1
|
Warecki B, Bast I, Tajima M, Sullivan W. Connections between sister and non-sister telomeres of segregating chromatids maintain euploidy. Curr Biol 2023; 33:58-74.e5. [PMID: 36525974 PMCID: PMC9839490 DOI: 10.1016/j.cub.2022.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
The complete separation of sister chromatids during anaphase is a fundamental requirement for successful mitosis. Therefore, divisions with either persistent DNA-based connections or lagging chromosome fragments threaten aneuploidy if unresolved. Here, we demonstrate the existence of an anaphase mechanism in normally dividing cells in which pervasive connections between telomeres of segregating chromosomes aid in rescuing lagging chromosome fragments. We observe that in a large proportion of Drosophila melanogaster neuronal stem cell divisions, early anaphase sister and non-sister chromatids remain connected by thin telomeric DNA threads. Normally, these threads are resolved in mid-to-late anaphase via a spatial mechanism. However, we find that the presence of a nearby unrepaired DNA break recruits histones, BubR1 kinase, Polo kinase, Aurora B kinase, and BAF to the telomeric thread of the broken chromosome, stabilizing it. Stabilized connections then aid lagging chromosome rescue. These results suggest a model in which pervasive anaphase telomere-telomere connections that are normally resolved quickly can instead be stabilized to retain wayward chromosome fragments. Thus, the liability of persistent anaphase inter-chromosomal connections in normal divisions may be offset by their ability to maintain euploidy in the face of chromosome damage and genome loss.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Ian Bast
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Matthew Tajima
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
2
|
Gao F, Voncken F, Colasante C. The mitochondrial phosphate carrier TbMCP11 is essential for mitochondrial function in the procyclic form of Trypanosoma brucei. Mol Biochem Parasitol 2020; 237:111275. [PMID: 32353560 DOI: 10.1016/j.molbiopara.2020.111275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/02/2020] [Accepted: 03/24/2020] [Indexed: 01/24/2023]
Abstract
Conserved amongst all eukaryotes is a family of mitochondrial carrier proteins (SLC25A) responsible for the import of various solutes across the inner mitochondrial membrane. We previously reported that the human parasite Trypanosoma brucei possesses 26 SLC25A proteins (TbMCPs) amongst which two, TbMCP11 and TbMCP8, were predicted to function as phosphate importers. The transport of inorganic phosphate into the mitochondrion is a prerequisite to drive ATP synthesis by substrate level and oxidative phosphorylation and thus crucial for cell viability. In this paper we describe the functional characterization of TbMCP11. In procyclic form T. brucei, the RNAi of TbMCP11 blocked ATP synthesis on mitochondrial substrates, caused a drop of the mitochondrial oxygen consumption and drastically reduced cell viability. The functional complementation in yeast and mitochondrial swelling experiments suggested a role for TbMCP11 as inorganic phosphate carrier. Interestingly, procyclic form T. brucei cells in which TbMCP11 was depleted displayed an inability to either replicate or divide the kinetoplast DNA, which resulted in a severe cytokinesis defect.
Collapse
Affiliation(s)
- Fei Gao
- Department of Neuroscience, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH, United Kingdom
| | - Frank Voncken
- Department of Biomedical Sciences, School of Life Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Claudia Colasante
- Institute for Anatomy and Cell Biology, Division of Medical Cell Biology, Aulweg 123, University of Giessen, 35392, Giessen, Germany.
| |
Collapse
|
3
|
Vesteg M, Hadariová L, Horváth A, Estraño CE, Schwartzbach SD, Krajčovič J. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa. Biol Rev Camb Philos Soc 2019; 94:1701-1721. [PMID: 31095885 DOI: 10.1111/brv.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/23/2023]
Abstract
Parasitic trypanosomatids and phototrophic euglenids are among the most extensively studied euglenozoans. The phototrophic euglenid lineage arose relatively recently through secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga that evolved into the euglenid secondary chloroplast. The parasitic trypanosomatids (i.e. Trypanosoma spp. and Leishmania spp.) and the freshwater phototrophic euglenids (i.e. Euglena gracilis) are the most evolutionary distant lineages in the Euglenozoa phylogenetic tree. The molecular and cell biological traits they share can thus be considered as ancestral traits originating in the common euglenozoan ancestor. These euglenozoan ancestral traits include common mitochondrial presequence motifs, respiratory chain complexes containing various unique subunits, a unique ATP synthase structure, the absence of mitochondria-encoded transfer RNAs (tRNAs), a nucleus with a centrally positioned nucleolus, closed mitosis without dissolution of the nuclear membrane and nucleoli, a nuclear genome containing the unusual 'J' base (β-D-glucosyl-hydroxymethyluracil), processing of nucleus-encoded precursor messenger RNAs (pre-mRNAs) via spliced-leader RNA (SL-RNA) trans-splicing, post-transcriptional gene silencing by the RNA interference (RNAi) pathway and the absence of transcriptional regulation of nuclear gene expression. Mitochondrial uridine insertion/deletion RNA editing directed by guide RNAs (gRNAs) evolved in the ancestor of the kinetoplastid lineage. The evolutionary origin of other molecular features known to be present only in either kinetoplastids (i.e. polycistronic transcripts, compaction of nuclear genomes) or euglenids (i.e. monocistronic transcripts, huge genomes, many nuclear cis-spliced introns, polyproteins) is unclear.
Collapse
Affiliation(s)
- Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Lucia Hadariová
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), 252 50, Vestec, Czech Republic.,Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44, Prague, Czech Republic
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia
| | - Carlos E Estraño
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Steven D Schwartzbach
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Juraj Krajčovič
- Department of Biology, Faculty of Natural Sciences, University of ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| |
Collapse
|
4
|
Holden JM, Koreny L, Obado S, Ratushny AV, Chen WM, Chiang JH, Kelly S, Chait BT, Aitchison JD, Rout MP, Field MC. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity. Mol Biol Cell 2014; 25:1421-36. [PMID: 24600046 PMCID: PMC4004592 DOI: 10.1091/mbc.e13-12-0750] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The nuclear face of the nuclear pore complex (NPC) interfaces with chromatin, transcription, and transport intermediates. A novel architecture for the nuclear face of the trypanosome NPC provides insights into NPC function and evolution. The nuclear pore complex (NPC) has dual roles in nucleocytoplasmic transport and chromatin organization. In many eukaryotes the coiled-coil Mlp/Tpr proteins of the NPC nuclear basket have specific functions in interactions with chromatin and defining specialized regions of active transcription, whereas Mlp2 associates with the mitotic spindle/NPC in a cell cycle–dependent manner. We previously identified two putative Mlp-related proteins in African trypanosomes, TbNup110 and TbNup92, the latter of which associates with the spindle. We now provide evidence for independent ancestry for TbNup92/TbNup110 and Mlp/Tpr proteins. However, TbNup92 is required for correct chromosome segregation, with knockout cells exhibiting microaneuploidy and lowered fidelity of telomere segregation. Further, TbNup92 is intimately associated with the mitotic spindle and spindle anchor site but apparently has minimal roles in control of gene transcription, indicating that TbNup92 lacks major barrier activity. TbNup92 therefore acts as a functional analogue of Mlp/Tpr proteins, and, together with the lamina analogue NUP-1, represents a cohort of novel proteins operating at the nuclear periphery of trypanosomes, uncovering complex evolutionary trajectories for the NPC and nuclear lamina.
