1
|
Zhao P, Ji G, Lin R, Zhang L, Li F, Zhang S, Chen Y, Wei W, Wang X. Preparation of milk fat globule membrane ingredients enriched in polar lipids: Composition characterization and digestive properties. J Dairy Sci 2024; 107:4320-4332. [PMID: 38460872 DOI: 10.3168/jds.2023-24462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/11/2024]
Abstract
In this study, milk fat globule membrane (MFGM) ingredients enriched in polar lipids were prepared using membrane filtration, including microfiltration, diafiltration, and ultrafiltration from butter serum powder. Polar lipids (phospholipids, sterols, and gangliosides) in prepared MFGM ingredients were analyzed by 31P nuclear magnetic resonance spectroscopy, GC-MS, and ultra-performance liquid chromatography (UPLC)-MS/MS, respectively. The lipolysis degree and microstructure of MFGM ingredient and soybean lecithin (SL) emulsions during in vitro digestion were also analyzed. Microfiltration showed higher concentration efficiency than ultrafiltration, which increased by 2.16% and 2.73% in phospholipids, respectively. Moreover, diafiltration concentrated more polar lipids (6.39% of phospholipids) than microfiltration. Milk fat globule membrane ingredients had high levels of sphingomyelin (1.27%-1.36%) and ratio of GD3 to GM3 is 9.25- to 9.88-fold. The different lipolysis behaviors between MFGM ingredient emulsions and SL emulsions were correlated with their different polar lipid compositions. Phospholipids from both MFGM ingredients and SL could help maintain the initial structure during the gastric digestion. These results could provide a scientific basis for developing high-polar-lipids food, particularly infant formulas and special functional foods.
Collapse
Affiliation(s)
- Pu Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guozhi Ji
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot 011500, China
| | - Ruixue Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Zhang
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot 011500, China
| | - Feng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuwen Zhang
- Key Laboratory of Agro-Food Processing and Quality Control, Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Yun Chen
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co. Ltd., Huhhot 011500, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Wang Y, Shi J, Xu YJ, Tan CP, Liu Y. The digestion fates of lipids with different unsaturated levels in people with different age groups. Food Chem 2024; 438:137400. [PMID: 38039864 DOI: 10.1016/j.foodchem.2023.137400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 12/03/2023]
Abstract
The digestion behavior of lipids plays a crucial role in their nutritional bioaccessibility, which subsequently impacts human health. This study aims to investigate potential variations in lipid digestion profiles among individuals of different ages, considering the distinct physiological functions of the gastrointestinal tract in infants, aging populations, and healthy young adults. The digestion fates of high oleic peanut oil (HOPO), sunflower oil (SO), and linseed oil (LINO) were investigated using in vitro digestion models representing infants, adults, and elders. Comparatively, lipid digestion proved to be more comprehensive in adults, leading to free fatty acid (FFA) levels of 64.53%, 62.32%, and 57.90% for HOPO, SO, and LINO, respectively. Besides, infants demonstrated propensity to selectively release FFAs with shorter chain lengths and higher saturation levels during the digestion. In addition, in the gastric phase, particle sizes among the elderly were consistently larger than those observed in infants and adults, despite adults generating approximately 15% FFAs within the stomach. In summary, this study enhances our fundamental comprehension of how lipids with varying degrees of unsaturation undergo digestion in diverse age groups.
Collapse
Affiliation(s)
- Yanan Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China; Future Food (Bai Ma) Research Institue, 111 Baima Road, Lishui District, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Kulkarni A, Linderborg KM, Zhao A, Kallio H, Haraldsson GG, Zhang Y, Yang B. Influence of Dietary Triacylglycerol Structure on the Accumulation of Docosahexaenoic Acid [22:6(n-3)] in Organs in a Short-Term Feeding Trial with Mildly Omega-3 Deficient Rats. Mol Nutr Food Res 2024; 68:e2300635. [PMID: 38342587 DOI: 10.1002/mnfr.202300635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/16/2024] [Indexed: 02/13/2024]
Abstract
SCOPE To study the effect of positional distribution of docosahexaenoic acid (DHA) in dietary triacylglycerols (TAG) on the tissue fatty acid content and composition of mildly (n-3) deficient rats. METHODS AND RESULTS In a 5-day feeding trial, mildly (n-3) deficient rats received 360 mg daily structured TAGs: sn-22:6(n-3)-18:0-18:0, sn-18:0-18:0-22:6(n-3), sn-18:0-22:6(n-3)-18:0, or tristearin. A fifth group receives standard (n-3) adequate feed AIN-93G from birth till the end of the trial. The DHA-fed groups show significantly higher DHA levels in the liver and visceral fat compared to the tristearin or normal feed groups showing that the dose and the short feeding period of DHA were sufficient to restore the DHA content in the organs of (n-3) deficient rats. Feeding sn-1 DHA resulted in higher levels of DHA in the liver TAG compared to sn-3 DHA feeding, although the difference did not reach statistical significance. CONCLUSION These findings indicated a possible difference in the tissue accumulation and/or metabolic fate of DHA from the sn-1 and sn-3 positions of TAG.
Collapse
Affiliation(s)
- Amruta Kulkarni
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20520, Finland
| | - Kaisa M Linderborg
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20520, Finland
| | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing, 100083, China
| | - Heikki Kallio
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20520, Finland
| | | | - Yumei Zhang
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing, 100191, China
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20520, Finland
| |
Collapse
|
4
|
Tormási J, Abrankó L. Impact of Grape Seed Powder and Black Tea Brew on Lipid Digestion-An In Vitro Co-Digestion Study with Real Foods. Nutrients 2023; 15:nu15102395. [PMID: 37242278 DOI: 10.3390/nu15102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Effects of two foods with bioactive constituents (black tea brew, BTB and grape seed powder, GSP) on lipid digestibility was studied. Lipolysis inhibitory effect of these foods was examined using two test foods (cream and baked beef) with highly different fatty acid (FA) composition. Digestion simulations were performed either using both gastric and pancreatic lipase, or only with pancreatic lipase according to the Infogest protocol. Lipid digestibility was assessed based on the bioaccessible FAs. Results showed the triacylglycerols containing short- and medium-chain FAs (SCFA and MCFA) are non-preferred substrates for pancreatic lipase; however, this is not characteristic for GL. Our findings suggest that both GSP and BTB primarily affect the lipolysis of SCFAs and MCFAs, because the dispreference of pancreatic lipase towards these substrates was further enhanced as a result of co-digestion. Interestingly, GSP and BTB similarly resulted in significant decrease in lipolysis for cream (containing milk fat having a diverse FA profile), whereas they were ineffective in influencing the digestion of beef fat, having simpler FA profile. It highlights that the characteristics of the dietary fat source of a meal can be a key determinant on the observed extent of lipolysis when co-digested with foods with bioactive constituents.
Collapse
Affiliation(s)
- Judit Tormási
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Villányi Street 29-43, 1118 Budapest, Hungary
| | - László Abrankó
- Department of Food Chemistry and Analytical Chemistry, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences (MATE), Villányi Street 29-43, 1118 Budapest, Hungary
| |
Collapse
|
5
|
Kozlov O, Horáková E, Rademacherová S, Maliňák D, Andrýs R, Prchalová E, Lísa M. Direct Chiral Supercritical Fluid Chromatography-Mass Spectrometry Analysis of Monoacylglycerol and Diacylglycerol Isomers for the Study of Lipase-Catalyzed Hydrolysis of Triacylglycerols. Anal Chem 2023; 95:5109-5116. [PMID: 36893116 DOI: 10.1021/acs.analchem.3c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The fast and selective separation method of intact monoacylglycerol (MG) and diacylglycerol (DG) isomers using chiral supercritical fluid chromatography-mass spectrometry (SFC-MS) was developed and employed to study lipase selectivity in the hydrolysis of triacylglycerols (TGs). The synthesis of 28 enantiomerically pure MG and DG isomers was performed in the first stage using the most commonly occurring fatty acids in biological samples such as palmitic, stearic, oleic, linoleic, linolenic, arachidonic, and docosahexaenoic acids. To develop the SFC separation method, different chromatographic conditions such as column chemistry, mobile phase composition and gradient, flow rate, backpressure, and temperature were carefully assessed. Our SFC-MS method used a chiral column based on a tris(3,5-dimethylphenylcarbamate) derivative of amylose and neat methanol as a mobile phase modifier, which provides baseline separation of all the tested enantiomers in 5 min. This method was used to evaluate hydrolysis selectivity of lipases from porcine pancreas (PPL) and Pseudomonas fluorescens (PFL) using nine TGs differing in acyl chain length (14-22 carbon atoms) and number of double bonds (0-6) and three DG regioisomer/enantiomers as hydrolysis intermediate products. PFL exhibited preference of the fatty acyl hydrolysis from the sn-1 position of TG more pronounced for the substrates with long polyunsaturated acyls, while PPL did not show considerable stereoselectivity to TGs. Conversely, PPL preferred hydrolysis from the sn-1 position of prochiral sn-1,3-DG regioisomer, whereas PFL exhibited no preference. Both lipases showed selectivity for the hydrolysis of outer positions of DG enantiomers. The results show complex reaction kinetics of lipase-catalyzed hydrolysis given by different stereoselectivities for substrates.
