1
|
Daniel P, Balušíková K, Václavíková R, Šeborová K, Ransdorfová Š, Valeriánová M, Wei L, Jelínek M, Tlapáková T, Fleischer T, Kristensen VN, Souček P, Ojima I, Kovář J. ABCB1 Amplicon Contains Cyclic AMP Response Element-Driven TRIP6 Gene in Taxane-Resistant MCF-7 Breast Cancer Sublines. Genes (Basel) 2023; 14:genes14020296. [PMID: 36833223 PMCID: PMC9957548 DOI: 10.3390/genes14020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
A limited number of studies are devoted to regulating TRIP6 expression in cancer. Hence, we aimed to unveil the regulation of TRIP6 expression in MCF-7 breast cancer cells (with high TRIP6 expression) and taxane-resistant MCF-7 sublines (manifesting even higher TRIP6 expression). We found that TRIP6 transcription is regulated primarily by the cyclic AMP response element (CRE) in hypomethylated proximal promoters in both taxane-sensitive and taxane-resistant MCF-7 cells. Furthermore, in taxane-resistant MCF-7 sublines, TRIP6 co-amplification with the neighboring ABCB1 gene, as witnessed by fluorescence in situ hybridization (FISH), led to TRIP6 overexpression. Ultimately, we found high TRIP6 mRNA levels in progesterone receptor-positive breast cancer and samples resected from premenopausal women.
Collapse
Affiliation(s)
- Petr Daniel
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Kamila Balušíková
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine, Charles University, 323 00 Pilsen, Czech Republic
| | - Karolína Šeborová
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine, Charles University, 323 00 Pilsen, Czech Republic
| | - Šárka Ransdorfová
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, 128 00 Prague, Czech Republic
| | - Marie Valeriánová
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, 128 00 Prague, Czech Republic
| | - Longfei Wei
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, Stony Brook University—State University of New York, Stony Brook, NY 11794, USA
| | - Michael Jelínek
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Tereza Tlapáková
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Vessela N. Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine, Charles University, 323 00 Pilsen, Czech Republic
| | - Iwao Ojima
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, Stony Brook University—State University of New York, Stony Brook, NY 11794, USA
| | - Jan Kovář
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
- Correspondence: ; Tel.: +420-267-102-658
| |
Collapse
|
2
|
Ren S, Zhang M, Wang Y, Guo J, Wang J, Li Y, Ding N. Synthesis and biological evaluation of novel cabazitaxel analogues. Bioorg Med Chem 2021; 41:116224. [PMID: 34058663 DOI: 10.1016/j.bmc.2021.116224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
Cabazitaxel is one of the most recently FDA-approved taxane anticancer agent. In view of the advantages in preclinical and clinical data of cabazitaxel over former toxoids, the synthesis and biological evaluation of novel cabazitaxel analogues were conducted. First, a novel semi-synthesis of cabazitaxel was described. This strategy is concise and efficient, which needs five steps from the 10-deacetylbaccatin III (10-DAB) moiety and a commercially available C13 side chain precursor with a 32% overall yield. Besides, this strategy avoids using many hazardous reagents that involved in the previously reported processes. Then, a panel of cabazitaxel analogues were prepared basing on this strategy. The cytotoxicity evaluations showed that the majority of these cabazitaxel analogues are potent against both A549 and KB cells and their corresponding drug-resistant cell lines KB/VCR, and A549/T, respectively. Further in vivo antitumor efficacies assessment of 7,10-di-O-methylthiomethyl (MTM) modified cabazitaxel (compounds 16 and 19) on SCID mice A549 xenograft model showed they both had similar antitumor activity to the cabazitaxel. Since compound 19 was observed causing more body wight loss on the mice than 16, these preliminary studies suggest 16 might be a potent drug candidate for further preclinical evaluation.