Collapse
Affiliation(s)
- Jennifer M Holden
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom The Rockefeller University, New York, NY 10021 Seattle Biomedical Research Institute and Institute for Systems Biology, Seattle, WA 98109 Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan City 701, Taiwan Department of Plant Sciences, University of Oxford, Oxford OX1 4JP, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Akiyoshi B, Gull K. Discovery of unconventional kinetochores in kinetoplastids. Cell 2014; 156:1247-1258. [PMID: 24582333 PMCID: PMC3978658 DOI: 10.1016/j.cell.2014.01.049] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/06/2014] [Accepted: 01/10/2014] [Indexed: 11/17/2022]
Abstract
The kinetochore is the macromolecular protein complex that directs chromosome segregation in eukaryotes. It has been widely assumed that the core kinetochore consists of proteins that are common to all eukaryotes. However, no conventional kinetochore components have been identified in any kinetoplastid genome, thus challenging this assumption of universality. Here, we report the identification of 19 kinetochore proteins (KKT1–19) in Trypanosoma brucei. The majority is conserved among kinetoplastids, but none of them has detectable homology to conventional kinetochore proteins. These proteins instead have a variety of features not found in conventional kinetochore proteins. We propose that kinetoplastids build kinetochores using a distinct set of proteins. These findings provide important insights into the longstanding problem of the position of the root of the eukaryotic tree of life. Conventional kinetochore proteins cannot be identified in any kinetoplastid genome 19 kinetochore proteins were identified in Trypanosoma brucei Kinetoplastids possess unconventional kinetochores This discovery supports the hypothesis that kinetoplastids branched very early
Collapse
Affiliation(s)
- Bungo Akiyoshi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
6
|
Abstract
Faithful transmission of genetic material is essential for the survival of all organisms. Eukaryotic chromosome segregation is driven by the kinetochore that assembles onto centromeric DNA to capture spindle microtubules and govern the movement of chromosomes. Its molecular mechanism has been actively studied in conventional model eukaryotes, such as yeasts, worms, flies and human. However, these organisms are closely related in the evolutionary time scale and it therefore remains unclear whether all eukaryotes use a similar mechanism. The evolutionary origins of the segregation apparatus also remain enigmatic. To gain insights into these questions, it is critical to perform comparative studies. Here, we review our current understanding of the mitotic mechanism in Trypanosoma brucei, an experimentally tractable kinetoplastid parasite that branched early in eukaryotic history. No canonical kinetochore component has been identified, and the design principle of kinetochores might be fundamentally different in kinetoplastids. Furthermore, these organisms do not appear to possess a functional spindle checkpoint that monitors kinetochore-microtubule attachments. With these unique features and the long evolutionary distance from other eukaryotes, understanding the mechanism of chromosome segregation in T. brucei should reveal fundamental requirements for the eukaryotic segregation machinery, and may also provide hints about the origin and evolution of the segregation apparatus.
Collapse
Affiliation(s)
- Bungo Akiyoshi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
7
|
Epigenetic mechanisms, nuclear architecture and the control of gene expression in trypanosomes. Expert Rev Mol Med 2012; 14:e13. [PMID: 22640744 DOI: 10.1017/erm.2012.7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The control of gene expression, and more significantly gene cohorts, requires tight transcriptional coordination and is an essential feature of probably all cells. In higher eukaryotes, the mechanisms used involve controlled modifications to both local and global DNA environments, principally through changes in chromatin structure as well as cis-element-driven mechanisms. Although the mechanisms regulating chromatin in terms of transcriptional permissiveness and the relation to developmental programmes and responses to the environment are becoming better understood for animal and fungal cells, it is only just beginning to become clear how these processes operate in other taxa, including the trypanosomatids. Recent advances are now illuminating how African trypanosomes regulate higher-order chromatin structure, and, further, how these mechanisms impact on the expression of major surface antigens that are of fundamental importance to life-cycle progression. It is now apparent that several mechanisms are rather more similar between animal and fungal cells and trypanosomes than it originally appeared, but some aspects do involve gene products unique to trypanosomes. Therefore, both evolutionarily common and novel mechanisms cohabit in trypanosomes, offering both important biological insights and possible therapeutic opportunity.
Collapse
|
8
|
Echeverry MC, Bot C, Obado SO, Taylor MC, Kelly JM. Centromere-associated repeat arrays on Trypanosoma brucei chromosomes are much more extensive than predicted. BMC Genomics 2012; 13:29. [PMID: 22257693 PMCID: PMC3292466 DOI: 10.1186/1471-2164-13-29] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND African trypanosomes belong to a eukaryotic lineage which displays many unusual genetic features. The mechanisms of chromosome segregation in these diploid protozoan parasites are poorly understood. Centromeres in Trypanosoma brucei have been localised to chromosomal regions that contain an array of ~147 bp AT-rich tandem repeats. Initial estimates from the genome sequencing project suggested that these arrays ranged from 2 - 8 kb. In this paper, we show that the centromeric repeat regions are much more extensive. RESULTS We used a long-range restriction endonuclease mapping approach to more accurately define the sizes of the centromeric repeat arrays on the 8 T. brucei chromosomes where unambiguous assembly data were available. The results indicate that the sizes of the arrays on different chromosomes vary from 20 to 120 kb. In addition, we found instances of length heterogeneity between chromosome homologues. For example, values of 20 and 65 kb were obtained for the arrays on chromosome 1, and 50 and 75 kb for chromosome 5. CONCLUSIONS Our results show that centromeric repeat arrays on T. brucei chromosomes are more similar in size to those of higher eukaryotes than previously suspected. This information provides a firmer framework for investigating aspects of chromosome segregation and will allow epigenetic features associated with the process to be more accurately mapped.