Collapse
Affiliation(s)
- Oleksandr Kozlov
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| | - Eliška Horáková
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| | - Sára Rademacherová
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| | - Dávid Maliňák
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| | - Rudolf Andrýs
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| | - Eliška Prchalová
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| | - Miroslav Lísa
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 50003 Hradec Králové, Czech Republic
| |
Collapse
|
6
|
Wang P, Wang Y, Chen C, Fu X. The stability mechanism of Pickering emulsions fabricated by multi-functional amylose-based nanoparticles in a delivery system. Food Funct 2023; 14:2338-2348. [PMID: 36825859 DOI: 10.1039/d2fo02827a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this work, multi-functional amylose-based nanoparticles (OSA-AM-9/VE NPs) were fabricated via simple and sustainable esterification, encapsulation, and co-precipitation processes of amylose (AM), octenyl succinic anhydride (OSA), and vitamin E (VE). These nanoparticles showed a nanometer size of 243.2 nm and a regular spherical shape which contributed to their excellent physical and oxidative stability and the outstanding pH-responsive performance of a Pickering emulsion. Compared with OSA-AM-9 and OSA-AM-9 NPs, the Pickering emulsion stabilized by OSA-AM-9/VE NPs presented higher stability and stronger antioxidant capacity. The delivery system of the OSA-AM-9/VE NP stabilized emulsion could protect fish oil from gastric juice and then was digested to facilitate the absorption of ω-3 polyunsaturated fatty acids in the intestine due to the pH-induced protonation/deprotonation of carboxyl groups in OSA-AM-9/VE NPs.
Collapse
Affiliation(s)
- Pingping Wang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China
| | - Yang Wang
- Logistics Management Center of Huangpu Customs, Guangzhou 510700, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China. .,Guangzhou Institute of Modern Industrial Technology, Nansha, 511458, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| |
Collapse
|
7
|
The digestion of diacylglycerol isomers by gastric and pancreatic lipases and its impact on the metabolic pathways for TAG re-synthesis in enterocytes. Biochimie 2022; 203:106-117. [PMID: 35041857 DOI: 10.1016/j.biochi.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
The specific activities of gastric and pancreatic lipases were measured using triacylglycerols (TAG) from rapeseed oil, purified 1,3-sn-DAG and 1,2(2,3)-sn-DAG produced from this oil, as well as a rapeseed oil enriched with 40% w/w DAG (DAGOIL). Gastric lipase was more active on 1,3-sn-DAG than on 1,2(2,3)-sn-DAG and TAG, whereas pancreatic lipase displayed a reverse selectivity with a higher activity on TAG than on DAG taken as initial substrates. However, in both cases, the highest activities were displayed on DAGOIL. These findings show that DAG mixed with TAG, such as in the course of digestion, is a better substrate for lipases than TAG. The same rapeseed oil acylglycerols were used to investigate intestinal fat absorption in rats with mesenteric lymph duct cannulation. The levels of TAG synthesized in the intestine and total fatty acid concentration in lymph were not different when the rats were fed identical amounts of rapeseed oil TAG, 1,2(2,3)-sn-DAG, 1,3-sn-DAG or DAGOIL. Since the lipolysis of 1,3-sn-DAG by digestive lipases leads to glycerol and not 2-sn-monoacylglycerol (2-sn-MAG) like TAG lipolysis, these results suggest that the re-synthesis of TAG in the enterocytes can entirely occur through the "glycerol-3-phosphate (G3P)" pathway, with the same efficiency as the 2-sn-MAG pathway predominantly involved in the intestinal fat absorption. These findings shed new light on the role played by DAG as intermediate lipolysis products. Depending on their structure, 1,2(2,3)-sn-DAG versus 1,3-sn-DAG, DAG may control the pathway (2-sn-MAG or G3P) by which TAG are re-synthesized in the enterocytes.
Collapse
|
8
|
Infantes-Garcia M, Verkempinck S, Saadi M, Hendrickx M, Grauwet T. Towards understanding the modulation of in vitro gastrointestinal lipolysis kinetics through emulsions with mixed interfaces. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Choi Y, Chang PS. Kinetic modeling of lipase-catalysed hydrolysis of triacylglycerol in a reverse micelle system for the determination of integral stereoselectivity. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02182f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A kinetic model for lipase-catalysed stepwise hydrolysis of triacylglycerol was developed for quantification of integral stereoselectivity.
Collapse
Affiliation(s)
- Yoonseok Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Infantes-Garcia M, Verkempinck S, Guevara-Zambrano J, Hendrickx M, Grauwet T. Development and validation of a rapid method to quantify neutral lipids by NP-HPLC-charged aerosol detector. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Weng J, Lin R, Jiang C, Wei W, Wang X, Jin Q. O/W Emulsion Stabilized by Bovine Milk Phospholipid-Protein Nanoemulsions: Preparation, Stability, and In Vitro Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5003-5012. [PMID: 33886291 DOI: 10.1021/acs.jafc.0c05617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study aims to prepare a stable oil-in-water (O/W) emulsion with droplets of approximately 3-5 μm and a structured phospholipid (PL)-protein membrane that is similar to human milk fat globules. A nanoemulsion with an average droplet size of 200 nm prepared with bovine milk PL-protein, a milk fat globule membrane (MFGM)-rich ingredient, was used as an emulsifier to form an O/W emulsion with an average droplet size of 3.96 μm. Stable O/W emulsions were formed with a low concentration (1 wt %) of the MFGM-rich ingredient. The nanoemulsion was adsorbed at the oil-water interface. The O/W emulsions stored at 4 °C did not show structural damage upon 7 days of storage. The deformation or partial deformation of nanoemulsion droplets attached to lipid droplets may contribute to the physical stability of the emulsion. In vitro digestion of the O/W emulsion showed a low lipolysis degree in gastric digestion, and the final hydrolysis efficiency of the O/W emulsion was 62.74%, which is higher than that of traditional infant formula.
Collapse
Affiliation(s)
- Jiayu Weng
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruixue Lin
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chenyu Jiang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Wei
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Infantes-Garcia MR, Verkempinck SHE, Hendrickx ME, Grauwet T. Kinetic Modeling of In Vitro Small Intestinal Lipid Digestion as Affected by the Emulsion Interfacial Composition and Gastric Prelipolysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4708-4719. [PMID: 33856215 DOI: 10.1021/acs.jafc.1c00432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This research evaluated the impact of the emulsion interfacial composition on in vitro small intestinal lipolysis kinetics with the inclusion of rabbit gastric lipase resulting in a gastric prelipolysis step. O/w emulsions contained 5% triolein (w/w) and 1% (w/w) of the following emulsifiers: sodium taurodeoxycholate, citrus pectin, soy protein isolate, soy lecithin, and tween 80. Emulsions were subjected to static in vitro digestion and diverse lipolysis species quantified via a HPLC-charged aerosol detector. Single-response modeling indicated that the kinetics of lipolysis in the small intestinal phase were impacted by the emulsion particle size at the beginning of this phase. Multiresponse modeling permitted the elucidation of the lipolysis mechanism under in vitro conditions. The final reaction scheme included enzymatic and chemical conversions. The modeling strategies used in this research allowed to gain more insights into the kinetics and mechanism of in vitro lipid digestion.
