1
|
Del Arco J, Acosta J, Fernández-Lucas J. Biotechnological applications of purine and pyrimidine deaminases. Biotechnol Adv 2024; 77:108473. [PMID: 39505057 DOI: 10.1016/j.biotechadv.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Deaminases, ubiquitous enzymes found in all living organisms from bacteria to humans, serve diverse and crucial functions. Notably, purine and pyrimidine deaminases, while biologically essential for regulating nucleotide pools, exhibit exceptional versatility in biotechnology. This review systematically consolidates current knowledge on deaminases, showcasing their potential uses and relevance in the field of biotechnology. Thus, their transformative impact on pharmaceutical manufacturing is highlighted as catalysts for the synthesis of nucleic acid derivatives. Additionally, the role of deaminases in food bioprocessing and production is also explored, particularly in purine content reduction and caffeine production, showcasing their versatility in this field. The review also delves into most promising biomedical applications including deaminase-based GDEPT and genome and transcriptome editing by deaminase-based systems. All in all, illustrated with practical examples, we underscore the role of purine and pyrimidine deaminases in advancing sustainable and efficient biotechnological practices. Finally, the review highlights future challenges and prospects in deaminase-based biotechnological processes, encompassing both industrial and medical perspectives.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia; Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
2
|
Trapero A, Pacitto A, Chan DSH, Abell C, Blundell TL, Ascher DB, Coyne AG. Covalent inactivation of Mycobacterium thermoresistibile inosine-5'-monophosphate dehydrogenase (IMPDH). Bioorg Med Chem Lett 2019; 30:126792. [PMID: 31757668 DOI: 10.1016/j.bmcl.2019.126792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/30/2019] [Indexed: 11/28/2022]
Abstract
Inosine-5'-monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme involved in nucleotide biosynthesis. Because of its critical role in purine biosynthesis, IMPDH is a drug design target for immunosuppressive, anticancer, antiviral and antimicrobial chemotherapy. In this study, we use mass spectrometry and X-ray crystallography to show that the inhibitor 6-Cl-purine ribotide forms a covalent adduct with the Cys-341 residue of Mycobacterium thermoresistibile IMPDH.
Collapse
Affiliation(s)
- Ana Trapero
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Angela Pacitto
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Daniel Shiu-Hin Chan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom.
| | - David B Ascher
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3052, Australia.
| | - Anthony G Coyne
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| |
Collapse
|
3
|
Sarwono AEY, Mitsuhashi S, Kabir MHB, Shigetomi K, Okada T, Ohsaka F, Otsuguro S, Maenaka K, Igarashi M, Kato K, Ubukata M. Repurposing existing drugs: identification of irreversible IMPDH inhibitors by high-throughput screening. J Enzyme Inhib Med Chem 2018; 34:171-178. [PMID: 30451014 PMCID: PMC6249553 DOI: 10.1080/14756366.2018.1540474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) is an essential enzyme for the production of guanine nucleotides. Disruption of IMPDH activity has been explored as a therapeutic strategy for numerous purposes, such as for anticancer, immunosuppression, antiviral, and antimicrobial therapy. In the present study, we established a luciferase-based high-throughput screening system to identify IMPDH inhibitors from our chemical library of known bioactive small molecules. The screening of 1400 compounds resulted in the discovery of three irreversible inhibitors: disulfiram, bronopol, and ebselen. Each compound has a distinct chemical moiety that differs from other reported IMPDH inhibitors. Further evaluation revealed that these compounds are potent inhibitors of IMPDHs with kon values of 0.7 × 104 to 9.3 × 104 M-1·s-1. Both disulfiram and bronopol exerted similar degree of inhibition to protozoan and mammalian IMPDHs. Ebselen showed an intriguing difference in mode of inhibition for different IMPDHs, with reversible and irreversible inhibition to each Cryptosporidium parvum IMPDH and human IMPDH type II, respectively. In the preliminary efficacy experiment against cryptosporidiosis in severe combined immunodeficiency (SCID) mouse, a decrease in the number of oocyst shed was observed upon the oral administration of disulfiram and bronopol, providing an early clinical proof-of-concept for further utilization of these compounds as IMPDH inhibitors.
