont associated with the braconid wasp T. nigriceps, a parasitoid of Heliothis virescens larvae. Previously, to identify polydnavirus genes that allow parasitization by altering the host immune and endocrine systems, expression patterns of TnBV genes from parasitized H. virescens larvae were analysed and cDNAs were obtained. To study the function of the protein from one such cDNA, TnBV1, overexpression of the protein was attempted by using the baculovirus Autographa californica multicapsid nucleopolyhedrovirus. Recovery of stable recombinant virus was unsuccessful, with the exception of recombinants with deletions/mutations within the TnBV1 gene. It was hypothesized that TnBV1 expression was cytotoxic to the Spodoptera frugiperda (Sf21) insect cells that were used to produce the recombinants. Therefore, the Bac-to-Bac system was used to create recombinant baculoviruses maintained in Escherichia coli expressing either TnBV1 (Ac-TnBV1) or an initiator-methionine mutant [Ac-TnBV1(ATG−)]. Microscopy revealed substantial cell death of Sf21 and High Five cells from 48 h post-infection with Ac-TnBV1, but not with the Ac-TnBV1(ATG−) recombinant virus. Ac-TnBV1-infected Sf21 cells, but not those with parental virus infection, showed an increased caspase-3-like protease activity, as well as increased terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling (TUNEL) for breaks in host genomic DNA. Although indicative of apoptosis, blebbing and apoptotic bodies were not observed in infected cells. Transiently expressing TnBV1 alone caused TUNEL staining in High Five cells. These data suggest that TnBV1 expression alone can induce apoptosis-like programmed cell death in two insect cell lines. Injection of Ac-TnBV1 budded virus, compared with parental virus, did not result in an alteration of virulence in H. virescens larvae.
Collapse
Affiliation(s)
- Renée Lapointe
- Department of Biological Sciences, Imperial College, London SW7 2AZ, UK
| | - Rebecca Wilson
- Department of Biological Sciences, Imperial College, London SW7 2AZ, UK
| | - Lluïsa Vilaplana
- Department of Biological Sciences, Imperial College, London SW7 2AZ, UK
| | - David R O'Reilly
- Department of Biological Sciences, Imperial College, London SW7 2AZ, UK
| | - Patrizia Falabella
- Dipartimento di Biologia, Difesa e Biotecnologie, Agro-Forestali-Università della Basilicata-Macchia Romana, 85100 Potenza, Italy
| | - Vassilis Douris
- National Centre for Scientific Research 'Demokritos', 153 10 Aghia Paraskevi, Athens, Greece
| | - Michèle Bernier-Cardou
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy (Québec), Canada G1V 4C7
| | - Francesco Pennacchio
- Dipartimento di Biologia, Difesa e Biotecnologie, Agro-Forestali-Università della Basilicata-Macchia Romana, 85100 Potenza, Italy
| | - Kostas Iatrou
- National Centre for Scientific Research 'Demokritos', 153 10 Aghia Paraskevi, Athens, Greece
| | - Carla Malva
- Instituto di Genetica e Biofisica, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Julie A Olszewski
- Department of Biological Sciences, Imperial College, London SW7 2AZ, UK
| |
Collapse
|
10
|
Provost B, Varricchio P, Arana E, Espagne E, Falabella P, Huguet E, La Scaleia R, Cattolico L, Poirié M, Malva C, Olszewski JA, Pennacchio F, Drezen JM. Bracoviruses contain a large multigene family coding for protein tyrosine phosphatases. J Virol 2004; 78:13090-103. [PMID: 15542661 PMCID: PMC524979 DOI: 10.1128/jvi.78.23.13090-13103.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Accepted: 07/19/2004] [Indexed: 11/20/2022] Open
Abstract
The relationship between parasitic wasps and bracoviruses constitutes one of the few known mutualisms between viruses and eukaryotes. The virions produced in the wasp ovaries are injected into host lepidopteran larvae, where virus genes are expressed, allowing successful development of the parasite by inducing host immune suppression and developmental arrest. Bracovirus-bearing wasps have a common phylogenetic origin, and contemporary bracoviruses are hypothesized to have been inherited by chromosomal transmission from a virus that originally integrated into the genome of the common ancestor wasp living 73.7 +/- 10 million years ago. However, so far no conserved genes have been described among different braconid wasp subfamilies. Here we show that a gene family is present in bracoviruses of different braconid wasp subfamilies (Cotesia congregata, Microgastrinae, and Toxoneuron nigriceps, Cardiochilinae) which likely corresponds to an ancient component of the bracovirus genome that might have been present in the ancestral virus. The genes encode proteins belonging to the protein tyrosine phosphatase family, known to play a key role in the control of signal transduction pathways. Bracovirus protein tyrosine phosphatase genes were shown to be expressed in different tissues of parasitized hosts, and two protein tyrosine phosphatases were produced with recombinant baculoviruses and tested for their biochemical activity. One protein tyrosine phosphatase is a functional phosphatase. These results strengthen the hypothesis that protein tyrosine phosphatases are involved in virally induced alterations of host physiology during parasitism.
