1
|
Wu Y, Wang M, Liu L. Advances on structure, bioactivity, and biosynthesis of amino acid-containing trans-AT polyketides. Eur J Med Chem 2023; 262:115890. [PMID: 37907023 DOI: 10.1016/j.ejmech.2023.115890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/01/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
Trans-AT polyketides represent a class of natural compounds utilizing independent acyltransferase during their biosynthesis. They are well known for their diverse chemical structures and potent bioactivities. Trans-AT polyketides are synthesized through biosynthetic gene clusters predominantly composed of polyketide synthases (PKS), but often found in hybrid with non-ribosomal peptide synthetases (NRPS). This genetic hybridization results in the incorporation of amino acid residues into polyketide structures, significantly enhancing their structural diversity. Numerous amino acid-containing trans-AT polyketides have been identified, drawing significant attention to the mechanisms underlying amino acid incorporation and their impact on the biological activity of polyketides. Here, we discussed their origins, structures, biological activities, and the specific roles of amino acids in modulating both the bioactivity and biosynthesis of 38 trans-AT polyketides containing amino acids for the first time. This comprehensive analysis will serve as a crucial reference for the exploration of novel compounds and the improvement of structures and activities.
Collapse
Affiliation(s)
- Yunqiang Wu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China; Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Min Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| | - Liwei Liu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China; Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China.
| |
Collapse
|
2
|
Azeredo JB, Thedy MEC, Godoi M, Keller MH, de Souza BS, Roehrs JA. Polysorbate 80/UHP as a recyclable, bio-degradable and metal-free safer system for the fast oxidation of thiols. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Helfrich EJN, Piel J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 2016; 33:231-316. [DOI: 10.1039/c5np00125k] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review discusses the biosynthesis of natural products that are generated bytrans-AT polyketide synthases, a family of catalytically versatile enzymes that represents one of the major group of proteins involved in the production of bioactive polyketides.
Collapse
Affiliation(s)
- Eric J. N. Helfrich
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| | - Jörn Piel
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
4
|
Viswesh V, Hays AM, Gates K, Sun D. DNA cleavage induced by antitumor antibiotic leinamycin and its biological consequences. Bioorg Med Chem 2012; 20:4413-21. [PMID: 22682923 PMCID: PMC3389147 DOI: 10.1016/j.bmc.2012.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/08/2012] [Accepted: 05/15/2012] [Indexed: 11/17/2022]
Abstract
The natural product leinamycin has been found to produce abasic sites in duplex DNA through the hydrolysis of the glycosidic bond of guanine residues modified by this drug. In the present study, using a synthetic oligonucleotide duplex, we demonstrate spontaneous DNA strand cleavage at leinamycin-induced abasic sites through a β-elimination reaction. However, methoxyamine modification of leinamycin-induced abasic sites was found to be refractory to the spontaneous β-elimination reaction. Furthermore, this complex was even resistant to the δ-elimination reaction with hot piperidine treatment. Bleomycin and methyl methanesulfonate also induced strand cleavage in a synthetic oligonucleotide duplex even without thermal treatment. However, methoxyamine has a negligible effect on DNA strand cleavage induced by both drugs, suggesting that the mechanism of DNA cleavage induced by leinamycin might be different from those induced by bleomycin or methyl methanesulfonate. In this study, we also assessed the cytotoxicity of leinamycin against a collection of mammalian cell lines defective in various repair pathways. The mammalian cell line defective in the nucleotide excision repair (NER) or base excision repair (BER) pathways was about 3 to 5 times more sensitive to leinamycin as compared to the parental cell line. In contrast, the radiosensitive mutant xrs-5 cell line deficient in V(D)J recombination showed similar sensitivity towards leinamycin compared to the parental cell line. Collectively, our findings suggest that both NER and BER pathways play an important role in the repair of DNA damage caused by leinamycin.
Collapse
Affiliation(s)
- Velliyur Viswesh
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721
| | - Allison M. Hays
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721
| | - Kent Gates
- Departments of Chemistry and Biochemistry, University of Missouri, Columbia, MO 65211
| | - Daekyu Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
5
|
Sivaramakrishnan S, Breydo L, Sun D, Gates KS. The macrocycle of leinamycin imparts hydrolytic stability to the thiol-sensing 1,2-dithiolan-3-one 1-oxide unit of the natural product. Bioorg Med Chem Lett 2012; 22:3791-4. [PMID: 22560586 DOI: 10.1016/j.bmcl.2012.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/21/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
Reaction of cellular thiols with the 1,2-dithiolan-3-one 1-oxide moiety of leinamycin triggers the generation of DNA-damaging reactive intermediates. Studies with small, synthetic analogues of leinamycin reveal that the macrocyclic portion of the natural product imparts remarkable hydrolytic stability to the 1,2-dithiolan-3-one 1-oxide heterocycle without substantially compromising its thiol-sensing property.