Collapse
Affiliation(s)
| | - Shinya Mitsuhashi
- a Division of Applied Bioscience, Graduate School of Agriculture , Hokkaido University , Sapporo , Japan.,b Department of Cellular and Molecular Biology , The University of Texas Health Science Center at Tyler , Tyler , TX , USA
| | - Mohammad Hazzaz Bin Kabir
- c National Research Center for Protozoan Diseases , Obihiro University of Agriculture and Veterinary Medicine , Obihiro , Japan
| | - Kengo Shigetomi
- a Division of Applied Bioscience, Graduate School of Agriculture , Hokkaido University , Sapporo , Japan
| | - Tadashi Okada
- c National Research Center for Protozoan Diseases , Obihiro University of Agriculture and Veterinary Medicine , Obihiro , Japan.,e Division of Neurology, Respirology and Metabolism, Department of Internal Medicine, Faculty of Medicine , University of Miyazaki , Kiyotake , Miyazaki, Japan
| | - Fumina Ohsaka
- d Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences , Hokkaido University , Sapporo , Japan
| | - Satoko Otsuguro
- d Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences , Hokkaido University , Sapporo , Japan
| | - Katsumi Maenaka
- d Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences , Hokkaido University , Sapporo , Japan
| | - Makoto Igarashi
- c National Research Center for Protozoan Diseases , Obihiro University of Agriculture and Veterinary Medicine , Obihiro , Japan
| | - Kentaro Kato
- c National Research Center for Protozoan Diseases , Obihiro University of Agriculture and Veterinary Medicine , Obihiro , Japan
| | - Makoto Ubukata
- a Division of Applied Bioscience, Graduate School of Agriculture , Hokkaido University , Sapporo , Japan
| |
Collapse
|
4
|
Cuny GD, Suebsuwong C, Ray SS. Inosine-5'-monophosphate dehydrogenase (IMPDH) inhibitors: a patent and scientific literature review (2002-2016). Expert Opin Ther Pat 2017; 27:677-690. [PMID: 28074661 DOI: 10.1080/13543776.2017.1280463] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Inosine-5'-monophosphate dehydrogenase (IMPDH) is an enzyme involved in the de novo biosynthesis of guanine nucleotides. To date human IMPDH inhibitors have been approved for prevention of organ transplant rejection and as anti-viral agents. More recently, the use of IMPDH inhibitors for other indications including cancer and pathogenic microorganisms has been pursued. Areas covered: IMPDH inhibitors disclosed primarily in the patent and scientific literature from 2002 to the present are discussed. Several interesting chemotypes that have not been pursued by patent protection are also highlighted. Expert opinion: Progress has been made in the development of IMPDH inhibitors, particularly compounds that are structurally distinct from mycophenolic acid and nucleoside-based inhibitors. However, clinical progression has been hampered primarily by a limited understanding of the enzyme's role in disease pathophysiology. Finally, most of the IMPDH inhibitors developed over the past fourteen years fall within a relatively narrow set of chemotypes. This provides opportunities for expanding IMPDH inhibitor chemical space to further evaluate this class of molecular targets.
Collapse
Affiliation(s)
- Gregory D Cuny
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| | | | | |
Collapse
|
5
|
Synthesis of a novel carbocyclic analog of bredinin. Molecules 2013; 18:11576-85. [PMID: 24048288 PMCID: PMC6270366 DOI: 10.3390/molecules180911576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/05/2013] [Accepted: 09/10/2013] [Indexed: 11/16/2022] Open
Abstract
The natural nucleoside antibiotic, bredinin, exhibits antiviral and other biological activities. While various nucleosides related to bredinin have been synthesized, its carbocyclic analog has remained unknown. Synthesis of this heretofore unknown analog of bredinin is described. The key precursor, (3aS,4R,6R,6aR)-6-((methoxy-methoxy)methyl)-2,2-dimethyltetrahydro-3aH-cyclopenta[d][1,3]dioxol-4-amine (5), was prepared from the commercially available compound, (1R,4S)-2-azabicyclo[2.2.1] hept-5-en-3-one (4). Our initial approach used intermediate 6, derived in three transformations from 5, for the key photolytic step to produce the desired ring-opened precursor to the target compound. This photochemical transformation was unsuccessful. However, an appropriately protected and related precursor was synthesized from 5 through the following side-chain functional group transformations: elaboration of the amino group through malonyl ester formation, oximation at the central carbon, conversion of ester to amide and catalytic reduction of the oxime group. This precursor, on treatment with triethylorthoformate and catalytic acetic acid in ethanol, underwent cyclization to produce the desired 4-carbamoyl-imidazolium-5-olate ring. Deprotection of the latter product proceeded smoothly to give the carbocyclic analog of bredinin. This target molecule exhibits antiviral activity, albeit low, against a number of RNA viruses. Further biological evaluations are in progress.