Collapse
Affiliation(s)
- Bertille Provost
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 6035, Faculté des Sciences et Techniques, Parc Grandmont, 37200 Tours, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Malva C, Varricchio P, Falabella P, La Scaleia R, Graziani F, Pennacchio F. Physiological and molecular interaction in the host-parasitoid system Heliothis virescens-Toxoneuron nigriceps: current status and future perspectives. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:177-183. [PMID: 14871614 DOI: 10.1016/j.ibmb.2003.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Revised: 09/24/2003] [Accepted: 09/24/2003] [Indexed: 05/24/2023]
Abstract
Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) is an endophagous parasitoid of the tobacco budworm Heliothis virescens (F.) (Lepidoptera, Noctuidae). Parasitized H. virescens larvae are developmentally arrested and show a complex array of pathological symptoms ranging from the suppression of the immune response to an alteration of ecdysone biosynthesis and metabolism. Most of these pathological syndromes are induced by the polydnavirus associated with T. nigriceps (TnBV). An overview of our recent research work on this system is described herein. The mechanisms involved in the disruption of the host hormonal balance have been further investigated, allowing to better define the physiological model previously proposed. A functional genomic approach has been undertaken to identify TnBV genes expressed in the host and to assess their role in the major parasitoid-induced pathologies. Some TnBV genes cloned so far are novel and do not show any similarity with genes already available in genomic databases, while others code for proteins having conserved domains, such as aspartic proteases and tyrosine phosphatases. Sequencing of the entire TnBV genome is in progress and will considerably contribute to the understanding of the molecular bases of parasitoid-induced host alterations.
Collapse
Affiliation(s)
- C Malva
- Istituto di Genetica e Biofisica, via P. Castellino 111, Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Kroemer JA, Webb BA. Polydnavirus genes and genomes: emerging gene families and new insights into polydnavirus replication. ANNUAL REVIEW OF ENTOMOLOGY 2004; 49:431-456. [PMID: 14651471 DOI: 10.1146/annurev.ento.49.072103.120132] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polydnavirus genome sequencing is providing new insights into viral genome organization and viral gene function. Sequence analyses demonstrate that the genomes of these viral mutualists are largely noncoding but maintain genes and gene families that are unrelated to other viral genes. Interestingly, these organizational patterns in polydnavirus genomes are evident in both the bracovirus and ichnovirus genera, even though these two genera are evolutionarily unrelated. The identity and function of some polydnavirus gene families are considered with some functions experimentally supported and others implied by homology relationships with known insect genes. The evidence relative to polydnavirus origins and evolution is considered but remains an area of speculation. However, sequencing of these viral genomes has been informative and provides opportunities for productive investigation of these unusual mutualistic insect viruses.
Collapse
Affiliation(s)
- Jeremy A Kroemer
- Department of Entomology, University of Kentucky, S-225 Agricultural Sciences Center North, Lexington, Kentucky 40546, USA.