Collapse
Affiliation(s)
- Maria C Echeverry
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | |
Collapse
|
9
|
Ersfeld K. Nuclear architecture, genome and chromatin organisation in Trypanosoma brucei. Res Microbiol 2011; 162:626-36. [PMID: 21392575 DOI: 10.1016/j.resmic.2011.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/29/2011] [Indexed: 11/29/2022]
Abstract
The nucleus of the human pathogen Trypanosoma brucei not only has unusual chromosomal composition, characterised by the presence of megabase, intermediate and minichromosomes, but also chromosome and gene organisation that is unique amongst eukaryotes. Here I provide an overview of current knowledge of nuclear structure, chromatin organisation and chromosome dynamics during interphase and mitosis. New technologies such as chromatin immunoprecipitation, in combination with new generation sequencing and proteomic analysis of subnuclear fractions, have led to novel insights into the organisation of the nucleus and chromatin. In particular, we are beginning to understand how universal mechanisms of chromatin modifications and nuclear position effects are deployed for parasite-specific functions and are centrally involved in genomic organisation and transcriptional regulation. These advances also have a major impact on progress in understanding the molecular basis of antigenic variation.
Collapse
Affiliation(s)
- Klaus Ersfeld
- Department of Biological Sciences and Hull York Medical School, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
10
|
Abstract
Trypanosomes are a group of protozoan eukaryotes, many of which are major parasites of humans and livestock. The genomes of trypanosomes and their modes of gene expression differ in several important aspects from those of other eukaryotic model organisms. Protein-coding genes are organized in large directional gene clusters on a genome-wide scale, and their polycistronic transcription is not generally regulated at initiation. Transcripts from these polycistrons are processed by global trans-splicing of pre-mRNA. Furthermore, in African trypanosomes, some protein-coding genes are transcribed by a multifunctional RNA polymerase I from a specialized extranucleolar compartment. The primary DNA sequence of the trypanosome genomes and their cellular organization have usually been treated as separate entities. However, it is becoming increasingly clear that in order to understand how a genome functions in a living cell, we will need to unravel how the one-dimensional genomic sequence and its trans-acting factors are arranged in the three-dimensional space of the eukaryotic nucleus. Understanding this cell biology of the genome will be crucial if we are to elucidate the genetic control mechanisms of parasitism. Here, we integrate the concepts of nuclear architecture, deduced largely from studies of yeast and mammalian nuclei, with recent developments in our knowledge of the trypanosome genome, gene expression, and nuclear organization. We also compare this nuclear organization to those in other systems in order to shed light on the evolution of nuclear architecture in eukaryotes.
Collapse
|
11
|
Wickstead B, Carrington JT, Gluenz E, Gull K. The expanded Kinesin-13 repertoire of trypanosomes contains only one mitotic Kinesin indicating multiple extra-nuclear roles. PLoS One 2010; 5:e15020. [PMID: 21124853 PMCID: PMC2990766 DOI: 10.1371/journal.pone.0015020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 10/13/2010] [Indexed: 12/02/2022] Open
Abstract
Background Kinesin-13 proteins have a critical role in animal cell mitosis, during which they regulate spindle microtubule dynamics through their depolymerisation activity. Much of what is known about Kinesin-13 function emanates from a relatively small sub-family of proteins containing MCAK and Kif2A/B. However, recent work on kinesins from the much more widely distributed, ancestral Kinesin-13 family, which includes human Kif24, have identified a second function in flagellum length regulation that may exist either alongside or instead of the mitotic role. Methodology/Principal Findings The African trypanosome Trypanosoma brucei encodes 7 distinct Kinesin-13 proteins, allowing scope for extensive specialisation of roles. Here, we show that of all the trypanosomal Kinesin-13 proteins, only one is nuclear. This protein, TbKIN13-1, is present in the nucleoplasm throughout the cell cycle, but associates with the spindle during mitosis, which in trypanosomes is closed. TbKIN13-1 is necessary for the segregation of both large and mini-chromosomes in this organism and reduction in TbKIN13-1 levels mediated by RNA interference causes deflects in spindle disassembly with spindle-like structures persisting in non-mitotic cells. A second Kinesin-13 is localised to the flagellum tip, but the majority of the Kinesin-13 family members are in neither of these cellular locations. Conclusions/Significance These data show that the expanded Kinesin-13 repertoire of trypanosomes is not associated with diversification of spindle-associated roles. TbKIN13-1 is required for correct spindle function, but the extra-nuclear localisation of the remaining paralogues suggests that the biological roles of the Kinesin-13 family is wider than previously thought.
Collapse
Affiliation(s)
- Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
| | | | | | | |
Collapse
|
12
|
Denninger V, Fullbrook A, Bessat M, Ersfeld K, Rudenko G. The FACT subunit TbSpt16 is involved in cell cycle specific control of VSG expression sites in Trypanosoma brucei. Mol Microbiol 2010; 78:459-74. [PMID: 20879999 PMCID: PMC3034197 DOI: 10.1111/j.1365-2958.2010.07350.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The African trypanosome Trypanosoma brucei monoallelically expresses one of more than 1000 Variant Surface Glycoprotein (VSG) genes. The active VSG is transcribed from one of about 15 telomeric VSG expression sites (ESs). It is unclear how monoallelic expression of VSG is controlled, and how inactive VSG ESs are silenced. Here, we show that blocking synthesis of the T. brucei FACT subunit TbSpt16 triggers a G2/early M phase cell cycle arrest in both bloodstream and insect form T. brucei. Segregation of T. brucei minichromosomes in these stalled cells is impaired, implicating FACT in maintenance of centromeres. Strikingly, knock-down of TbSpt16 results in 20- to 23-fold derepression of silent VSG ES promoters in bloodstream form T. brucei, with derepression specific to the G2/M cell cycle stage. In insect form T. brucei TbSpt16 knock-down results in 16- to 25-fold VSG ES derepression. Using chromatin immunoprecipitation (ChIP), TbSpt16 was found to be particularly enriched at the promoter region of silent but not active VSG ESs in bloodstream form T. brucei. The chromatin remodeler FACT is therefore implicated in maintenance of repressed chromatin present at silent VSG ES promoters, but is also essential for chromosome segregation presumably through maintenance of functional centromeres.