Collapse
|
6
|
Musiol EM, Weber T. Discrete acyltransferases involved in polyketide biosynthesis. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20048a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Abstract
Bioactive natural products often possess uniquely functionalized structures with unusual modes of action; however, the natural product itself is not always the active species. We discuss molecules that draw on protecting group chemistry or else require activation to unmask reactive centers, illustrating that nature is not only a source of complex structures but also a guide for elegant chemical transformations which provides ingenious chemical solutions for drug delivery.
Collapse
Affiliation(s)
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA
| |
Collapse
|
8
|
Lee AHF, Chen J, Chan ASC, Li T. Synthesis of 5-(7-Hydroxyheptyl)-1,2-dithiolan-3-one 1-Oxide, a Core Functionality of Antibiotic Leinamycin. PHOSPHORUS SULFUR 2010. [DOI: 10.1080/10426500307862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Alex H. F. Lee
- a Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong
| | - Jian Chen
- a Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong
| | | | - Tianhu Li
- a Hong Kong Polytechnic University , Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
9
|
Abstract
This review discusses the biosynthesis of natural products that are generated by trans-AT polyketide synthases, a family of catalytically versatile enzymes that have recently been recognized as one of the major group of proteins involved in the production of bioactive polyketides. 436 references are cited.
Collapse
Affiliation(s)
- Jörn Piel
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
10
|
Viswesh V, Gates K, Sun D. Characterization of DNA damage induced by a natural product antitumor antibiotic leinamycin in human cancer cells. Chem Res Toxicol 2010; 23:99-107. [PMID: 20017514 DOI: 10.1021/tx900301r] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leinamycin is a structurally novel Streptomyces-derived natural product that displays very potent activity against various human cancer cell lines (IC(50) values in the low nanomolar range). Previous in vitro biochemical studies have revealed that leinamycin alkylates DNA, generates apurinic (AP) sites and reactive oxygen species (ROS), and causes DNA strand breaks. However, it is not clear whether these events occur inside cells. In the present study, we have determined the endogenous amount of AP sites and DNA strand breaks in genomic DNA and the amount of oxidative stress in a human pancreatic carcinoma cell line, MiaPaCa, treated with leinamycin by utilizing the aldehyde-reactive probe assay, the comet assay, and fluorescent probes, respectively. We demonstrated that AP sites are formed rapidly following exposure to leinamycin, and the number of AP sites was increased up to seven-fold in a dose-dependent manner. However, only 25-50% of these sites remain 2 h after media containing drug molecules were aspirated and replaced with fresh media. We also observed leinamycin-induced ROS generation and a concomitant increase in apoptosis of MiaPaCa cells. Because both AP sites and ROS have the potential to generate strand breaks in cellular DNA, the comet assay was utilized to detect damage to nuclear DNA in leinamycin-treated MiaPaCa cell cultures. Both alkaline and neutral electrophoretic analysis revealed that leinamycin produces both single- and double-stranded DNA damage in drug-treated cells in a dose-dependent manner. Taken together, the results suggest that rapid conversion of leinamycin-guanine (N7) adducts into AP sites to produce DNA strand breaks, in synergy with leinamycin-derived ROS, accounts for the exceedingly potent biological activity of this natural product.
Collapse
Affiliation(s)
- Velliyur Viswesh
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
11
|
Zhao YC, Zhang J, Huang Y, Wang GQ, Yu XQ. DNA cleavage promoted by 2,9-dimethyl-4,7-diazadecane-2,9-dithiol (DDD) derivatives. Bioorg Med Chem Lett 2007; 17:2745-8. [PMID: 17369043 DOI: 10.1016/j.bmcl.2007.02.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/03/2007] [Accepted: 02/27/2007] [Indexed: 11/29/2022]
Abstract
Three piperidine derivatives of 2,9-dimethyl-4,7-diazadecane-2,9-dithiol (DDD), NEPDDD, NEMPDDD, and NEMMPDDD, were synthesized and used as catalysts in DNA cleavage. Under physiological conditions, a series of experiments have been done. The effects of DNA cleavage with three ligands were studied under different concentrations, cleavage time, and pH values. The results strongly suggested that the plasmid DNA (pUC 19) can be cleaved efficiently by these ligands. For the cleavage reaction catalyzed by NEMPDDD, Form I DNA could convert to Form II completely, and the DNA-cleavage mechanism involved an oxidative pathway.