| | | |
Collapse
|
13
|
Li S, Falabella P, Kuriachan I, Vinson SB, Borst DW, Malva C, Pennacchio F. Juvenile hormone synthesis, metabolism, and resulting haemolymph titre in Heliothis virescens larvae parasitized by Toxoneuron nigriceps. JOURNAL OF INSECT PHYSIOLOGY 2003; 49:1021-1030. [PMID: 14568580 DOI: 10.1016/s0022-1910(03)00185-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Last instar larvae of the tobacco budworm, Heliothis virescens F., fail to pupate and have little 20-hydroxyecdysone when parasitized by Toxoneuron nigriceps (Viereck). In this paper, we extend these observations to juvenile hormone (JH) to determine if parasitism by this wasp affects other endocrine systems. To this end, we compared the production of JH by corpora cardiaca-corpora allata complexes (CC-CA), the metabolism of JH by haemolymph enzymes, and the haemolymph titre of JH in parasitized and non-parasitized control larvae of H. virescens during the last larval instar. CC-CA from parasitized and control larvae had similar peaks of JH synthesis on day 1 of the fifth instar, with JH II accounting for more than 90% of total JH in both groups. On subsequent days, JH synthesis dropped to undetectable levels more quickly in non-parasitized controls than in parasitized larvae. JH metabolism by haemolymph of parasitized and control animals increased from low levels on day 1 of the fifth instar to high levels on days 2 and 3 of the instar. JH metabolism was significantly higher in control larvae than in parasitized larvae. After day 3, JH metabolism decreased in both groups, but was significantly higher in parasitized larvae. The major metabolite of JH in both groups was JH acid, though traces of JH diol and JH acid diol were also detected. The haemolymph titre of JH in both groups peaked on day 1 of the fifth instar and, similar to the synthesis of JH by CC-CA, decreased more rapidly in control larvae. As a result, non-parasitized animals had significantly lower JH titres on day 2. The higher JH titres observed in parasitized larvae during the early fifth instar may contribute to their developmental arrest. The possible role of these JH alterations in the host developmental and metabolic redirection is discussed and a more comprehensive physiological model accounting for host-parasitoid interactions is proposed.
Collapse
Affiliation(s)
- Sheng Li
- Dipartimento di Biologia, Difesa e Biotecnologie Agro-Forestali, Università della Basilicata, Macchia Romana, 85100 Potenza, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Chen YP, Gundersen-Rindal DE. Morphological and genomic characterization of the polydnavirus associated with the parasitoid wasp Glyptapanteles indiensis (Hymenoptera: Braconidae). J Gen Virol 2003; 84:2051-2060. [PMID: 12867635 DOI: 10.1099/vir.0.19234-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glyptapanteles indiensis polydnavirus (GiPDV) is essential for successful parasitization of the larval stage of the lepidopteran Lymantria dispar (gypsy moth) by the endoparasitic wasp Glyptapanteles indiensis. This virus has not been characterized previously. Ultrastructural studies of GiPDV showed that virions had a rod-like or rectangular form and each contained as many as ten nucleocapsids enclosed by a single unit membrane envelope. Field inversion gel electrophoresis (FIGE) analysis of the virus genomic DNA revealed that GiPDV had a segmented genome composed of 13 dsDNA segments, ranging in size from approximately 11 kb to more than 30 kb. Four genomic segments were present in higher molar concentration than the others. Further characterization of the GiPDV genome yielded several cDNA clones which derived from GiPDV-specific mRNAs, and Northern blot analysis confirmed expression of isolated cDNA clones in the parasitized host. Each was present on more than one GiPDV genomic DNA segment, suggesting the existence of related sequences among DNA segments. It has been proposed previously that in polydnavirus systems, genome segmentation, hypermolar ratio segments and segment nesting may function to increase the copy number of essential genes and to increase the levels of gene expression in the absence of virus replication. The present data support this notion and suggest that GiPDV morphology and genomic organization may be intrinsically linked to the function and evolutionary strategies of the virus.