Collapse
Affiliation(s)
- Sumei Ren
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China; School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Minmin Zhang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yujie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jia Guo
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Junfei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yingxia Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
3
|
Ren S, Wang Y, Wang J, Gao D, Zhang M, Ding N, Li Y. Synthesis and biological evaluation of novel larotaxel analogues. Eur J Med Chem 2018; 156:692-710. [PMID: 30036834 DOI: 10.1016/j.ejmech.2018.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
Abstract
Taxoids are a class of successful drugs and have been successfully used in chemotherapy for a variety of cancer types. However, despite the hope and promises that these taxoids have engendered, their utility is hampered by some clinic limitations. Extensive structure-activity relationship (SAR) studies of toxoids have been performed in many different laboratories. Whereas, SAR studies that based on the new-generation toxoid, larotaxel, have not been reported yet. In view of the advantages in preclinical and clinical data of larotaxel over former toxoids, new taxoids that strategicly modified at the C3'/C3'-N and C2 positions of larotaxel were designed, semi-synthesized, and examined for their potency and efficacy in vitro. As a result, it has been shown that the majority of these larotaxel analogues are exceptionally potent against both drug-sensitive tumor cells and tumor cells with drug resistance arising from P-glycoprotein over expression. Further in vivo antitumor efficacies investigations revealed A2 might be a potent antitumor drug candidate for further preclinical evaluation.
Collapse
Affiliation(s)
- Sumei Ren
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yujie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Junfei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Dingding Gao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Minmin Zhang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China; Zhangjiang Technology Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China.
| | - Yingxia Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
4
|
Chen M, Liu J, Tian Z, Liu X, Zhang S. Synthesis, cytotoxic activity and binding model analysis of novel isoxazole-docetaxel analogues with C3′-N modification. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2151-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Thornburg CK, Walter T, Walker KD. Biocatalysis of a Paclitaxel Analogue: Conversion of Baccatin III to N-Debenzoyl-N-(2-furoyl)paclitaxel and Characterization of an Amino Phenylpropanoyl CoA Transferase. Biochemistry 2017; 56:5920-5930. [DOI: 10.1021/acs.biochem.7b00912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chelsea K. Thornburg
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tyler Walter
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kevin D. Walker
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
Xu PP, Li QF, Cui YM, Lin HX. Synthesis and anti-inflammatory evaluation of novel paclitaxel analogs. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:803-822. [PMID: 27756149 DOI: 10.1080/10286020.2016.1236793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
A series of paclitaxel analogs modified at C-3'-N and C-7 positions were synthesized from baccatin III and their structures were confirmed by 1H-NMR, 13C-NMR, HR-MS. Compound 7e exhibited potent ability to decrease TNFα (tumor necrosis factor α) in the LPS-activated RAW264.7 murine macrophage-like cell line. The preliminary data indicated that the anti-inflammatory effects may be related to MD-2 and Toll-like receptor 4 (TLR4), rather than Toll-like receptor 2 (TLR2).
Collapse
Affiliation(s)
- Pei-Pei Xu
- a Department of Chemistry , Innovative Drug Research Center, College of Sciences, Shanghai University , Shanghai 200444 , China
| | - Qing-Feng Li
- a Department of Chemistry , Innovative Drug Research Center, College of Sciences, Shanghai University , Shanghai 200444 , China
| | - Yong-Mei Cui
- a Department of Chemistry , Innovative Drug Research Center, College of Sciences, Shanghai University , Shanghai 200444 , China
| | - Hai-Xia Lin
- a Department of Chemistry , Innovative Drug Research Center, College of Sciences, Shanghai University , Shanghai 200444 , China
| |
Collapse
|
7
|
Li QF, Lin HX, Cui YM, Xu PP. Syntheses and biological evaluation of C-3'-N-acyl modified taxane analogues from 1-deoxybaccatin-VI. Eur J Med Chem 2015; 104:97-105. [PMID: 26448037 DOI: 10.1016/j.ejmech.2015.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 11/28/2022]
Abstract
A series of side-chain modified taxane analogues were synthesized and their in vitro anticancer activities against four human cancer cell lines: MDA-MB-231 (human breast cancer), PC-3 (human prostatic cancer), HepG2 and H460 (human hepatoma) were studied. The three hydroxyl groups at C-7, C-9 and C-10 enable the behavior of these compounds to be evidently distinct from other similar compounds. The strong cytotoxicity in the four cell lines showed by the newly synthesized taxane analogues 13a and 13d indicated them as potential lead compounds for anticancer drug design.