Collapse
Affiliation(s)
- Viola Denninger
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College, South Kensington, London SW72AZ, UK
| | | | | | | | | |
Collapse
|
13
|
Chan KY, Matthews KR, Ersfeld K. Functional characterisation and drug target validation of a mitotic kinesin-13 in Trypanosoma brucei. PLoS Pathog 2010; 6:e1001050. [PMID: 20808899 PMCID: PMC2924347 DOI: 10.1371/journal.ppat.1001050] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 07/19/2010] [Indexed: 12/31/2022] Open
Abstract
Mitotic kinesins are essential for faithful chromosome segregation and cell proliferation. Therefore, in humans, kinesin motor proteins have been identified as anti-cancer drug targets and small molecule inhibitors are now tested in clinical studies. Phylogenetic analyses have assigned five of the approximately fifty kinesin motor proteins coded by Trypanosoma brucei genome to the Kinesin-13 family. Kinesins of this family have unusual biochemical properties because they do not transport cargo along microtubules but are able to depolymerise microtubules at their ends, therefore contributing to the regulation of microtubule length. In other eukaryotic genomes sequenced to date, only between one and three Kinesin-13s are present. We have used immunolocalisation, RNAi-mediated protein depletion, biochemical in vitro assays and a mouse model of infection to study the single mitotic Kinesin-13 in T. brucei. Subcellular localisation of all five T. brucei Kinesin-13s revealed distinct distributions, indicating that the expansion of this kinesin family in kinetoplastids is accompanied by functional diversification. Only a single kinesin (TbKif13-1) has a nuclear localisation. Using active, recombinant TbKif13-1 in in vitro assays we experimentally confirm the depolymerising properties of this kinesin. We analyse the biological function of TbKif13-1 by RNAi-mediated protein depletion and show its central role in regulating spindle assembly during mitosis. Absence of the protein leads to abnormally long and bent mitotic spindles, causing chromosome mis-segregation and cell death. RNAi-depletion in a mouse model of infection completely prevents infection with the parasite. Given its essential role in mitosis, proliferation and survival of the parasite and the availability of a simple in vitro activity assay, TbKif13-1 has been identified as an excellent potential drug target.
Collapse
Affiliation(s)
- Kuan Yoow Chan
- Department of Biological Sciences, University of Hull, Hull, United Kingdom
| | - Keith R. Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Klaus Ersfeld
- Department of Biological Sciences, University of Hull, Hull, United Kingdom
- Hull York Medical School, University of Hull, Hull, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Bessat M, Ersfeld K. Functional characterization of cohesin SMC3 and separase and their roles in the segregation of large and minichromosomes in Trypanosoma brucei. Mol Microbiol 2009; 71:1371-85. [PMID: 19183276 DOI: 10.1111/j.1365-2958.2009.06611.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Minichromosomes in the nuclear genome of Trypanosoma brucei exhibit unusual patterns of mitotic segregation. To address whether differences in their mode of segregation in relation to large chromosomes are reflected at a molecular level, we characterized two different proteins that have highly conserved functions in eukaryotic chromosomes segregation: the SMC3 protein, a component of the chromatid cohesion apparatus, and the protease separase that resolves the cohesin complex at the onset of anaphase and has, in other organisms, additional functions during mitosis. Using in situ hybridization we show that RNA interference-mediated depletion of SMC3 has no visible effect on the segregation of the minichromosomal population but interferes with the faithful mitotic separation of large chromosomes. In contrast, separase depletion causes missegregation of both mini- and large chromosomes. We also show that SMC3 persists as a soluble protein throughout the cell cycle and only associates with chromatin between G1 and metaphase. Separase is present in the cell during the entire cell cycle, but is excluded from the nucleus until the metaphase-anaphase transition, thereby providing a potential control mechanism to prevent the untimely cleavage of the cohesin complex.
Collapse
Affiliation(s)
- Mohamed Bessat
- Department of Biological Sciences, University of Hull, Hull, UK
| | | |
Collapse
|
15
|
Gluenz E, Sharma R, Carrington M, Gull K. Functional characterization of cohesin subunit SCC1 in Trypanosoma brucei and dissection of mutant phenotypes in two life cycle stages. Mol Microbiol 2008; 69:666-80. [PMID: 18554326 PMCID: PMC2610385 DOI: 10.1111/j.1365-2958.2008.06320.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2008] [Indexed: 11/30/2022]
Abstract
In yeast and metazoa, structural maintenance of chromosome (SMC) complexes play key roles in chromosome segregation, architecture and DNA repair. The main function of the cohesin complex is to hold replicated sister chromatids together until segregation at anaphase, which is dependent on proteolytic cleavage of the cohesin subunit SCC1. Analysis of trypanosomatid genomes showed that the core cohesin and condensin complexes are conserved, but SMC5/6 is absent. To investigate the functional conservation of cohesin in eukaryotes distantly related to yeast and metazoa, we characterized the Trypanosoma brucei SCC1 orthologue. TbSCC1 is expressed prior to DNA synthesis at late G1, remains in the nucleus throughout S- and G2-phases of the cell cycle and disappears at anaphase. Depletion of SCC1 by RNAi or expression of a non-cleavable SCC1 resulted in karyokinesis failure. Using the dominant negative phenotype of non-cleavable SCC1 we investigated checkpoint regulation of cytokinesis in response to mitosis failure at anaphase. In the absence of chromosome segregation, procyclic trypanosomes progressed through cytokinesis to produce one nucleated and one anucleate cell (zoid). In contrast, cytokinesis was incomplete in bloodstream forms, where cleavage was initiated but cells failed to progress to abscission. Kinetoplast duplication was uninterrupted resulting in cells with multiple kinetoplasts and flagella.