Collapse
Affiliation(s)
- Y P Chen
- USDA-ARS Insect Biocontrol Laboratory, Beltsville, MD 20705, USA
| | | |
Collapse
|
15
|
Kadash K, Harvey JA, Strand MR. Cross-protection experiments with parasitoids in the genus Microplitis (Hymenoptera: Braconidae) suggest a high level of specificity in their associated bracoviruses. JOURNAL OF INSECT PHYSIOLOGY 2003; 49:473-482. [PMID: 12770626 DOI: 10.1016/s0022-1910(03)00064-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The immunological and developmental effects of bracoviruses (BVs) from three parasitoids in the genus Microplitis (Braconidae: Microgastrinae) were compared in the hosts Pseudoplusia includens and Heliothis virescens (Lepidoptera: Noctuidae). Southern blotting experiments indicated that viral DNAs from Microplitis demolitor bracovirus (MdBV) cross-hybridized with viral DNAs from Microplitis croceipes bracovirus (McBV) and Microplitis mediator bracovirus (MmBV) under conditions of high stringency. Injection of calyx fluid plus venom from each parasitoid species dose-dependently delayed development of P. includens and H. virescens. Each virus also inhibited pupation of P. includens but not H. virescens. In situ hybridization experiments indicated that MdBV and McBV persistently infect hemocytes in both hosts while MmBV persistently infects hemocytes in P. includens but not H. virescens. While MdBV infection induced a loss of adhesion by most plasmatocytes, McBV and MmBV infection induced a loss of adhesion in less than 50% of cells. Cross-protection experiments indicated that calyx fluid plus venom from one species usually protected progeny of another species from encapsulation but did not always promote successful development.
Collapse
Affiliation(s)
- K Kadash
- Department of Entomology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
16
|
Falabella P, Varricchio P, Gigliotti S, Tranfaglia A, Pennacchio F, Malva C. Toxoneuron nigriceps polydnavirus encodes a putative aspartyl protease highly expressed in parasitized host larvae. INSECT MOLECULAR BIOLOGY 2003; 12:9-17. [PMID: 12542631 DOI: 10.1046/j.1365-2583.2003.00382.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae) is an endophagous parasitoid of larval stages of the tobacco budworm, Heliothis virescens (F.) (Lepidoptera: Noctuidae). This parasitoid is associated with a polydnavirus (TnBV), injected at oviposition along with the egg, and involved in the disruption of host immune reaction and endocrine balance. This paper reports the molecular characterization of TnBV2, one of the most abundant genes in the TnBV genome. TnBV2 expression produces a mature 0.6 kb transcript in fat body, prothoracic glands and haemocytes, as early as 6 h after parasitoid oviposition. Only in haemocytes a specific longer transcript of 2.5 kb is found 24 h after parasitization. The putative translation product of TnBV2 contains a retroviral type aspartyl protease domain. The possible origin and functional role of this TnBV gene are discussed.
Collapse
Affiliation(s)
- Patrizia Falabella
- Istituto di Genetica e Biofisica--C.N.R.--Via Pietro Castellino 111, 80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Matthew Turnbull
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546-0091, USA
| | | |
Collapse
|
18
|
Volkoff AN, Béliveau C, Rocher J, Hilgarth R, Levasseur A, Duonor-Cérutti M, Cusson M, Webb BA. Evidence for a conserved polydnavirus gene family: ichnovirus homologs of the CsIV repeat element genes. Virology 2002; 300:316-31. [PMID: 12350362 DOI: 10.1006/viro.2002.1535] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In Campoletis sonorensis Ichnovirus (CsIV), the repeat element genes constitute a gene family of 28 members. In the present work, we document the presence of members of this gene family in two additional ichnoviruses, Hyposoter didymator Ichnovirus (HdIV) and Tranosema rostrale Ichnovirus (TrIV). Two repeat element genes, representing at least one functional gene, were identified in TrIV, whereas HdIV was found to contain at least three such genes. In both HdIV and TrIV, the known repeat element genes are encoded on single genome segments, with hybridization studies suggesting the presence of other, related but as yet uncharacterized genes. The HdIV and TrIV repeat element genes are all transcribed in infected caterpillars, although differences exist among genes in levels and in tissue specificity of expression. A heuristic tree was generated indicating that the repeat element genes are more similar within a species of wasp than between species, with TrIV genes being more closely related to the CsIV than to the HdIV genes. These results suggest that the most significant duplication, divergence, and expansion of the repeat element genes occurred after speciation. The finding that repeat element genes form an interspecific family within the genus Ichnovirus supports the view that the proteins they encode play an important role in ichnovirus biology.