Collapse
Affiliation(s)
- Marcos R Infantes-Garcia
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - Sarah H E Verkempinck
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - Marc E Hendrickx
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium
| |
Collapse
|
13
|
Choi Y, Park JY, Chang PS. Integral Stereoselectivity of Lipase Based on the Chromatographic Resolution of Enantiomeric/Regioisomeric Diacylglycerols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:325-331. [PMID: 33397094 DOI: 10.1021/acs.jafc.0c07430] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stereoselectivity, a distinctive characteristic of lipase (EC 3.1.1.3), refers to the ability to differentiate between enantiomeric positions (sn-1 and sn-3) in triacylglycerol (TAG). This property has been determined based on the time course of enantiomeric excess of diacylglycerol (DAG) considering several consecutive steps of lipase-catalyzed hydrolysis of TAG; however, this concept is insufficient to represent the true nature of lipases which are capable of hydrolyzing the sn-2 position of TAG under the condition acyl migration occurs. Here, we suggest "integral stereoselectivity" to capture the preference of lipases for all ester groups of both TAG and DAG, as a novel index of the stereochemistry of lipase. To determine integral stereoselectivity, we established an analytical system based on the chromatographic resolution of dioleoylglycerol (DO) enantiomers and regioisomers. DO enantiomers were derivatized with 4-nitrophenyl isocyanate, and subsequently, resolved by chiral-phase high-performance liquid chromatography-ultraviolet. Regioisomers of monooleoylglycerol and DO were analyzed by HPLC with an evaporative light-scattering detector. Time-course analysis of three model lipases involved in the hydrolysis of trioleoylglycerol validated the analytical system designed to determine the integral stereoselectivity. As an accurate indicator of lipase stereochemistry reflecting all hydrolysis steps, integral stereoselectivity can expedite the development of lipases with unique stereochemistry from agricultural sources and their application to the food industry.
Collapse
Affiliation(s)
- Yoonseok Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Infantes-Garcia M, Verkempinck S, Gonzalez-Fuentes P, Hendrickx M, Grauwet T. Lipolysis products formation during in vitro gastric digestion is affected by the emulsion interfacial composition. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106163] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Asensio-Grau A, Calvo-Lerma J, Heredia A, Andrés A. In vitro digestion of salmon: Influence of processing and intestinal conditions on macronutrients digestibility. Food Chem 2020; 342:128387. [PMID: 33097324 DOI: 10.1016/j.foodchem.2020.128387] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/13/2020] [Accepted: 10/10/2020] [Indexed: 01/02/2023]
Abstract
Salmon is the main dietary source of omega-3 lipids and contains high-biological value protein. However, processing techniques could affect macronutrient digestibility. Also, altered intestinal conditions, particularly given in pancreatic insufficiency, could threaten digestibility. This study tested both hypotheses by subjecting raw, marinated and microwave-cooked salmon to static in vitro digestion under healthy (pH 7, bile concentration 10 mM) and altered (pH 6, bile 1 or 10 mM) intestinal conditions with different pancreatin concentrations. In the standard conditions, proteolysis was not affected by processing, but lipolysis decreased in marinated (46%) and raw salmon (57%) compared to the cooked matrix (67%). In altered conditions, proteolysis and lipolysis decreased to different extents depending on the treatment. Overall, processing affected proteolysis the most (f-ratio = 5.86), while intestinal conditions were the major determinants of lipolysis (f-ratio = 58.01). This study could set the ground to establish dietary recommendations of salmon for specific population groups.
Collapse
Affiliation(s)
- Andrea Asensio-Grau
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain.
| | - Joaquim Calvo-Lerma
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| | - Ana Heredia
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| | - Ana Andrés
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
| |
Collapse
|
16
|
Enzymatic and chemical conversions taking place during in vitro gastric lipid digestion: The effect of emulsion droplet size behavior. Food Chem 2020; 326:126895. [DOI: 10.1016/j.foodchem.2020.126895] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
|
17
|
Xi Y, Zou Y, Luo Z, Qi L, Lu X. pH-Responsive Emulsions with β-Cyclodextrin/Vitamin E Assembled Shells for Controlled Delivery of Polyunsaturated Fatty Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11931-11941. [PMID: 31589419 DOI: 10.1021/acs.jafc.9b04168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipid-based delivery systems (LBDSs) are widely applied in pharmaceuticals and health care because of the increased bioavailability of lipophilic components when they are coadministered with high-fat meals. However, how to accurately control their in vivo release and stability is still challenging. Here, after introducing the simple esterification and coprecipitation, we created the dual-functional composite ODS-β-CD-VE by the coassembly of β-cyclodextrin (β-CD), octadecenyl succinic anhydride (ODSA), and vitamin E (VE). The resulting dual-functional particle presented a uniform sheetlike shape and nanometer size. In addition, its chemical structure was clarified in detail via nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Benefiting from the antioxygenation of VE, lipid oxidation in the ODS-β-CD-VE-stabilized Pickering emulsion was effectively inhibited. Meanwhile, pH-induced protonation/deprotonation of carboxyl groups guaranteed that the emulsions kept steady at pH ≤4 but were unsteady under neutral conditions. In this way, the lipids contained in the emulsion were protected from gastric juice and then digested and accurately released as n-3 polyunsaturated fatty acids (PUFA) in the simulated intestine environment. This strategy sheds some light on the rational and efficient construction of LBDSs for nutrient supplements and even pharmaceuticals in a living digestive tract.
Collapse
Affiliation(s)
- Yongkang Xi
- School of Food Science and Technology , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Yuxiao Zou
- Sericultural & Agri-Food Research Institute GAAS , Guangdong Academy of Agricultural Sciences , Guangzhou 510610 , People's Republic of China
| | - Zhigang Luo
- School of Food Science and Technology , South China University of Technology , Guangzhou 510640 , People's Republic of China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , Guangzhou 510640 , People's Republic of China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Liang Qi
- School of Food Science and Technology , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Xuanxuan Lu
- Department of Food Science , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| |
Collapse
|
18
|
Linderborg KM, Kulkarni A, Zhao A, Zhang J, Kallio H, Magnusson JD, Haraldsson GG, Zhang Y, Yang B. Bioavailability of docosahexaenoic acid 22:6(n-3) from enantiopure triacylglycerols and their regioisomeric counterpart in rats. Food Chem 2019; 283:381-389. [PMID: 30722887 DOI: 10.1016/j.foodchem.2018.12.130] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 01/14/2023]
Abstract
Lack of synthetic enantiospecific triacylglycerols (TAGs) has hindered our understanding of the impact of TAG structure on the absorption and metabolic fate of fatty acids (FAs). In a five-day feeding trial with mildly (n-3) deficient rats, the bioavailability of docosahexaenoic acid [22:6(n-3), DHA] and stearic acid (18:0) from the two different enantiomers of TAG: sn-22:6(n-3)-18:0-18:0 and sn-18:0-18:0-22:6(n-3), and their regioisomeric TAG: sn-18:0-22:6(n-3)-18:0 was compared. Less secretion of fecal DHA was detected from the sn-2 position compared with the sn-1 and sn-3 positions, but no difference was found in DHA content of the fasting plasma or in the weight of the body or organs. 18:0 was lost to feces mainly as cleaved from the primary positions but also as glycerol-bound. The 5-day intervention in rats was long enough to modify the fatty acid profile of plasma phospholipids.
Collapse
Affiliation(s)
- Kaisa M Linderborg
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Amruta Kulkarni
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Ai Zhao
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jian Zhang
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | | | | | - Yumei Zhang
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing, China.
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland.
| |
Collapse
|
19
|
Kamoun J, Rahier R, Sellami M, Koubaa I, Mansuelle P, Lebrun R, Berlioz-Barbier A, Fiore M, Alvarez K, Abousalham A, Carrière F, Aloulou A. Identification of a new natural gastric lipase inhibitor from star anise. Food Funct 2019; 10:469-478. [PMID: 30632597 DOI: 10.1039/c8fo02009d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The identification and isolation of bioactive compounds are of great interest in the drug delivery field, despite being a difficult task. We describe here an innovative strategy for the identification of a new gastric lipase inhibitor from star anise for the treatment of obesity. After plant screening assays for gastric lipase inhibition, star anise was selected and investigated by bioactivity guided fractionation. MALDI-TOF mass spectrometry and peptide mass fingerprinting allowed the detection of an inhibitor covalently bound to the catalytic serine of gastric lipase. A mass-directed screening approach using UPLC-HRMS and accurate mass determination searching identified the flavonoid myricitrin-5-methyl ether (M5ME) as a lipase inhibitor. The inhibitory activity was rationalized based on molecular docking, showing that M5ME is susceptible to nucleophilic attack by gastric lipase. Overall, our data suggest that M5ME may be considered as a potential candidate for future application as a gastric lipase inhibitor for the treatment of obesity.