Collapse
Affiliation(s)
- Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | | | |
Collapse
|
16
|
Hammarton TC, Kramer S, Tetley L, Boshart M, Mottram JC. Trypanosoma brucei Polo-like kinase is essential for basal body duplication, kDNA segregation and cytokinesis. Mol Microbiol 2007; 65:1229-48. [PMID: 17662039 PMCID: PMC2169650 DOI: 10.1111/j.1365-2958.2007.05866.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2007] [Indexed: 11/29/2022]
Abstract
Polo-like kinases (PLKs) are conserved eukaryotic cell cycle regulators, which play multiple roles, particularly during mitosis. The function of Trypanosoma brucei PLK was investigated in procyclic and bloodstream-form parasites. In procyclic trypanosomes, RNA interference (RNAi) of PLK, or overexpression of TY1-epitope-tagged PLK (PLKty), but not overexpression of a kinase-dead variant, resulted in the accumulation of cells that had divided their nucleus but not their kinetoplast (2N1K cells). Analysis of basal bodies and flagella in these cells suggested the defect in kinetoplast division arose because of an inhibition of basal body duplication, which occurred when PLK expression levels were altered. Additionally, a defect in kDNA replication was observed in the 2N1K cells. However, the 2N1K cells obtained by each approach were not equivalent. Following PLK depletion, the single kinetoplast was predominantly located between the two divided nuclei, while in cells overexpressing PLKty, the kinetoplast was mainly found at the posterior end of the cell, suggesting a role for PLK kinase activity in basal body and kinetoplast migration. PLK RNAi in bloodstream trypanosomes also delayed kinetoplast division, and was further observed to inhibit furrow ingression during cytokinesis. Notably, no additional roles were detected for trypanosome PLK in mitosis, setting this protein kinase apart from its counterparts in other eukaryotes.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Infection and Immunity, Wellcome Centre for Molecular Parasitology, University of Glasgow, Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, UK.
| | | | | | | | | |
Collapse
|
17
|
Obado SO, Bot C, Nilsson D, Andersson B, Kelly JM. Repetitive DNA is associated with centromeric domains in Trypanosoma brucei but not Trypanosoma cruzi. Genome Biol 2007; 8:R37. [PMID: 17352808 PMCID: PMC1868937 DOI: 10.1186/gb-2007-8-3-r37] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 01/16/2007] [Accepted: 03/12/2007] [Indexed: 11/25/2022] Open
Abstract
Centromeres in Trypanosoma cruzi and Trypanosoma brucei can be localised to regions between directional gene clusters that contain degenerate retroelements, and in the case of T. brucei, repetitive DNA. Background Trypanosomes are parasitic protozoa that diverged early from the main eukaryotic lineage. Their genomes display several unusual characteristics and, despite completion of the trypanosome genome projects, the location of centromeric DNA has not been identified. Results We report evidence on the location and nature of centromeric DNA in Trypanosoma cruzi and Trypanosoma brucei. In T. cruzi, we used telomere-associated chromosome fragmentation and found that GC-rich transcriptional 'strand-switch' domains composed predominantly of degenerate retrotranposons are a shared feature of regions that confer mitotic stability. Consistent with this, etoposide-mediated topoisomerase-II cleavage, a biochemical marker for active centromeres, is concentrated at these domains. In the 'megabase-sized' chromosomes of T. brucei, topoisomerase-II activity is also focused at single loci that encompass regions between directional gene clusters that contain transposable elements. Unlike T. cruzi, however, these loci also contain arrays of AT-rich repeats stretching over several kilobases. The sites of topoisomerase-II activity on T. brucei chromosome 1 and T. cruzi chromosome 3 are syntenic, suggesting that centromere location has been conserved for more than 200 million years. The T. brucei intermediate and minichromosomes, which lack housekeeping genes, do not exhibit site-specific accumulation of topoisomerase-II, suggesting that segregation of these atypical chromosomes might involve a centromere-independent mechanism. Conclusion The localization of centromeric DNA in trypanosomes fills a major gap in our understanding of genome organization in these important human pathogens. These data are a significant step towards identifying and functionally characterizing other determinants of centromere function and provide a framework for dissecting the mechanisms of chromosome segregation.
Collapse
Affiliation(s)
- Samson O Obado
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Christopher Bot
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Daniel Nilsson
- Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius vag, S-171 77 Stockholm, Sweden
| | - Bjorn Andersson
- Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius vag, S-171 77 Stockholm, Sweden
| | - John M Kelly
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
18
|
Hammarton TC. Cell cycle regulation in Trypanosoma brucei. Mol Biochem Parasitol 2007; 153:1-8. [PMID: 17335918 PMCID: PMC1914216 DOI: 10.1016/j.molbiopara.2007.01.017] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 01/23/2023]
Abstract
Cell division is regulated by intricate and interconnected signal transduction pathways that precisely coordinate, in time and space, the complex series of events involved in replicating and segregating the component parts of the cell. In Trypanosoma brucei, considerable progress has been made over recent years in identifying molecular regulators of the cell cycle and elucidating their functions, although many regulators undoubtedly remain to be identified, and there is still a long way to go with respect to determining signal transduction pathways. However, it is clear that cell cycle regulation in T. brucei is unusual in many respects. Analyses of trypanosome orthologues of conserved eukaryotic cell cycle regulators have demonstrated divergence of their function in the parasite, and a number of other key regulators are missing from T. brucei. Cell cycle regulation differs in different parasite life cycle stages, and T. brucei appears to use different checkpoint control strategies compared to model eukaryotes. It is therefore probable that T. brucei has evolved novel pathways to control its cell cycle.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Division of Infection & Immunity and Wellcome Centre for Molecular Parasitology, University of Glasgow, Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
19
|
Tůmová P, Hofstetrová K, Nohýnková E, Hovorka O, Král J. Cytogenetic evidence for diversity of two nuclei within a single diplomonad cell of Giardia. Chromosoma 2006; 116:65-78. [PMID: 17086421 DOI: 10.1007/s00412-006-0082-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 08/16/2006] [Accepted: 09/07/2006] [Indexed: 12/01/2022]
Abstract
Giardia intestinalis is an ancient protist that causes the most commonly reported human diarrheal disease of parasitic origin worldwide. An intriguing feature of the Giardia cell is the presence of two morphologically similar nuclei, generally considered equivalent, in spite of the fact that their karyotypes are unknown. We found that within a single cell, the two nuclei differ both in the number and the size of chromosomes and that representatives of two major genetic groups of G. intestinalis possess different karyotypes. Odd chromosome numbers indicate aneuploidy of Giardia nuclei, and their stable occurrence is suggestive of a long-term asexuality. A semi-open type of Giardia mitosis excludes a chromosome interfusion between the nuclei. Differences in karyotype and DNA content, and cell cycle-dependent asynchrony are indicative of diversity of the two Giardia nuclei.