Collapse
|
6
|
|
7
|
Inosine monophosphate dehydrogenase as a target for antiviral, anticancer, antimicrobial and immunosuppressive therapeutics. Future Med Chem 2011; 2:81-92. [PMID: 21426047 DOI: 10.4155/fmc.09.147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in the de novo biosynthesis of guanine nucleotides. In recent years it has become the target of multiple drugs in an attempt to cure a variety of diseases. Possible therapeutic drugs range from antiviral and anticancer to immunosuppressive targets. Research has shown that if IMPDH is effectively inhibited, cancerous growth can be slowed and virus replication can be stopped. Microbial and parasitic IMPDH differ significantly from the human isoforms and targeting those isoforms could lead to effective treatments for many diseases. Inhibiting IMPDH is an extremely promising therapy for a variety of disease states. Isoform- and species-selective inhibition is desirable and scientists are making significant progress in these areas.
Collapse
|
8
|
Usha V, Gurcha SS, Lovering AL, Lloyd AJ, Papaemmanouil A, Reynolds RC, Besra GS. Identification of novel diphenyl urea inhibitors of Mt-GuaB2 active against Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2010; 157:290-299. [PMID: 21081761 DOI: 10.1099/mic.0.042549-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In contrast with most bacteria, which harbour a single inosine monophosphate dehydrogenase (IMPDH) gene, the genomic sequence of Mycobacterium tuberculosis H37Rv predicts three genes encoding IMPDH: guaB1, guaB2 and guaB3. These three genes were cloned and expressed in Escherichia coli to evaluate functional IMPDH activity. Purified recombinant Mt-GuaB2, which uses inosine monophosphate as a substrate, was identified as the only active GuaB orthologue in M. tuberculosis and showed optimal activity at pH 8.5 and 37 °C. Mt-GuaB2 was inhibited significantly in vitro by a panel of diphenyl urea-based derivatives, which were also potent anti-mycobacterial agents against M. tuberculosis and Mycobacterium smegmatis, with MICs in the range of 0.2-0.5 μg ml(-1). When Mt-GuaB2 was overexpressed on a plasmid in trans in M. smegmatis, a diphenyl urea analogue showed a 16-fold increase in MIC. Interestingly, when Mt-GuaB orthologues (Mt-GuaB1 and 3) were also overexpressed on a plasmid in trans in M. smegmatis, they also conferred resistance, suggesting that although these Mt-GuaB orthologues were inactive in vitro, they presumably titrate the effect of the inhibitory properties of the active compounds in vivo.
Collapse
Affiliation(s)
- Veeraraghavan Usha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sudagar S Gurcha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Andrew L Lovering
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Adrian J Lloyd
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | - Athina Papaemmanouil
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Robert C Reynolds
- Drug Discovery Division, Southern Research Institute, Birmingham, AL 35255, USA
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
9
|
Nair V, Zhang F, Ma X, Bonsu E. Base-functionalized carbocyclic nucleosides: design, synthesis, and mechanism of antiviral activity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 28:408-23. [PMID: 20183592 DOI: 10.1080/15257770903044465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
New carbocyclic ribonucleosides with unsaturated groups at the C-2 position of the nucleobase were designed as potential RNA antiviral compounds. The design was based on the expectation that the monophosphates of these compounds would be inhibitors of the enzyme, IMPDH. Appropriate methodologies were developed to achieve the target molecules. Results from the initial in vitro antiviral studies are mentioned. The IMPDH-associated mechanism of the antiviral activity of the most active compound is supported by enzyme inhibition studies.