Collapse
Affiliation(s)
- Jannet Kamoun
- University of Sfax, National School of Engineering of Sfax, Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Sfax, Tunisia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lipids in the Stomach – Implications for the Evaluation of Food Effects on Oral Drug Absorption. Pharm Res 2018; 35:55. [DOI: 10.1007/s11095-017-2289-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
|
21
|
Abstract
The digestion, absorption and utilisation of dietary triglycerides are controlled by gut hormones, released from enteroendocrine cells along the length of the gastrointestinal tract. Major players in the detection of ingested lipids are the free fatty acid receptors FFA1 and FFA4, which are highly expressed on enteroendocrine cells. These receptors are activated when free fatty acids (FFA) are absorbed across the intestinal epithelium, and provide a dynamic hormonal signal indicating that lipids are arriving in the bloodstream from the gut. This review addresses our current knowledge of how ingested triglycerides modulate gut hormone release via FFA1 and FFA4.
Collapse
|
22
|
El Alaoui M, Soulère L, Noiriel A, Queneau Y, Abousalham A. α-Eleostearic acid-containing triglycerides for a continuous assay to determine lipase sn -1 and sn -3 regio-preference. Chem Phys Lipids 2017. [DOI: 10.1016/j.chemphyslip.2017.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Dening TJ, Joyce P, Rao S, Thomas N, Prestidge CA. Nanostructured Montmorillonite Clay for Controlling the Lipase-Mediated Digestion of Medium Chain Triglycerides. ACS APPLIED MATERIALS & INTERFACES 2016; 8:32732-32742. [PMID: 27934188 DOI: 10.1021/acsami.6b13599] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Biocompatible lipid hybrid particles composed of montmorillonite and medium chain triglycerides were engineered for the first time by spray drying oil-in-water emulsions stabilized by montmorillonite platelets to form montmorillonite-lipid hybrid (MLH) microparticles containing up to 75% w/w lipid. In vitro lipolysis studies under simulated intestinal conditions indicated that the specific porous nanoarchitecture and surface chemistry of MLH particles significantly increased the rate (>10-fold) and extent of lipase-mediated digestion compared to that of coarse and homogenized submicrometer triglyceride emulsions. Proton nuclear magnetic resonance studies verified the rapid and enhanced production of fatty acids for MLH particles; these are electrostatically repelled by the negatively charged montmorillonite platelet faces and avoid the "interfacial poisoning" caused by incomplete digestion that retards lipid droplet digestion. MLH particles are a novel biomaterial and encapsulation system that optimize lipase enzyme efficiency and have excellent potential as a smart delivery system for lipophilic biomolecules owing to their exceptional physicochemical and biologically active properties. These particles can be readily fabricated with varying lipid loads and thus may be tailored to optimize the solubilization of specific bioactive molecules requiring reformulation.
Collapse
Affiliation(s)
- Tahnee J Dening
- School of Pharmacy and Medical Sciences, University of South Australia , City East Campus, Adelaide, South Australia 5001, Australia
| | - Paul Joyce
- Future Industries Institute, University of South Australia , Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Shasha Rao
- School of Pharmacy and Medical Sciences, University of South Australia , City East Campus, Adelaide, South Australia 5001, Australia
| | - Nicky Thomas
- School of Pharmacy and Medical Sciences, University of South Australia , City East Campus, Adelaide, South Australia 5001, Australia
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia , City East Campus, Adelaide, South Australia 5001, Australia
| |
Collapse
|
24
|
Sams L, Paume J, Giallo J, Carrière F. Relevant pH and lipase for in vitro models of gastric digestion. Food Funct 2016; 7:30-45. [PMID: 26527368 DOI: 10.1039/c5fo00930h] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of in vitro digestion models relies on the availability of in vivo data such as digestive enzyme levels and pH values recorded in the course of meal digestion. The variations of these parameters along the GI tract are important for designing dynamic digestion models but also static models for which the choice of representative conditions of the gastric and intestinal conditions is critical. Simulating gastric digestion with a static model and a single set of parameters is particularly challenging because the variations in pH and enzyme concentration occurring in the stomach are much broader than those occurring in the small intestine. A review of the literature on this topic reveals that most models of gastric digestion use very low pH values that are not representative of the fed conditions. This is illustrated here by showing the variations in gastric pH as a function of meal gastric emptying instead of time. This representation highlights those pH values that are the most relevant for testing meal digestion in the stomach. Gastric lipolysis is still largely ignored or is performed with microbial lipases. In vivo data on gastric lipase and lipolysis have however been collected in humans and dogs during test meals. The biochemical characterization of gastric lipase has shown that this enzyme is rather unique among lipases: (i) stability and activity in the pH range 2 to 7 with an optimum at pH 4-5.4; (ii) high tensioactivity that allows resistance to bile salts and penetration into phospholipid layers covering TAG droplets; (iii) sn-3 stereospecificity for TAG hydrolysis; and (iv) resistance to pepsin. Most of these properties have been known for more than two decades and should provide a rational basis for the replacement of gastric lipase by other lipases when gastric lipase is not available.
Collapse
Affiliation(s)
- Laura Sams
- CNRS, Aix Marseille Université, Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France. and GERME S.A., Technopôle Marseille Provence Château-Gombert, ZAC la Baronne, 12 Rue Marc Donadille, 13013 Marseille, France
| | - Julie Paume
- GERME S.A., Technopôle Marseille Provence Château-Gombert, ZAC la Baronne, 12 Rue Marc Donadille, 13013 Marseille, France
| | - Jacqueline Giallo
- GERME S.A., Technopôle Marseille Provence Château-Gombert, ZAC la Baronne, 12 Rue Marc Donadille, 13013 Marseille, France
| | - Frédéric Carrière
- CNRS, Aix Marseille Université, Enzymologie Interfaciale et Physiologie de la Lipolyse UMR7282, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| |
Collapse
|
25
|
Holder pasteurization impacts the proteolysis, lipolysis and disintegration of human milk under in vitro dynamic term newborn digestion. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.11.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Effect of preduodenal lipase inhibition in suckling rats on dietary octanoic acid (C8:0) gastric absorption and plasma octanoylated ghrelin concentration. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1111-1120. [DOI: 10.1016/j.bbalip.2016.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 02/06/2023]
|
27
|
Aloulou A, Schué M, Puccinelli D, Milano S, Delchambre C, Leblond Y, Laugier R, Carrière F. Yarrowia lipolytica Lipase 2 Is Stable and Highly Active in Test Meals and Increases Fat Absorption in an Animal Model of Pancreatic Exocrine Insufficiency. Gastroenterology 2015; 149:1910-1919.e5. [PMID: 26327131 DOI: 10.1053/j.gastro.2015.08.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 07/10/2015] [Accepted: 08/20/2015] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Pancreatic exocrine insufficiency (PEI) reduces pancreatic secretion of digestive enzymes, including lipases. Oral pancreatic enzyme replacement therapy (PERT) with pancreatin produces unsatisfactory results. The lipase 2 produced by the yeast Yarrowia lipolytica (YLLIP2; GenBank: AJ012632) might be used in PERT. We investigated its ability to digest triglycerides in a test meal and its efficacy in reducing fecal fat in an animal model of PEI. METHODS YLLIP2 was produced by genetically engineered Y lipolytica and purified from culture media. YLLIP2 or other gastric (LIPF) and pancreatic (PNLIPD) lipases were added to a meal paste containing dietary triglycerides, at a range of pH values (pH 2-7), with and without pepsin or human bile and incubated at 37°C. We collected samples at various time points and measured lipase activities and stabilities. To create an animal model of PEI, steatorrhea was induced by embolization of the exocrine pancreas gland and pancreatic duct ligation in minipigs. The animals were given YLLIP2 (1, 4, 8, 40, or 80 mg/d) or pancreatin (100,000 US Pharmacopeia lipase units/d, controls) for 9 days. We then collected stool samples, measured fat levels, and calculated coefficient of fat absorption (CFA) values. RESULTS YLLIP2 was highly stable and poorly degraded by pepsin, and had the highest activity of all lipases tested on meal triglyceride at pH 4-7 (pH 6 with bile: 94 ± 34 U/mg; pH 4 without bile: 43 ± 13 U/mg). Only gastric lipase was active and stable at pH 3, whereas YLLIP2 was sensitive to pepsin hydrolysis after pH inactivation. From in vitro test meal experiments, the lipase activity of YLLIP2 (10 mg) was estimated to be equivalent to that of pancreatin (1200 mg; 100,000 US Pharmacopeia units) at pH 6. In PEI minipigs, CFA values increased from 60.1% ± 9.3% before surgery to 90.5% ± 3.2% after administration of 1200 mg pancreatin (P < .05); CFA values increased to a range of 84.6% ± 3.0% to 90.0% ± 3.8% after administration of 4-80 mg YLLIP2 (P < .05). CONCLUSIONS The yeast lipase YLLIP2 is stable and has high levels of activity against test meal triglycerides in a large pH range, with and without bile. Oral administration of milligram amounts of YLLIP2 significantly increased CFA values, similar to that of 1.2 g pancreatin, in a minipig model of PEI.