Collapse
Affiliation(s)
- Pavla Tůmová
- Department of Tropical Medicine, First Faculty of Medicine, Charles University in Prague, Studnickova 7, Prague 2, Czech Republic.
| | | | | | | | | |
Collapse
|
20
|
Dreesen O, Cross GAM. Telomerase-independent stabilization of short telomeres in Trypanosoma brucei. Mol Cell Biol 2006; 26:4911-9. [PMID: 16782879 PMCID: PMC1489180 DOI: 10.1128/mcb.00212-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In cancer cells and germ cells, shortening of chromosome ends is prevented by telomerase. Telomerase-deficient cells have a replicative life span, after which they enter senescence. Senescent cells can give rise to survivors that maintain chromosome ends through recombination-based amplification of telomeric or subtelomeric repeats. We found that in Trypanosoma brucei, critically short telomeres are stable in the absence of telomerase. Telomere stabilization ensured genomic integrity and could have implications for telomere maintenance in human telomerase-deficient cells. Cloning and sequencing revealed 7 to 27 TTAGGG repeats on stabilized telomeres and no changes in the subtelomeric region. Clones with short telomeres were used to study telomere elongation dynamics, which differed dramatically at transcriptionally active and silent telomeres, after restoration of telomerase. We propose that transcription makes the termini of short telomeres accessible for rapid elongation by telomerase and that telomere elongation in T. brucei is not regulated by a protein-counting mechanism. Many minichromosomes were lost after long-term culture in the absence of telomerase, which may reflect their different mitotic segregation properties.
Collapse
Affiliation(s)
- Oliver Dreesen
- Laboratory of Molecular Parasitology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
21
|
Hammarton TC, Lillico S, Welburn S, Mottram JC. Trypanosoma brucei MOB1 is required for accurate and efficient cytokinesis but not for exit from mitosis. Mol Microbiol 2005; 56:104-16. [PMID: 15773982 PMCID: PMC2244713 DOI: 10.1111/j.1365-2958.2005.04542.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Two MOB1 genes, MOB1-A and MOB1-B, were identified in Trypanosoma brucei. MOB1-A of T. brucei was shown to form a complex with TbPK50, a functional homologue of the Schizosaccharomyces pombe protein kinase Orb6, and immune precipitated MOB1-A exhibited histone H1 protein kinase activity. MOB1-A and TbPK50 were also shown to bind p12cks1, a cyclin-dependent kinase accessory protein. Immune fluorescence of epitope-tagged MOB1-A and MOB1-B in bloodstream form trypanosomes showed they had a punctate distribution all through the cell cytoplasm and were excluded from the nucleus throughout the cell cycle. Using RNA interference (RNAi), MOB1 was shown to be essential in both bloodstream and procyclic life cycle stages. In the bloodstream form, RNAi of MOB1 resulted, after 8 h, in a significant increase in post-mitotic cells, the majority of which had a visible cleavage furrow. This was followed by the appearance of cells with abnormal complements of nuclei and kinetoplasts, often with the number of nuclei exceeding the number of kinetoplasts. Thus, downregulation of MOB1 in the bloodstream form results in a delay in cytokinesis, and leads to a deregulation of the cell cycle, possibly through an inhibitory effect on kinetoplast replication. In contrast, downregulation of MOB1 in the procyclic form appears to impede the accuracy of cytokinesis, by allowing mispositioning of the cleavage furrow and inappropriate cytokinesis. Unlike its counterpart in budding yeast, T. brucei MOB1 does not appear to be required for mitotic exit.
Collapse
Affiliation(s)
- Tansy C. Hammarton
- Wellcome Centre for Molecular Parasitology, The Anderson College, University of Glasgow, 56 Dumbarton Road, Glasgow G11 6NU, UK
| | - Simon Lillico
- Wellcome Centre for Molecular Parasitology, The Anderson College, University of Glasgow, 56 Dumbarton Road, Glasgow G11 6NU, UK
| | - Sue Welburn
- Centre for Tropical Veterinary Medicine, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Roslin, Midlothian, UK
| | - Jeremy C. Mottram
- Wellcome Centre for Molecular Parasitology, The Anderson College, University of Glasgow, 56 Dumbarton Road, Glasgow G11 6NU, UK
- corresponding author, tel: +44 141 330 3745, fax: +44 141 330 5422,
| |
Collapse
|
22
|
Lowell JE, Cross GAM. A variant histone H3 is enriched at telomeres in Trypanosoma brucei. J Cell Sci 2004; 117:5937-47. [PMID: 15522895 DOI: 10.1242/jcs.01515] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Variant histones play critical roles in transcriptional activation and repression, DNA repair and chromosome segregation. We have identified HTV, a single-copy gene in Trypanosoma brucei encoding a variant form of histone H3 (H3V). H3V is present at discrete nuclear foci that shift over the course of the cell cycle and associate with the mitotic spindle, a pattern of localization reminiscent of that described previously for both mini-chromosomes and telomeres. By combining fluorescence in situ hybridization with indirect immunofluorescence, we confirmed that the H3V foci overlap with a 177-bp repetitive sequence element found predominantly in mini-chromosomes, as well as with the TTAGGG repeats that compose telomeres. Chromatin immunoprecipitation studies, however, reveal that only the telomeric repeat DNA is substantially enriched with H3V. HTV is not essential for viability, mini-chromosome segregation, telomere maintenance or transcriptional silencing at the telomere-proximal expression sites from which bloodstream-form T. brucei controls antigenic variation. We propose that H3V represents a novel class of histone H3 variant, a finding that has evolutionary implications.
Collapse
Affiliation(s)
- Joanna E Lowell
- Laboratory of Molecular Parasitology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
23
|
Wickstead B, Ersfeld K, Gull K. The small chromosomes of Trypanosoma brucei involved in antigenic variation are constructed around repetitive palindromes. Genome Res 2004; 14:1014-24. [PMID: 15173109 PMCID: PMC419779 DOI: 10.1101/gr.2227704] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 02/12/2004] [Indexed: 01/09/2023]
Abstract
Most eukaryotic genomes contain large regions of satellite DNA. These arrays are often associated with essential chromosomal functions, but remain largely absent from genome projects because of difficulties in cloning and sequence assembly. The numerous small chromosomes of the parasite Trypanosoma brucei fall into this category, yet are critical to understanding the genome because of their role in antigenic variation. Their relatively small size, however, makes them particularly amenable to physical mapping. We have produced fine-resolution maps of 17 complete minichromosomes and partial maps of two larger intermediate-sized chromosomes. This revealed a canonical structure shared by both chromosomal classes based around a large central core of 177-bp repeats. Around the core are variable-length genic regions, the lengths of which define chromosomal class. We show the core region to be a repetitive palindrome with a single inversion point common to all the chromosomes of both classes, suggesting a mechanism of genesis for these chromosomes. Moreover, palindromy appears to be a feature of (peri)centromeres in other species that can be easily overlooked. We propose that sequence inversion is one of the higher-order sequence motifs that confer chromosomal stability.