Collapse
Affiliation(s)
- Vasu Nair
- Department of Pharmaceutical and Biomedical Sciences and the Center for Drug Discovery, University of Georgia, Athens, Georgia, USA.
| | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Lizbeth Hedstrom
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, Massachusetts 02454, USA.
| |
Collapse
|
11
|
Shu Q, Nair V. Inosine monophosphate dehydrogenase (IMPDH) as a target in drug discovery. Med Res Rev 2008; 28:219-32. [PMID: 17480004 DOI: 10.1002/med.20104] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is a key enzyme of de novo purine nucleotide biosynthesis and is viewed as an important target in the quest for discovery of drugs in the antiviral, antibacterial and anticancer therapeutic areas. This review focuses on the medicinal chemistry, drug discovery and chemical biology of IMPDH. Examples of IMP and cofactor site-directed inhibitors, allosteric inhibitors and isoform-selective inhibitors are presented. Comparison of IMPDHs from different organisms is also made to facilitate the design of species-selective IMPDH inhibitors for drug discovery. Special emphasis in the review is placed on IMPDH from Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Qingning Shu
- The Center for Drug Discovery and the Department of Pharmaceutical and Biomedical Sciences, R. C. Wilson PH, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
12
|
Nair V, Ma X, Shu Q, Zhang F, Uchil V, Cherukupalli GR. IMPDH as a biological probe for RNA antiviral drug discovery: synthesis, enzymology, molecular docking, and antiviral activity of new ribonucleosides with surrogate bases. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:651-4. [PMID: 18066873 DOI: 10.1080/15257770701490506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Our interest in the discovery of molecules with antiviral activity against RNA viruses led us to the design of ribonucleosides with surrogate bases with the intent of using inhibition of inosine monophosphate dehydrogenase (IMPDH) as a probe for antiviral drug discovery. A general methodology for the preparation of these compounds is discussed. Kinetic parameters of the inhibition studies with IMPDH, which were carried out spectrophotometrically by monitoring the formation of NADH, are given. Antiviral information and correlation of activity with IMPDH inhibition are discussed.
Collapse
Affiliation(s)
- Vasu Nair
- Center for Drug Discovery and the Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602-2352, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Nair V, Shu Q. Inosine monophosphate dehydrogenase as a probe in antiviral drug discovery. Antivir Chem Chemother 2008; 18:245-58. [PMID: 18046958 DOI: 10.1177/095632020701800501] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Inosine monophosphate (IMP) dehydrogenase (IMPDH) is a significant enzyme in the purine nucleotide biosynthetic pathway. IMPDH is viewed as an important biological target in the quest for drugs in the antiviral therapeutic area. This review article is focused on the chemistry and biology of IMPDH inhibitors and the use of IMPDH inhibition data as a probe in antiviral drug discovery. Examples of both inosine 5' monophosphate and NAD+ site-directed inhibitors are presented. Correlation of antiviral activities with IMPDH inhibition is discussed.
Collapse
Affiliation(s)
- Vasu Nair
- The Center for Drug Discovery, Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA, USA.
| | | |
Collapse
|
14
|
Abstract
Adenosine deaminase (ADA) is an enzyme in the purine salvage pathway that catalyzes the deamination of adenosine and deoxyadenosine to inosine and deoxyinosine, respectively. This deamination is an important factor in limiting the usefulness of adenosine analogues in chemotherapy. However, the biocatalysis by ADA is also a useful transformation in enzymatic synthesis. In this review, examples from both the principal investigator's laboratory and from the literature, which depict the synthetic usefulness of this enzyme in deamination, dehalogenation, demethoxylation reactions and in diastereoisomeric resolution, are presented. It is not the intent of this review to comprehensively list all of the biotransformations induced by adenosine deaminase, but rather to present representative examples to highlight the powerful synthetic utility of this enzyme. A review with 72 references.