Collapse
Affiliation(s)
- Qing-Feng Li
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Hai-Xia Lin
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China.
| | - Yong-Mei Cui
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China
| | - Pei-Pei Xu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China
| |
Collapse
|
8
|
Seitz JD, Vineberg JG, Wei L, Khan JF, Lichtenthal B, Lin CF, Ojima I. Design, Synthesis and Application of Fluorine-Labeled Taxoids as 19F NMR Probes for the Metabolic Stability Assessment of Tumor-Targeted Drug Delivery Systems. J Fluor Chem 2015; 171:148-161. [PMID: 25722499 DOI: 10.1016/j.jfluchem.2014.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Novel tumor-targeting drug conjugates, BLT-F2 (1) and BLT-S-F6 (2), bearing a fluorotaxoid as the warhead, a mechanism-based self-immolative disulfide linker, and biotin as the tumor-targeting module, were designed and synthesized as 19F NMR probes. Fluorine atoms and CF3 groups were strategically incorporated into the conjugates to investigate the mechanism of linker cleavage and factors that influence their plasma and metabolic stability by real-time monitoring with 19F NMR. Time-resolved 19F NMR study on probe 1 disclosed a stepwise mechanism for release of a fluorotaxoid, which might not have been detected by other analytical methods. Probe 2 was designed to bear two CF3 groups in the taxoid moiety as "3-FAB" reporters for enhanced sensitivity and a polyethylene glycol oligomer insert to improve solubility. The clean analysis of the linker stability and reactivity of drug conjugates in blood plasma or cell culture media by HPLC and 1H NMR is troublesome, due to the overlap of key signals/peaks with background arising from highly complex ingredients in biological systems. Accordingly, the use of 19F NMR would provide a practical solution to this problem. In fact, our "3-FAB" probe 2 was proven to be highly useful to investigate the stability and reactivity of the self-immolative disulfide linker system in human blood plasma by 19F NMR. It has also been revealed that the use of polysorbate 80 as excipient for the formulation of probe 2 dramatically increases the stability of the disulfide linker system. This finding further indicates that the tumor-targeting drug conjugates with polysorbate 80/EtOH/saline formulation for in vivo studies would have high stability in blood plasma, while the drug release in cancer cells proceeds smoothly.
Collapse
Affiliation(s)
- Joshua D Seitz
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400
| | - Jacob G Vineberg
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400
| | - Longfei Wei
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400
| | - Jonathan F Khan
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400
| | - Brendan Lichtenthal
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400
| | - Chi-Feng Lin
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400
| | - Iwao Ojima
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400 ; Institute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400
| |
Collapse
|
9
|
Nicolaou KC, Valiulin RA. Synthesis and biological evaluation of new paclitaxel analogs and discovery of potent antitumor agents. Org Biomol Chem 2013; 11:4154-63. [PMID: 23685867 PMCID: PMC3712363 DOI: 10.1039/c3ob40654g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reaction of 10-deacetylbaccatin III (III) and its 7-TES derivative (IV) with DAST under various conditions resulted in the formation of an array of new fluorinated and non-fluorinated 13-keto taxoid compounds (2a–4a) through a vinylogous pinacol–pinacolone rearrangement. Further fluorination of some of these products (2a, 3a) with NFSi or Selectfluor gave additional derivatives. Sodium borohydride reduction of the 13-keto group of these products (2a, 2b, 3a, 3b, 4a, 8, 9, 11–14) led to a series of 9α-hydroxy taxoid derivatives, which were esterified using the docetaxel side chain employing the corresponding protected β-lactam, followed by deprotection to furnish a library of docetaxel analogs and related compounds. A selected number of synthesized compounds (7, 10, 19a, 19b, 21a, 21b, 23, 27, 29, 34–36) were submitted to the National Cancer Institute (NCI) 60 cell line screening program and tested for cytotoxic properties. Taxoids 19a, 19b, 21a, 21b, 23, 27, 29, 34 and 35 were found to exhibit significant anticancer activity against various cancerous cell lines with 23, 27, and 29 being the most potent compounds, demonstrating GI50 values of ≤5 nM in several assays.