Collapse
Affiliation(s)
- Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | | | | |
Collapse
|
24
|
Abstract
In common with all eukaryotic cells, trypanosomes must coordinate a complex series of morphogenetic events both temporally and spatially during the cell cycle. The structural and molecular cues that synchronise these events in trypanosomes have started to be elucidated, and intriguingly although similarities to cell cycle events in other eukaryotes can be identified, trypanosomes have also evolved novel solutions to the common challenges faced by dividing eukaryotic cells. Although cellular morphology is clearly pivotal for successful progression through the trypanosome cell cycle, most cytological studies to date have focused exclusively on procyclic form trypanosomes. These studies provide an excellent framework for understanding cell cycle events in trypanosomes, however recent data indicates that profound differences might exist between different life cycle stages in relation to the regulation of cell cycle and cytokinesis.
Collapse
Affiliation(s)
- Paul G McKean
- Department of Biological Sciences, The Lancaster Environment Centre, Lancaster University, Lancaster, Lancashire LA1 4YQ, UK.
| |
Collapse
|
25
|
Wickstead B, Ersfeld K, Gull K. The mitotic stability of the minichromosomes of Trypanosoma brucei. Mol Biochem Parasitol 2004; 132:97-100. [PMID: 14599670 DOI: 10.1016/j.molbiopara.2003.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, Oxford, UK
| | | | | |
Collapse
|
26
|
Wickstead B, Ersfeld K, Gull K. Repetitive elements in genomes of parasitic protozoa. Microbiol Mol Biol Rev 2003; 67:360-75, table of contents. [PMID: 12966140 PMCID: PMC193867 DOI: 10.1128/mmbr.67.3.360-375.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repetitive DNA elements have been a part of the genomic fauna of eukaryotes perhaps since their very beginnings. Millions of years of coevolution have given repeats central roles in chromosome maintenance and genetic modulation. Here we review the genomes of parasitic protozoa in the context of the current understanding of repetitive elements. Particular reference is made to repeats in five medically important species with ongoing or completed genome sequencing projects: Plasmodium falciparum, Leishmania major, Trypanosoma brucei, Trypanosoma cruzi, and Giardia lamblia. These organisms are used to illustrate five thematic classes of repeats with different structures and genomic locations. We discuss how these repeat classes may interact with parasitic life-style and also how they can be used as experimental tools. The story which emerges is one of opportunism and upheaval which have been employed to add genetic diversity and genomic flexibility.
Collapse
Affiliation(s)
- Bill Wickstead
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
27
|
Hammarton TC, Clark J, Douglas F, Boshart M, Mottram JC. Stage-specific differences in cell cycle control in Trypanosoma brucei revealed by RNA interference of a mitotic cyclin. J Biol Chem 2003; 278:22877-86. [PMID: 12682070 DOI: 10.1074/jbc.m300813200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
African trypanosomes have a tightly coordinated cell cycle to effect efficient segregation of their single organelles, the nucleus, flagellum, and kinetoplast. To investigate cell cycle control in trypanosomes, a mitotic cyclin gene (CYC6) has been identified in Trypanosoma brucei. We show that CYC6 forms an active kinase complex with CRK3, the trypanosome CDK1 homologue, in vivo. Using RNA interference, we demonstrate that absence of CYC6 mRNA results in a mitotic block and growth arrest in both the insect procyclic and mammalian bloodstream forms. In the procyclic form, CYC6 RNA interference generates anucleate cells with a single kinetoplast, whereas in bloodstream form trypanosomes, cells with one nucleus and multiple kinetoplasts are observed. Fluorescence-activated cell sorting analysis shows that bloodstream but not procyclic trypanosomes are able to reinitiate nuclear S phase in the absence of mitosis. Taken together, these data show that procyclic trypanosomes can undergo cytokinesis without completion of mitosis, whereas a mitotic block in bloodstream form trypanosomes inhibits cytokinesis but not kinetoplast replication and segregation nor an additional round of nuclear DNA synthesis. This indicates that there are fundamental differences in cell cycle controls between life cycle forms of T. brucei and that key cell cycle checkpoints present in higher eukaryotes are absent from trypanosomes.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Wellcome Centre for Molecular Parasitology, Anderson College, University of Glasgow, 56 Dumbarton Road, Glasgow, G11 6NU, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Berriman M, Hall N, Sheader K, Bringaud F, Tiwari B, Isobe T, Bowman S, Corton C, Clark L, Cross GAM, Hoek M, Zanders T, Berberof M, Borst P, Rudenko G. The architecture of variant surface glycoprotein gene expression sites in Trypanosoma brucei. Mol Biochem Parasitol 2002; 122:131-40. [PMID: 12106867 DOI: 10.1016/s0166-6851(02)00092-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trypanosoma brucei evades the immune system by switching between Variant Surface Glycoprotein (VSG) genes. The active VSG gene is transcribed in one of approximately 20 telomeric expression sites (ESs). It has been postulated that ES polymorphism plays a role in host adaptation. To gain more insight into ES architecture, we have determined the complete sequence of Bacterial Artificial Chromosomes (BACs) containing DNA from three ESs and their flanking regions. There was variation in the order and number of ES-associated genes (ESAGs). ESAGs 6 and 7, encoding transferrin receptor subunits, are the only ESAGs with functional copies in every ES that has been sequenced until now. A BAC clone containing the VO2 ES sequences comprised approximately half of a 330 kb 'intermediate' chromosome. The extensive similarity between this intermediate chromosome and the left telomere of T. brucei 927 chromosome I, suggests that this previously uncharacterised intermediate size class of chromosomes could have arisen from breakage of megabase chromosomes. Unexpected conservation of sequences, including pseudogenes, indicates that the multiple ESs could have arisen through a relatively recent amplification of a single ES.