Collapse
|
15
|
Story S, Gupta M, Bonsu E, Nair V. Inhibitors of inosine monophosphate dehydrogenase: probes for antiviral drug discovery. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:717-20. [PMID: 16248022 DOI: 10.1081/ncn-200060308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The role of inosine monophosphate dehydrogenase (IMPDH) at the metabolic branch point of de novo purine nucleotide biosynthesis makes this enzyme an attractive probe for the discovery of antiviral compounds. Introduction of unsaturation at the 2-position of IMP, the natural substrate for IMPDH, produces Michael acceptors at that position, which results in these compounds being inhibitors of IMPDH. Consistent with this mechanism-based molecular design, some of the parent nucleosides exhibited antiviral activity.
Collapse
Affiliation(s)
- Sherry Story
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, Georgia, 30602, USA
| | | | | | | |
Collapse
|
16
|
Gupta M, Nair V. Facile, chemoenzymatic synthesis of the potent antiviral compound, 2-acetonylinosine. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2004.12.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Park SJ, Joo WA, Choi J, Lee SH, Kim CW. Identification and characterization of inosine monophosphate dehydrogenase fromHalobacterium salinarum. Proteomics 2004; 4:3632-41. [PMID: 15468334 DOI: 10.1002/pmic.200400921] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Extremely halophilic Archaea, Halobacterium salinarum live in hypersaline habitats and maintain an osmotic balance of their cytoplasm by accumulating high concentrations of salt (mainly KCl). Therefore, their enzymes adapted to high NaCl concentrations offer a multitude of acutal or potential applications such as biocatalysts in the presence of high salt concentrations. In this study, the protein expression profile of H. salinarum cultured under different NaCl concentrations (3.5 M, 4.3 M, and 6.0 M) was investigated using two-dimensional gel electrophoresis (2-DE). As a result of 2-DE, the protein spots concentrated in acidic range at pH 3-10 were separated effectively using pH 3.5-4.5 ultrazoom IPG DryStrips. The proteins which proved to be upregulated or downregulated in 2-DE gel were digested with trypsin and identified with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and electrospray ionization quadrupole (ESI-Q) TOF-mass spectrometry. Most proteins were identified as known annotated proteins based on sequence homology and few as unknown hypothetical proteins. Among proteins identified, an enzyme named inosine monophosphate dehydrogenase (IMPDH) was selected based on the possibility of its industrial application. IMPDH gene (1.6 kb fragment) expected to exist in H. salinarum was amplified by polymerase chain reaction (PCR) and expressed in Escherichia coli strain, BL21 (DE3) using a pGEX-KG vector. Recombinant IMPDH purified from H. salinarum has a higher activity in the presence of salt than in the absence of salt.
Collapse
Affiliation(s)
- Soo-Jin Park
- Graduate School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | |
Collapse
|
18
|
Nair V, Kamboj RC. Inhibition of inosine monophosphate dehydrogenase (IMPDH) by 2-[2-(Z)-fluorovinyl]inosine 5'-monophosphate. Bioorg Med Chem Lett 2003; 13:645-7. [PMID: 12639549 DOI: 10.1016/s0960-894x(02)01053-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH; EC 1.1.1.205) isolated from Escherichia coli B3 cells was strongly inhibited by 2-[2-(Z)-fluorovinyl]inosine 5'-monophosphate (2-FVIMP). Inhibition of IMPDH appears to be irreversible with k(inact) and K(i) values of 0.0269 s(-1) and 1.11 microM, respectively.
Collapse
Affiliation(s)
- Vasu Nair
- Department of Pharmaceutical and Biomedical Sciences, The University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
19
|
Nair V, Bera B, Kern ER. Synthesis and biological activities of 2-functionalized purine nucleosides. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:115-27. [PMID: 12744599 DOI: 10.1081/ncn-120019498] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Novel purine nucleosides functionalized at the 2-position have been prepared using new applications of synthetic methodology. The target molecules were designed as potential inhibitors (as their monophosphates) of the enzyme, inosine monophosphate dehydrogenase (IMPDH), and representative inhibition data are presented. Antiviral data of the compounds are discussed.
Collapse
Affiliation(s)
- Vasu Nair
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|