Collapse
Affiliation(s)
- A-N Volkoff
- I.N.R.A., Laboratoire de Pathologie Comparée, UMR 5087 INRA/CNRS/Université de Montpellier II, 30380, St Christol-les-Alès, France.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Johner A, Lanzrein B. Characterization of two genes of the polydnavirus of Chelonus inanitus and their stage-specific expression in the host Spodoptera littoralis. J Gen Virol 2002; 83:1075-1085. [PMID: 11961262 DOI: 10.1099/0022-1317-83-5-1075] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chelonus inanitus (Braconidae, Hymenoptera) is a solitary egg-larval parasitoid of Spodoptera littoralis. Along with the egg the female wasp injects polydnaviruses, which are prerequisites for successful parasitoid development. The polydnavirus genome is segmented and consists of double-stranded circular DNA. Proviral DNA is integrated in the wasp's genome; virus replication is restricted to the wasp's ovary and does not occur in the parasitized host. The polydnavirus of C. inanitus (CiV) protects the parasitoid larva from encapsulation by the host's immune system and causes a developmental arrest of the host in the prepupal stage. Here we report on the first two cloned CiV genes, which are named CiV14g1 and CiV14g2 because of their localization on segment CiV14. The cDNA of CiV14g1 has a size of 2036 bp; the gene contains seven exons interrupted by six introns of similar size and encodes a putative polypeptide of 548 amino acids. The cDNA of CiV14g2 has a size of 618 bp; the gene consists of three exons and encodes a putative peptide of 77 amino acids. Transcript quantities of both genes are very low up to the penultimate larval instar of the host. In the last instar, at the stage of pupal cell formation, CiV14g1 expression increases about 5-fold and CiV14g2 expression about a 1000-fold. These are the first data to show strong upregulation of polydnavirus genes towards the end of parasitization. These two genes might be involved in the reduction of host ecdysteroids observed at this stage.
Collapse
Affiliation(s)
- Andrea Johner
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, CH-3012 Bern, Switzerland1
| | - Beatrice Lanzrein
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, CH-3012 Bern, Switzerland1
| |
Collapse
|
20
|
Wyder S, Tschannen A, Hochuli A, Gruber A, Saladin V, Zumbach S, Lanzrein B. Characterization of Chelonus inanitus polydnavirus segments: sequences and analysis, excision site and demonstration of clustering. J Gen Virol 2002; 83:247-256. [PMID: 11752722 DOI: 10.1099/0022-1317-83-1-247] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polydnaviruses (genera Ichnovirus and Bracovirus) have a segmented genome of circular double-stranded DNA molecules, replicate in the ovary of parasitic wasps and are essential for successful parasitism of the host. Here we show the first detailed analysis of various segments of a bracovirus, the Chelonus inanitus virus (CiV). Four segments were sequenced and two of them, CiV12 and CiV14, were found to be closely related while CiV14.5 and CiV16.8 were unrelated. CiV12, CiV14.5 and CiV16.8 are unique while CiV14 occurs also nested in another larger segment. All four segments are predicted to contain genes and predictions could be substantiated in most cases. Comparison with databases revealed no significant similarities at either the nucleotide or amino acid level. Inverted repeats with identities between 77% and 92% and lengths between 26 bp and 100 bp were found on all segments outside of predicted genes. Hybridization experiments indicate that CiV12 and CiV14 are both flanked by other virus segments, suggesting that proviral CiV segments are clustered in the genome of the wasp. The integration/excision site of CiV14 was analysed and compared to that of CiV12. On both termini of proviral CiV12 and CiV14 as well as in the excised circular molecule and the rejoined DNA a very similar repeat of 14 bp was found. A model to illustrate where the terminal repeats might recombine to yield the circular molecule is presented. Excision of CiV12 and CiV14 is restricted to the female and sets in at a very specific time-point in pupal-adult development.
Collapse
Affiliation(s)
- Stefan Wyder
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, CH-3012 Bern, Switzerland1
| | - Adrian Tschannen
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, CH-3012 Bern, Switzerland1
| | - Anita Hochuli
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, CH-3012 Bern, Switzerland1
| | - Andreas Gruber
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, CH-3012 Bern, Switzerland1
| | - Verena Saladin
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, CH-3012 Bern, Switzerland1
| | - Sonja Zumbach
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, CH-3012 Bern, Switzerland1
| | - Beatrice Lanzrein
- Institute of Cell Biology, University of Berne, Baltzerstrasse 4, CH-3012 Bern, Switzerland1
| |
Collapse
|