Collapse
Affiliation(s)
- Ahmed Aloulou
- CNRS-Aix-Marseille Université-UMR7282 Enzymology at Interfaces and Physiology of Lipolysis, Marseille, France; Laboratoires Mayoly Spindler SAS, Chatou, France
| | - Mathieu Schué
- CNRS-Aix-Marseille Université-UMR7282 Enzymology at Interfaces and Physiology of Lipolysis, Marseille, France; Proteabio Europe SAS, Langlade, France
| | | | | | | | - Yves Leblond
- Laboratoires Mayoly Spindler SAS, Chatou, France
| | - René Laugier
- CNRS-Aix-Marseille Université-UMR7282 Enzymology at Interfaces and Physiology of Lipolysis, Marseille, France; AP-HM, Gastroenterology Department, La Timone Hospital, 13005 Marseille, France
| | - Frédéric Carrière
- CNRS-Aix-Marseille Université-UMR7282 Enzymology at Interfaces and Physiology of Lipolysis, Marseille, France.
| |
Collapse
|
28
|
Lemarié F, Beauchamp E, Legrand P, Rioux V. Revisiting the metabolism and physiological functions of caprylic acid (C8:0) with special focus on ghrelin octanoylation. Biochimie 2015; 120:40-8. [PMID: 26253695 DOI: 10.1016/j.biochi.2015.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/01/2015] [Indexed: 12/22/2022]
Abstract
Caprylic acid (octanoic acid, C8:0) belongs to the class of medium-chain saturated fatty acids (MCFAs). Dairy products and specific oils like coconut oil are natural sources of dietary C8:0 but higher intakes of this fatty acid can be provided with MCT (Medium-Chain Triglycerides) oil that consists in 75% of C8:0. MCFAs have physical and metabolic properties that are distinct from those of long-chain saturated fatty acids (LCFAs ≥ 12 carbons). Beneficial physiological effects of dietary C8:0 have been studied for a long time and MCT oil has been used as a special energy source for patients suffering from pancreatic insufficiency, impaired lymphatic chylomicron transport and fat malabsorption. More recently, caprylic acid was also shown to acylate ghrelin, the only known peptide hormone with an orexigenic effect. Through its covalent binding to the ghrelin peptide, caprylic acid exhibits an emerging and specific role in modulating physiological functions themselves regulated by octanoylated ghrelin. Dietary caprylic acid is therefore now suspected to provide the ghrelin O-acyltransferase (GOAT) enzyme with octanoyl-CoA co-substrates necessary for the acyl modification of ghrelin. This review tries to highlight the discrepancy between the formerly described beneficial effects of dietary MCFAs on body weight loss and the C8:0 newly reported effect on appetite stimulation via ghrelin octanoylation. The subsequent aim of this review is to demonstrate the relevance of carrying out further studies to better understand the physiological functions of this particular fatty acid.
Collapse
Affiliation(s)
- Fanny Lemarié
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus Ouest, INRA USC 1378, Rennes, France
| | - Erwan Beauchamp
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus Ouest, INRA USC 1378, Rennes, France
| | - Philippe Legrand
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus Ouest, INRA USC 1378, Rennes, France
| | - Vincent Rioux
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus Ouest, INRA USC 1378, Rennes, France.
| |
Collapse
|
29
|
Eichmann TO, Lass A. DAG tales: the multiple faces of diacylglycerol--stereochemistry, metabolism, and signaling. Cell Mol Life Sci 2015; 72:3931-52. [PMID: 26153463 PMCID: PMC4575688 DOI: 10.1007/s00018-015-1982-3] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/17/2015] [Accepted: 06/29/2015] [Indexed: 12/31/2022]
Abstract
The neutral lipids diacylglycerols (DAGs) are involved in a plethora of metabolic pathways. They function as components of cellular membranes, as building blocks for glycero(phospho)lipids, and as lipid second messengers. Considering their central role in multiple metabolic processes and signaling pathways, cellular DAG levels require a tight regulation to ensure a constant and controlled availability. Interestingly, DAG species are versatile in their chemical structure. Besides the different fatty acid species esterified to the glycerol backbone, DAGs can occur in three different stereo/regioisoforms, each with unique biological properties. Recent scientific advances have revealed that DAG metabolizing enzymes generate and distinguish different DAG isoforms, and that only one DAG isoform holds signaling properties. Herein, we review the current knowledge of DAG stereochemistry and their impact on cellular metabolism and signaling. Further, we describe intracellular DAG turnover and its stereochemistry in a 3-pool model to illustrate the spatial and stereochemical separation and hereby the diversity of cellular DAG metabolism.
Collapse
Affiliation(s)
- Thomas Oliver Eichmann
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010, Graz, Austria.
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010, Graz, Austria.
| |
Collapse
|
30
|
Camacho-Ruiz MDLA, Mateos-Díaz JC, Carrière F, Rodriguez JA. A broad pH range indicator-based spectrophotometric assay for true lipases using tributyrin and tricaprylin. J Lipid Res 2015; 56:1057-67. [PMID: 25748441 DOI: 10.1194/jlr.d052837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Indexed: 11/20/2022] Open
Abstract
A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples.
Collapse
Affiliation(s)
| | | | - Frédéric Carrière
- CNRS, Aix-Marseille Université, UMR 7282 Enzymologie Interfaciale et Physiologie de la Lipolyse, 13402 Marseille Cedex 20, France
| | - Jorge A Rodriguez
- Biotecnología Industrial, CIATEJ A.C., 44270 Guadalajara, Jalisco, Mexico
| |
Collapse
|
31
|
Bourlieu C, Ménard O, De La Chevasnerie A, Sams L, Rousseau F, Madec MN, Robert B, Deglaire A, Pezennec S, Bouhallab S, Carrière F, Dupont D. The structure of infant formulas impacts their lipolysis, proteolysis and disintegration during in vitro gastric digestion. Food Chem 2015; 182:224-35. [PMID: 25842331 DOI: 10.1016/j.foodchem.2015.03.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/27/2015] [Accepted: 03/01/2015] [Indexed: 10/23/2022]
Abstract
Milk lipids supply most of the calories necessary for newborn growth in maternal milk or infant formulas. The chemical composition of infant formulas has been optimized but not the structure of the emulsion. There is still a major difference between the native emulsions of milk fat globules and processed submicronic emulsions in infant formulas. This difference may modify the kinetics of digestion of emulsions in newborns and influence lipid metabolism. To check this, semi-dynamic gastric in vitro digestions were conducted on three matrices: a standardized milk emulsion containing native milk fat globules referred to as minimally-processed emulsion and two processed model infant formulas (homogenized or homogenized/pasteurized). Gastric conditions mimicked those reported in newborns. The minimally-processed emulsion was lipolyzed and proteolyzed slower than processed formulas. The difference in initial structure persisted during digestion. The surface of the droplets was the key parameter to control gastric lipolysis kinetics, the pattern of released fatty acids and proteolysis by faster hydrolysis of adsorbed proteins.