Collapse
Affiliation(s)
- Kyriacos C Nicolaou
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
10
|
Nevarez DM, Mengistu YA, Nawarathne IN, Walker KD. An N-aroyltransferase of the BAHD superfamily has broad aroyl CoA specificity in vitro with analogues of N-dearoylpaclitaxel. J Am Chem Soc 2009; 131:5994-6002. [PMID: 19382815 DOI: 10.1021/ja900545m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The native N-debenzoyl-2'-deoxypaclitaxel:N-benzoyltransferase (NDTBT), from Taxus plants, transfers a benzoyl group from the corresponding CoA thioester to the amino group of the beta-phenylalanine side chain of N-debenzoyl-2'-deoxypaclitaxel, which is purportedly on the paclitaxel (Taxol) biosynthetic pathway. To elucidate the substrate specificity of NDTBT overexpressed in Escherichia coli, the purified enzyme was incubated with semisynthetically derived N-debenzoyltaxoid substrates and aroyl CoA donors (benzoyl; ortho-, meta-, and para-substituted benzoyls; various heterole carbonyls; alkanoyls; and butenoyl), which were obtained from commercial sources or synthesized via a mixed anhydride method. Several unnatural N-aroyl-N-debenzoyl-2'-deoxypaclitaxel analogues were biocatalytically assembled with catalytic efficiencies (V(max)/K(M)) ranging between 0.15 and 1.74 nmol.min(-1).mM(-1). In addition, several N-acyl-N-debenzoylpaclitaxel variants were biosynthesized when N-debenzoylpaclitaxel and N-de(tert-butoxycarbonyl)docetaxel (i.e., 10-deacetyl-N-debenzoylpaclitaxel) were used as substrates. The relative velocity (v(rel)) for NDTBT with the latter two N-debenzoyl taxane substrates ranged between approximately 1% and 200% for the array of aroyl CoAs compared to benzoyl CoA. Interestingly, NDTBT transferred hexanoyl, acetyl, and butyryl more rapidly than butenoyl or benzoyl from the CoA donor to taxanes with isoserinoyl side chains, whereas N-debenzoyl-2'-deoxypaclitaxel was more rapidly converted to its N-benzoyl derivative than to its N-alkanoyl or N-butenoyl congeners. Biocatalytic N-acyl transfer of novel acyl groups to the amino functional group of N-debenzoylpaclitaxel and its 2'-deoxy precursor reveal the surprisingly indiscriminate specificity of this transferase. This feature of NDTBT potentially provides a tool for alternative biocatalytic N-aroylation/alkanoylation to construct next generation taxanes or other novel bioactive diterpene compounds.
Collapse
Affiliation(s)
- Danielle M Nevarez
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
11
|
Design, synthesis and biological evaluation of novel fluorinated docetaxel analogues. Eur J Med Chem 2009; 44:482-91. [DOI: 10.1016/j.ejmech.2008.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 04/03/2008] [Accepted: 04/08/2008] [Indexed: 11/19/2022]
|
12
|
Ondari ME, Walker KD. The Taxol Pathway 10-O-Acetyltransferase Shows Regioselective Promiscuity with the Oxetane Hydroxyl of 4-Deacetyltaxanes. J Am Chem Soc 2008; 130:17187-94. [DOI: 10.1021/ja8067534] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mark E. Ondari
- Departments of Chemistry and Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Kevin D. Walker
- Departments of Chemistry and Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
13
|
Khlebnikov AI, Schepetkin IA, Kirpotina LN, Quinn MT. Computational structure-activity relationship analysis of non-peptide inducers of macrophage tumor necrosis factor-alpha production. Bioorg Med Chem 2008; 16:9302-12. [PMID: 18815052 DOI: 10.1016/j.bmc.2008.08.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/23/2008] [Accepted: 08/30/2008] [Indexed: 11/30/2022]
Abstract