Collapse
|
29
|
Gull K. The biology of kinetoplastid parasites: insights and challenges from genomics and post-genomics. Int J Parasitol 2001; 31:443-52. [PMID: 11334928 DOI: 10.1016/s0020-7519(01)00154-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Kinetoplastid parasites exhibit a rich and diverse biology which mirrors many of the most interesting topics of current interest and study in the broader biological sciences. These evolutionarily ancient organisms possess intriguing mechanisms for control of gene expression, and exhibit complex patterns of cell morphogenesis orchestrated by an internal cytoskeleton. Their cell shapes change during a set of complex cell type differentiations in their life cycles. These differentiations are intimately linked to interactions with mammalian hosts or insect vectors, and often, these differentiations appear central to the successful transfer of the parasite between vector and host, and host and vector. The basics of this rich and complex cell and life cycle biology were described (with often rather forgotten clarity and prescience) in the early period of the last century. The last 30 years have seen major developments in our understanding of this biology. Ultrastructural differences in the various cells of the life cycle stages of Trypanosoma brucei, Trypanosoma cruzi and the various Leishmania species have been documented, and such studies have proven highly informative in defining important aspects of parasite adaptation. They have also proven to be a rich source of information for defining unusual aspects of parasite cell biology, novel organelles and cell architecture. This ultrastructural cell biology has been mirrored in a set of biochemical explanations defining unusual aspects of metabolism, surface molecules, and organelles. Finally, the application of molecular biology to these parasites revealed fascinating layers of complexity in the control of gene expression. These molecular studies have given us particular insights into polycistronic transcription, trans-splicing, RNA editing and gene rearrangements during antigenic variation. In contrast to other microbial systems, these cell biological, biochemical and molecular studies have not been greatly aided by insights gained from genetics--the diploid nature of the genome has discouraged the application of selectional genetics, mutant isolation and analysis. This is an important fact, since in general, it means that we have only recently started to analyse the phenotypes of mutants produced in the context of reverse genetics. In the following, I will argue that this lack of investment in the analysis of mutant phenotype is just one of the challenges that will need to be met if we are to gain the expected added value from the parasite genome projects. In this presentation, I will use some of the current areas of interest in the biology of T. brucei, T. cruzi and the Leishmania species to rehearse some of the insights and challenges that are likely to stem from the application of genomics and post-genomic studies to the kinetoplastid parasites. In some cases, I will exemplify points by illustrations from my laboratory's work, interests and hypotheses. The presentation slants therefore towards T. brucei biology, however, in each case the reader will, no doubt, see the generalities of application to other kinetoplastid parasites.
Collapse
Affiliation(s)
- K Gull
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, M13 9PT, Manchester, UK.
| |
Collapse
|
30
|
Pérez-Morga D, Amiguet-Vercher A, Vermijlen D, Pays E. Organization of telomeres during the cell and life cycles of Trypanosoma brucei. J Eukaryot Microbiol 2001; 48:221-6. [PMID: 12095111 DOI: 10.1111/j.1550-7408.2001.tb00306.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genome of Trypanosoma brucei contains about 120 chromosomes, which do not visibly condense during mitosis. We have analyzed the organization and segregation of these chromosomes by in situ hybridization using fluorescent telomere probes. At the onset of mitosis, telomeres migrate from their nuclear peripheral location and congregate into a central zone. This dense group of telomeres then splits into two entities that migrate to opposite nuclear poles. Segregation continues until the double-sized nucleus divides and, before cytokinesis occurs, the telomeres reorganize into the discrete foci observed at interphase. During migration, the telomeres are located at the free end of the mitotic spindle. Treatment with the microtubule polymerization inhibitor rhizoxin prevents telomere clustering and chromosomal segregation. In the insect-specific procyclic form as well as in the non-dividing bloodstream stumpy form, telomeres tend to cluster close to the nuclear periphery at interphase. In contrast, in the proliferative bloodstream slender form the telomeres preferentially locate in the central zone of the nucleus. Thus, telomeres are closer to the nuclear periphery during those life cycle stages where the telomeric expression sites for the variant surface glycoprotein are all inactive, suggesting that transcriptional inactivation of these sites is related to their subnuclear localization.
Collapse
Affiliation(s)
- D Pérez-Morga
- Molecular Parasitology Laboratory, Université Libre de Bruxelles-Institut de Biologie et Médecine Moléculaires, Gosselies, Belgium.
| | | | | | | |
Collapse
|
31
|
Alsford S, Wickstead B, Ersfeld K, Gull K. Diversity and dynamics of the minichromosomal karyotype in Trypanosoma brucei. Mol Biochem Parasitol 2001; 113:79-88. [PMID: 11254956 DOI: 10.1016/s0166-6851(00)00388-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The genome of African trypanosomes contains a large number of minichromosomes. Their only proposed role is in the expansion of the parasites' repertoire of telomeric variant surface glycoprotein (VSG) genes as minichromosomes carry silent VSG gene copies in telomeric locations. Despite their importance as VSG gene donors, little is known about the actual composition of the minichromosomal karyotype and the stability of its inheritance. In this study we show, by using high-resolution pulsed-field electrophoresis, that a non-clonal trypanosome population contains an extremely diverse pattern of minichromosomes, which can be resolved into less complex clone-specific karyotypes by non-selective cloning. We show that the minichromosome patterns of such clones are stable over at least 360 generations. Furthermore, using DNA markers for specific minichromosomes, we demonstrate the mitotic stability of these minichromosomes within the population over a period of more than 5 years. Length variation is observed for an individual minichromosome and is most likely caused by a continuous telomeric growth of approximately 6 bp per telomere per cell division. This steady telomeric growth, counteracted by stochastic large losses of telomeric sequences is the most likely cause of minichromosome karyotype heterogeneity within a population.
Collapse
Affiliation(s)
- S Alsford
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
32
|
Abstract
Species of the trypanosomatid parasite genera Trypanosoma and Leishmania exhibit a particular range of cell shapes that are defined by their internal cytoskeletons. The cytoskeleton is characterized by a subpellicular corset of microtubules that are cross-linked to each other and to the plasma membrane. Trypanosomatid cells possess an extremely precise organization of microtubules and filaments, with some of their organelles, such as the mitochondria, kinetoplasts, basal bodies, and flagella, present as single copies in each cell. The duplication of these structures and changes in their position during life cycle differentiations provide markers and insight into events involved in determining cell form and division. We have a rapidly increasing catalog of these structures, their molecular cytology, and their ontogeny. The current sophistication of available molecular genetic techniques for use in these organisms has allowed a new functional analysis of the cytoskeleton, including functions that are intrinsic to the proliferation and pathogenicity of these parasites.
Collapse
Affiliation(s)
- K Gull
- School of Biological Sciences, University of Manchester, United Kingdom.
| |
Collapse
|