Collapse
Affiliation(s)
| | - Olivia Ménard
- INRA-UMR 1253 STLO, France; Agrocampus Ouest, France
| | | | - Laura Sams
- CNRS, Aix Marseille Université, UMR 7282 EIPL, France; GERME S.A., France
| | | | | | - Benoît Robert
- INRA-UMR 1253 STLO, France; Agrocampus Ouest, France
| | | | | | | | | | - Didier Dupont
- INRA-UMR 1253 STLO, France; Agrocampus Ouest, France
| |
Collapse
|
32
|
Beppu F, Konno K, Kawamatsu T, Nagai T, Yoshinaga K, Mizobe H, Kojima K, Watanabe H, Gotoh N. Comparison of catabolic rates of
13
C‐labeled palmitic acid bound to the alpha and beta positions of triacylglycerol using CO
2
expired from mice. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201400326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fumiaki Beppu
- Department of Food Science and TechnologyTokyo University of Marine Science and Technology4‐5‐7 KonanMinato‐kuTokyo108‐8477Japan
| | - Kaoru Konno
- Department of Food Science and TechnologyTokyo University of Marine Science and Technology4‐5‐7 KonanMinato‐kuTokyo108‐8477Japan
| | - Takashi Kawamatsu
- Department of Food Science and TechnologyTokyo University of Marine Science and Technology4‐5‐7 KonanMinato‐kuTokyo108‐8477Japan
| | - Toshiharu Nagai
- Tsukishima Foods Industry Co. Ltd.3‐17‐9Higashi KasaiEdogawa‐kuTokyo134‐8520Japan
| | - Kazuaki Yoshinaga
- Tsukishima Foods Industry Co. Ltd.3‐17‐9Higashi KasaiEdogawa‐kuTokyo134‐8520Japan
| | - Hoyo Mizobe
- Tsukishima Foods Industry Co. Ltd.3‐17‐9Higashi KasaiEdogawa‐kuTokyo134‐8520Japan
| | - Koichi Kojima
- Tsukishima Foods Industry Co. Ltd.3‐17‐9Higashi KasaiEdogawa‐kuTokyo134‐8520Japan
| | - Hiroyuki Watanabe
- Department of Health ScienceUniversity of Kochi2751‐1 IkeKochi‐shiKochi781‐0111Japan
| | - Naohiro Gotoh
- Department of Food Science and TechnologyTokyo University of Marine Science and Technology4‐5‐7 KonanMinato‐kuTokyo108‐8477Japan
| |
Collapse
|
33
|
Bakala-N'Goma JC, Williams HD, Sassene PJ, Kleberg K, Calderone M, Jannin V, Igonin A, Partheil A, Marchaud D, Jule E, Vertommen J, Maio M, Blundell R, Benameur H, Müllertz A, Pouton CW, Porter CJH, Carrière F. Toward the establishment of standardized in vitro tests for lipid-based formulations. 5. Lipolysis of representative formulations by gastric lipase. Pharm Res 2014; 32:1279-87. [PMID: 25288015 DOI: 10.1007/s11095-014-1532-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/24/2014] [Indexed: 01/14/2023]
Abstract
PURPOSE Lipid-based formulations (LBF) are substrates for digestive lipases and digestion can significantly alter their properties and potential to support drug absorption. LBFs have been widely examined for their behaviour in the presence of pancreatic enzymes. Here, the impact of gastric lipase on the digestion of representative formulations from the Lipid Formulation Classification System has been investigated. METHODS The pHstat technique was used to measure the lipolysis by recombinant dog gastric lipase (rDGL) of eight LBFs containing either medium (MC) or long (LC) chain triglycerides and a range of surfactants, at various pH values [1.5 to 7] representative of gastric and small intestine contents under both fasting and fed conditions. RESULTS All LBFs were hydrolyzed by rDGL. The highest specific activities were measured at pH 4 with the type II and IIIA MC formulations that contained Tween®85 or Cremophor EL respectively. The maximum activity on LC formulations was recorded at pH 5 for the type IIIA-LC formulation. Direct measurement of LBF lipolysis using the pHstat, however, was limited by poor LC fatty acid ionization at low pH. CONCLUSIONS Since gastric lipase initiates lipid digestion in the stomach, remains active in the intestine and acts on all representative LBFs, its implementation in future standardized in vitro assays may be beneficial. At this stage, however, routine use remains technically challenging.
Collapse
Affiliation(s)
- Jean-Claude Bakala-N'Goma
- CNRS, Aix Marseille Université, UMR7282 Enzymologie Interfaciale et de Physiologie de la Lipolyse, 31 Chemin Joseph-Aiguier, 13402, Marseille cedex 20, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tan A, Colliat-Dangus P, Whitby CP, Prestidge CA. Controlling the enzymatic digestion of lipids using hybrid nanostructured materials. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15363-71. [PMID: 25116477 DOI: 10.1021/am5038577] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Solid nanoparticle-lipid hybrids have been engineered by using spray drying to assemble monodisperse hydrophilic silica nanoparticles and submicron lipid (triglyceride) emulsions together into composite microparticles, which have specific activity toward enzymes. The influence of silica particle size (100-1000 nm) and emulsifier type (anionic and cationic) on the three-dimensional structure of the composite particles was investigated. The nanostructure of the hybrid particles, which is controlled by the size of the voids between the closely packed silica particles, plays a critical role in lipase action and hence lipid digestion kinetics. Confining lipid droplets within the nanostructured silica aggregates led to 2- to 15-fold enhanced rate of lipolysis in comparison with dispersed coarse oil droplets. The composite particles were tailored to enhance, retain or sustain the lipolysis kinetics of submicron lipid emulsions. The presence of repulsive nanoparticle-droplet interactions favored aqueous redispersion and fast lipolysis of the hybrid composite materials, while attractive interactions hindered redispersion and delayed lipolysis of the confined lipid droplets. Such hybrid nanomaterials can be exploited to control the gastrointestinal enzymatic action and promisingly form the basis for the next generation of foods and medicines.
Collapse
Affiliation(s)
- Angel Tan
- Ian Wark Research Institute, University of South Australia , Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | | | | | | |
Collapse
|
35
|
Brígida AI, Amaral PF, Coelho MA, Gonçalves LR. Lipase from Yarrowia lipolytica: Production, characterization and application as an industrial biocatalyst. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.11.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
In vitro digestion testing of lipid-based delivery systems: Calcium ions combine with fatty acids liberated from triglyceride rich lipid solutions to form soaps and reduce the solubilization capacity of colloidal digestion products. Int J Pharm 2013. [DOI: 10.1016/j.ijpharm.2012.11.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Point V, Malla RK, Diomande S, Martin BP, Delorme V, Carriere F, Canaan S, Rath NP, Spilling CD, Cavalier JF. Synthesis and kinetic evaluation of cyclophostin and cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases. J Med Chem 2012; 55:10204-19. [PMID: 23095026 DOI: 10.1021/jm301216x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new series of customizable diastereomeric cis- and trans-monocyclic enol-phosphonate analogs to Cyclophostin and Cyclipostins were synthesized. Their potencies and mechanisms of inhibition toward six representative lipolytic enzymes belonging to distinct lipase families were examined. With mammalian gastric and pancreatic lipases no inhibition occurred with any of the compounds tested. Conversely, Fusarium solani Cutinase and lipases from Mycobacterium tuberculosis (Rv0183 and LipY) were all fully inactivated. The best inhibitors displayed a cis conformation (H and OMe) and exhibited higher inhibitory activities than the lipase inhibitor Orlistat toward the same enzymes. Our results have revealed that chemical group at the γ-carbon of the phosphonate ring strongly impacts the inhibitory efficiency, leading to a significant improvement in selectivity toward a target lipase over another. The powerful and selective inhibition of microbial (fungal and mycobacterial) lipases suggests that these seven-membered monocyclic enol-phosphonates should provide useful leads for the development of novel and highly selective antimicrobial agents.
Collapse
Affiliation(s)
- Vanessa Point
- CNRS - Aix-Marseille Université , Enzymologie Interfaciale et Physiologie de la Lipolyse, UMR 7282, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Eichmann TO, Kumari M, Haas JT, Farese RV, Zimmermann R, Lass A, Zechner R. Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J Biol Chem 2012; 287:41446-57. [PMID: 23066022 DOI: 10.1074/jbc.m112.400416] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Adipose triglyceride lipase (ATGL) is rate-limiting for the initial step of triacylglycerol (TAG) hydrolysis, generating diacylglycerol (DAG) and fatty acids. DAG exists in three stereochemical isoforms. Here we show that ATGL exhibits a strong preference for the hydrolysis of long-chain fatty acid esters at the sn-2 position of the glycerol backbone. The selectivity of ATGL broadens to the sn-1 position upon stimulation of the enzyme by its co-activator CGI-58. sn-1,3 DAG is the preferred substrate for the consecutive hydrolysis by hormone-sensitive lipase. Interestingly, diacylglycerol-O-acyltransferase 2, present at the endoplasmic reticulum and on lipid droplets, preferentially esterifies sn-1,3 DAG. This suggests that ATGL and diacylglycerol-O-acyltransferase 2 act coordinately in the hydrolysis/re-esterification cycle of TAGs on lipid droplets. Because ATGL preferentially generates sn-1,3 and sn-2,3, it suggests that TAG-derived DAG cannot directly enter phospholipid synthesis or activate protein kinase C without prior isomerization.