Previously, we screened a series of arylcarboxylic acid hydrazide derivatives for their ability to induce macrophage tumor necrosis factor alpha (TNF-alpha) production and identified 16 such compounds. In the present study, we evaluated 23 additional arylcarboxylic acid hydrazides and found that seven of these compounds also induced macrophage TNF-alpha production, representing novel compounds with this activity. The total set of active compounds was then used for computational structure-activity relationship (SAR) analysis to further optimize lead molecules. A sequence of (1) linear discriminant analysis, (2) classification tree analysis with linear combination, and (3) univariate splits based on atom pair descriptors led to the derivation of SAR rule-based algorithms with fitting accuracy of 96.5%, 91.9%, and 84.9%, respectively. The SAR rules obtained from classification tree analysis with univariate splits, which was based on three atom pair descriptors only, revealed that the main factors influencing agonist activity of arylcarboxylic acid hydrazide derivatives were the presence of a methyl or trifluoromethyl group in the benzene ring attached to the furan moiety, an alkoxy group in the aromatic ring near the methylenehydrazide linker, and two or more halogen atoms (chlorine or bromine) on one side of the dumbbell-shaped hydrazide molecule opposed by an aromatic moiety on the opposite side of the molecule. Thus, these rules represent a relatively simple classification approach for de novo design of small-molecule inducers of macrophage TNF-alpha production.
Collapse
Affiliation(s)
- Andrei I Khlebnikov
- Department of Chemistry, Altai State Technical University, Barnaul 656038, Russia
| | | | | | | |
Collapse
|
14
|
Loncaric C, Merriweather E, Walker KD. Profiling a Taxol pathway 10beta-acetyltransferase: assessment of the specificity and the production of baccatin III by in vivo acetylation in E. coli. ACTA ACUST UNITED AC 2006; 13:309-17. [PMID: 16638536 DOI: 10.1016/j.chembiol.2006.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/22/2005] [Accepted: 01/18/2006] [Indexed: 11/30/2022]
Abstract
The 10beta-acetyltransferase on the biosynthetic pathway of the antineoplastic drug Taxol catalyzes the regiospecific transfer of the acetyl group of acetyl-coenzyme A (CoA) to 10-deacetylbaccatin III. We demonstrate that in addition to acetyl group transfer, the overexpressed enzyme also catalyzes the exchange of propionyl and n-butyryl from the corresponding CoA thioester to the hydroxyl group at C10 of the cosubstrate. Also, in vivo studies revealed that E. coli, producing endogenous acetyl-CoA and overexpressing the recombinant acetyltransferase, can convert exogenously supplied 10-deacetylbaccatin III to baccatin III. Potentially, this heterologous in vivo production method in bacteria could be optimized to couple various unnatural acyl-CoA analogs to myriad amino and/or hydroxyl acceptors by acyltransferase catalysis; conceivably, this process could facilitate the preparation of second-generation Taxols.
Collapse
Affiliation(s)
- Catherine Loncaric
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
15
|
Karliga B, Schilling JK, Kingston DGI, Bane S, Ravindra R, Talinli N. Synthesis and Biological Evaluation ofN-(Arylsulfanyl)carbonyl Analogues of Paclitaxel (Taxol). Chem Biodivers 2006; 3:396-404. [PMID: 17193276 DOI: 10.1002/cbdv.200690043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Four new N-(arylsufanyl)carbonyl paclitaxel analogues (2a-d) were prepared from 7-(triethylsilyl)-protected baccatin III (5). Their cytotoxicities against human ovarian (A2780) and prostate cancer (PC3) cell lines, as well as their tubulin-assembly activities, were determined. In these assays, the new compounds showed rather weak activities, one two orders of magnitude below those of paclitaxel (taxol; 1). The known 3'-N-[(thiophen-2-yl)carbonyl] paclitaxel analogue 3 was also prepared. As previously reported, 3 exhibited strongly improved cytotoxicities and tubulin-assembly activities as compared to paclitaxel (1).
Collapse
Affiliation(s)
- Bekir Karliga
- Istanbul Technical University, Faculty of Science and Letters, Chemistry Department, Maslak, TR-34469, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|