Collapse
Affiliation(s)
- Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
39
|
Understanding the lipid-digestion processes in the GI tract before designing lipid-based drug-delivery systems. Ther Deliv 2012; 3:105-24. [PMID: 22833936 DOI: 10.4155/tde.11.138] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many of the compounds present in lipid-based drug-delivery systems are esters, such as acylglycerols, phospholipids, polyethyleneglycol mono- and di-esters and polysorbate, which can be hydrolyzed by the various lipolytic enzymes present in the GI tract. Lipolysis of these compounds, along with dietary fats, affects the solubility, dispersion and bioavailibity of poorly water-soluble drugs. Pharmaceutical scientists have been taking a new interest in fat digestion in this context, and several studies presenting in vitro gastrointestinal lipolysis models have been published. In most models, it is generally assumed that pancreatic lipase is the main enzyme involved in the gastrointestinal lipolysis of lipid formulations. It was established, however, that gastric lipase, pancreatic carboxyl ester hydrolaze and pancreatic lipase-related protein 2 are the major players involved in the lipolysis of lipid excipients containing acylglycerols and polyethyleneglycol esters. These findings have shown that the lipolysis of lipid excipients may actually start in the stomach and involve several lipolytic enzymes. These findings should therefore be taken into account when testing in vitro the dispersion and bioavailability of poorly water-soluble drugs formulated with lipids. In this review, we present the latest data available about the lipolytic enzymes involved in gastrointestinal lipolysis and suggest tracks for designing physiologically relevant in vitro digestion models.
Collapse
|
40
|
Helbig A, Silletti E, Timmerman E, Hamer RJ, Gruppen H. In vitro study of intestinal lipolysis using pH-stat and gas chromatography. Food Hydrocoll 2012. [DOI: 10.1016/j.foodhyd.2011.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Tan A, Martin A, Nguyen TH, Boyd BJ, Prestidge CA. Hybrid Nanomaterials that Mimic the Food Effect: Controlling Enzymatic Digestion for Enhanced Oral Drug Absorption. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200409] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Hybrid Nanomaterials that Mimic the Food Effect: Controlling Enzymatic Digestion for Enhanced Oral Drug Absorption. Angew Chem Int Ed Engl 2012; 51:5475-9. [DOI: 10.1002/anie.201200409] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/06/2012] [Indexed: 11/07/2022]
|
43
|
Couëdelo L, Vaysse C, Vaique E, Guy A, Gosse I, Durand T, Pinet S, Cansell M, Combe N. The fraction of α-linolenic acid present in the sn-2 position of structured triacylglycerols decreases in lymph chylomicrons and plasma triacylglycerols during the course of lipid absorption in rats. J Nutr 2012; 142:70-5. [PMID: 22131546 DOI: 10.3945/jn.111.146290] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Little is known about the ability of α-linolenic acid (Ln) to remain in the sn-2 position of TG during the absorption process. The goal of this study was to determine the Ln distribution in the lymph (Study 1) and plasma (Study 2) TG of rats fed a single i.g. load of structured TG [300 mg/rat of either oleic acid (O)/Ln/O TG (OLnO) or Ln/O/O TG (LnOO), n = 7 rats]. In an early fraction (3-4 h) of lymph (OLnO group; 100% Ln in the sn-2 position), 46 ± 2% Ln was maintained in this position in lymph TG. There was even less (29 ± 6%) in the last fraction (7-24 h) (P < 0.05). Ln was also found (9 ± 3%) in the sn-2 position of lymph TG in the LnOO group. The Ln content in lymph phospholipids was twice as high in rats when they were fed LnOO (4.2 ± 0.1%) than OLnO (2.3 ± 0.2%) (P < 0.005). Six hours postprandially (Study 2), 21 ± 3% of the Ln incorporated into plasma TG was located in the sn-2 position in the OLnO group compared to 13 ± 2% in the LnOO group (P < 0.001). Overall, these results indicate that the amount of Ln that moved from the sn-2 position of structured TG to the sn-1(3) position of lymph TG increased during absorption. This may account for a substantial hydrolysis of the 2-monolinolenylglycerols in enterocytes, leading to the intramolecular redistribution of Ln in lymph TG and, consequently, in plasma TG.
Collapse
Affiliation(s)
- Leslie Couëdelo
- ITERG, Unité de Nutrition, Métabolisme et Santé, Talence, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mendoza LD, Rodriguez JA, Leclaire J, Buono G, Fotiadu F, Carrière F, Abousalham A. An ultraviolet spectrophotometric assay for the screening of sn-2-specific lipases using 1,3-O-dioleoyl-2-O-α-eleostearoyl-sn-glycerol as substrate. J Lipid Res 2012; 53:185-94. [PMID: 22114038 PMCID: PMC3243475 DOI: 10.1194/jlr.d019489] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 10/14/2011] [Indexed: 11/20/2022] Open
Abstract
In the present study, we propose a continuous assay for the screening of sn-2 lipases by using triacylglycerols (TAGs) from Aleurites fordii seed (tung oil) and a synthetic TAG containing the α-eleostearic acid at the sn-2 position and the oleic acid (OA) at the sn-1 and sn-3 positions [1,3-O-dioleoyl-2-O-α-eleostearoyl-sn-glycerol (sn-OEO)]. Each TAG was coated into a microplate well, and the lipase activity was measured by optical density increase at 272 nm due to transition of α-eleostearic acid from the adsorbed to the soluble state. The sn-1,3-regioselective lipases human pancreatic lipase (HPL), LIP2 lipase from Yarrowia lipolytica (YLLIP2), and a known sn-2 lipase, Candida antarctica lipase A (CALA) were used to validate this method. TLC analysis of lipolysis products showed that the lipases tested were able to hydrolyze the sn-OEO and the tung oil TAGs, but only CALA hydrolyzed the sn-2 position. The ratio of initial velocities on sn-OEO and tung oil TAGs was used to estimate the sn-2 preference of lipases. CALA was the enzyme with the highest ratio (0.22 ± 0.015), whereas HPL and YLLIP2 showed much lower ratios (0.072 ± 0.026 and 0.038 ± 0.016, respectively). This continuous sn-2 lipase assay is compatible with a high sample throughput and thus can be applied to the screening of sn-2 lipases.
Collapse
Affiliation(s)
- Lilia D. Mendoza
- Laboratoire Chirosciences, UMR 6263 CNRS, Institut des Sciences Moléculaires de Marseille (ISM2), Ecole Centrale Marseille, Université Aix-Marseille, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Jorge A. Rodriguez
- CNRS, Université d'Aix-Marseille, Enzymologie Interfaciale et Physiologie de la Lipolyse, UPR 9025, 31, Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France; and
| | - Julien Leclaire
- Laboratoire Chirosciences, UMR 6263 CNRS, Institut des Sciences Moléculaires de Marseille (ISM2), Ecole Centrale Marseille, Université Aix-Marseille, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Gerard Buono
- Laboratoire Chirosciences, UMR 6263 CNRS, Institut des Sciences Moléculaires de Marseille (ISM2), Ecole Centrale Marseille, Université Aix-Marseille, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Frédéric Fotiadu
- Laboratoire Chirosciences, UMR 6263 CNRS, Institut des Sciences Moléculaires de Marseille (ISM2), Ecole Centrale Marseille, Université Aix-Marseille, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Frédéric Carrière
- CNRS, Université d'Aix-Marseille, Enzymologie Interfaciale et Physiologie de la Lipolyse, UPR 9025, 31, Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France; and
| | - Abdelkarim Abousalham
- Organization and Dynamics of Biological Membranes, UMR 5246 ICBMS, CNRS-Université Claude Bernard Lyon 1, Bâtiment Raulin, 43, boulevard du 11 novembre 1918, 69622 Villeurbanne, Cedex, France
| |
Collapse
|
45
|
Vaique E, Guy A, Couedelo L, Gosse I, Durand T, Cansell M, Pinet S. Rapid access to structured triacylglycerols acylated with n-3 polyunsaturated fatty acids for nutritional applications. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.09.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
46
|
Tan A, Simovic S, Davey AK, Rades T, Boyd BJ, Prestidge CA. Silica nanoparticles to control the lipase-mediated digestion of lipid-based oral delivery systems. Mol Pharm 2010; 7:522-32. [PMID: 20063867 DOI: 10.1021/mp9002442] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate the role of hydrophilic fumed silica in controlling the digestion kinetics of lipid emulsions, hence further exploring the mechanisms behind the improved oral absorption of poorly soluble drugs promoted by silica-lipid hybrid (SLH) microcapsules. An in vitro lipolysis model was used to quantify the lipase-mediated digestion kinetics of a series of lipid vehicles formulated with caprylic/capric triglycerides: lipid solution, submicrometer lipid emulsions (in the presence and absence of silica), and SLH microcapsules. The importance of emulsification on lipid digestibility is evidenced by the significantly higher initial digestion rate constants for SLH microcapsules and lipid emulsions (>15-fold) in comparison with that of the lipid solution. Silica particles exerted an inhibitory effect on the digestion of submicrometer lipid emulsions regardless of their initial location, i.e., aqueous or lipid phases. This inhibitory effect, however, was not observed for SLH microcapsules. This highlights the importance of the matrix structure and porosity of the hybrid microcapsule system in enhancing lipid digestibility as compared to submicrometer lipid emulsions stabilized by silica. For each studied formulation, the digestion kinetics is well correlated to the corresponding in vivo plasma concentrations of a model drug, celecoxib, via multiple-point correlations (R(2) > 0.97). This supports the use of the lipid digestion model for predicting the in vivo outcome of an orally dosed lipid formulation. SLH microcapsules offer the potential to enhance the oral absorption of poorly soluble drugs via increased lipid digestibility in conjunction with improved drug dissolution/dispersion.
Collapse
Affiliation(s)
- Angel Tan
- ARC Special Research Centre for Particle and Material Interfaces, Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Foltz M, Maljaars J, Schuring EAH, van der Wal RJP, Boer T, Duchateau GSM, Peters HPF, Stellaard F, Masclee AA. Intragastric layering of lipids delays lipid absorption and increases plasma CCK but has minor effects on gastric emptying and appetite. Am J Physiol Gastrointest Liver Physiol 2009; 296:G982-91. [PMID: 19325050 DOI: 10.1152/ajpgi.90579.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal intubation studies have demonstrated that lipids induce satiety, but the contribution of lipid processing by the stomach on satiety remains poorly understood. In this explorative, randomized, placebo-controlled, crossover study we tested whether delayed lipid absorption, increased cholecystokinin (CCK), decelerated gastric emptying (GE), and increased satiety can be achieved by controlling lipid distribution in the stomach. Six healthy men were intubated nasogastrically. Two treatments were performed and repeated in duplicate. In the oil-on-top treatment (OT), subjects received a fat-free liquid meal (LM, 325 ml, 145 kcal) followed by intragastric infusion of 4 g of high-oleic-acid rapeseed oil (4.6 ml, 36 kcal) labeled with 77 mg glyceryl-[(13)C]trioleate. In the emulsion treatment (EM, control), 4 g of labeled rapeseed oil was incorporated into the LM (325 ml, 181 kcal); 4.6 ml of saline was infused as a control. In OT and EM a second LM was consumed at time t = 270 min. Plasma (13)C-C18:1, CCK and satiety were measured over 480 min. GE was determined by the paracetamol absorption test. OT delayed oleic acid absorption shown by an increased lag time of absorption (EM: 37 +/- 7 min; OT: 75 +/- 10 min; P < 0.01) and time at maximum concentration (EM: 162 +/- 18 min; OT: 280 +/- 33 min; P = 0.01). OT released more CCK than EM (P = 0.03), including increased CCK after the second meal. OT accelerated initial GE until 30 min postprandial. OT showed a tendency (P = 0.06) to suppress hunger and increase satiety and fullness 120-270 min postprandially. The results demonstrate that low amounts of lipids, when separated from the aqueous phase of a meal, delay lipid absorption and increase CCK. An escalating-dose study should determine whether this could have implications for the development of weight-control foods.
Collapse
Affiliation(s)
- Martin Foltz
- Unilever R&D, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
An analytical method for determining relative specificities for sequential reactions catalyzed by the same enzyme: Application to the hydrolysis of triacylglycerols by lipases. J Biotechnol 2008; 133:343-50. [DOI: 10.1016/j.jbiotec.2007.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 10/24/2007] [Accepted: 10/28/2007] [Indexed: 11/19/2022]
|
49
|
Rodriguez JA, Mendoza LD, Pezzotti F, Vanthuyne N, Leclaire J, Verger R, Buono G, Carriere F, Fotiadu F. Novel chromatographic resolution of chiral diacylglycerols and analysis of the stereoselective hydrolysis of triacylglycerols by lipases. Anal Biochem 2007; 375:196-208. [PMID: 18162167 DOI: 10.1016/j.ab.2007.11.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 11/20/2007] [Accepted: 11/27/2007] [Indexed: 11/17/2022]
Abstract
In the present study, we propose a general and accessible method for the resolution of enantiomeric 1,2-sn- and 2,3-sn-diacylglycerols based on derivatization by isocyanates, which can be easily used routinely by biochemists to evaluate the stereopreferences of lipases in a time course of triacylglycerol (TAG) hydrolysis. Diacylglycerol (DAG) enantiomers were transformed into carbamates using achiral and commercially available reagents. Excellent separation and resolution factors were obtained for diacylglycerols present in lipolysis reaction mixtures. This analytical method was then applied to investigate the stereoselectivity of three model lipases (porcine pancreatic lipase, PPL; lipase from Rhizomucor miehei, MML; and recombinant dog gastric lipase, rDGL) in the time course of hydrolysis of prochiral triolein as a substrate. From the measurements of the diglyceride enantiomeric excess it was confirmed that PPL was not stereospecific (position sn-1 vs sn-3 of triolein), whereas MML and rDGL preferentially hydrolyzed the ester bond at position sn-1 and sn-3, respectively. The enantiomeric excess of DAGs was not constant with time, decreasing with the course of hydrolysis. This was due to the fact that DAGs can be products of the stereospecific hydrolysis of TAGs and substrates for stereospecific hydrolysis into monoacylglycerols.
Collapse
Affiliation(s)
- J A Rodriguez
- Laboratory of Enzymology at Interfaces and Physiology of Lipolysis, CNRS-UPR 9025-IBSM, 13009 Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fernandez S, Jannin V, Rodier JD, Ritter N, Mahler B, Carrière F. Comparative study on digestive lipase activities on the self emulsifying excipient Labrasol®, medium chain glycerides and PEG esters. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:633-40. [PMID: 17418634 DOI: 10.1016/j.bbalip.2007.02.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 02/22/2007] [Accepted: 02/26/2007] [Indexed: 11/22/2022]
Abstract
Labrasol is a lipid-based self-emulsifying excipient used in the preparation of lipophilic drugs intended for oral delivery. It is mainly composed of PEG esters and glycerides with medium acyl chains, which are potential substrates for digestive lipases. The hydrolysis of Labrasol by porcine pancreatic extracts, human pancreatic juice and several purified digestive lipases was investigated in the present study. Classical human pancreatic lipase (HPL) and porcine pancreatic lipase, which are the main lipases involved in the digestion of dietary triglycerides, showed very low levels of activity on the entire Labrasol excipient as well as on separated fractions of glycerides and PEG esters. On the other hand, gastric lipase, pancreatic lipase-related protein 2 (PLRP2) and carboxyl ester hydrolase (CEH) showed high specific activities on Labrasol. These lipases were found to hydrolyze the main components of Labrasol (PEG esters and monoglycerides) used as individual substrates, whereas these esters were found to be poor substrates for HPL. The lipolytic activity of pancreatic extracts and human pancreatic juice on Labrasol(R) is therefore mainly due to the combined action of CEH and PLRP2. These two pancreatic enzymes, together with gastric lipase, are probably the main enzymes involved in the in vivo lipolysis of Labrasol taken orally.
Collapse
Affiliation(s)
- Sylvie Fernandez
- Laboratoire d'Enzymologie Interfaciale et de Physiologie de la Lipolyse, CNRS UPR 9025, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | | | | | |
Collapse
|