Collapse
Affiliation(s)
- Yuan-Cong Zhao
- Department of Chemistry, Key Laboratory of Green Chemistry and Technology (Ministry of Education), Sichuan University, Chengdu 610064, PR China
| | | | | | | | | |
Collapse
|
12
|
Jacob C, Knight I, Winyard PG. Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways. Biol Chem 2006; 387:1385-97. [PMID: 17081111 DOI: 10.1515/bc.2006.174] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The last decade has witnessed an increased interest in cysteine modifications such as sulfenic and sulfinic acids, thiyl radicals, sulfenyl-amides and thiosulfinates, which come together to enable redox sensing, activation, catalysis, switching and cellular signalling. While glutathionylation, sulfenyl-amide formation and disulfide activation are examples of relatively simple redox responses, the sulfinic acid switch in peroxiredoxin enzymes is part of a complex signalling system that involves sulfenic and sulfinic acids and interacts with kinases and sulfiredoxin. Although the in vivo evaluation of sulfur species is still complicated by a lack of appropriate analytical techniques, research into biological sulfur species has gained considerable momentum and promises further excitement in the future.
Collapse
Affiliation(s)
- Claus Jacob
- School of Pharmacy, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany.
| | | | | |
Collapse
|
13
|
Feldman KS, Eastman KJ. Studies on the mechanism of action of prekinamycin, a member of the diazoparaquinone family of natural products: evidence for both sp2 radical and orthoquinonemethide intermediates. J Am Chem Soc 2006; 128:12562-73. [PMID: 16984207 PMCID: PMC2515591 DOI: 10.1021/ja0642616] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The putative reductive activation chemistry of the diazoparaquinone antibiotics was modeled with Bu(3)Sn-H and prekinamycin dimethyl ether along with prekinamycin itself. Reaction in various combinations of aromatic solvents, with and without the nucleophile benzylmercaptan present, led to isolation of both radical-trapping arene adducts and nucleophilic capture benzyl thioether products. On the basis of these product distribution studies, the intermediacies of, first, a cyclopentenyl radical and, next, an orthoquinonemethide electrophile are postulated.
Collapse
Affiliation(s)
- Ken S Feldman
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
14
|
Tang GL, Cheng YQ, Shen B. Leinamycin Biosynthesis Revealing Unprecedented Architectural Complexity for a Hybrid Polyketide Synthase and Nonribosomal Peptide Synthetase. ACTA ACUST UNITED AC 2004; 11:33-45. [PMID: 15112993 DOI: 10.1016/j.chembiol.2003.12.014] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Revised: 10/14/2003] [Accepted: 10/16/2003] [Indexed: 11/16/2022]
Abstract
A 135,638 bp DNA region that encompasses the leinamycin (LNM) biosynthetic gene cluster was sequenced from Streptomyces atroolivaceus S-140. The boundaries of the lnm cluster were defined by systematic inactivation of open reading frames within the sequenced region. The lnm cluster spans 61.3 kb of DNA and consists of 27 genes encoding nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), hybrid NRPS-PKS, resistance, regulatory, and tailoring enzymes, as well as proteins of unknown function. A model for LNM biosynthesis is proposed, central to which is the LNM hybrid NRPS-PKS megasynthetase consisting of discrete (LnmQ and LnmP) and modular (LnmI) NRPS, acyltransferase-less PKS (LnmG, LnmI, and LnmJ), and PKS modules with unusual domain organization. These studies unveil an unprecedented architectural complexity for the LNM hybrid NRPS-PKS megasynthetase and set the stage to investigate the molecular basis for LNM biosynthesis.
Collapse
Affiliation(s)
- Gong-Li Tang
- Division of Pharmaceutical Sciences, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | |
Collapse
|
15
|
Synthesis of 5-(7-hydroxyhept-3-enyl)-1,2-dithiolan-3-one 1-oxide, a core functionality of antibiotic leinamycin. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(02)01600-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Cheng YQ, Tang GL, Shen B. Identification and localization of the gene cluster encoding biosynthesis of the antitumor macrolactam leinamycin in Streptomyces atroolivaceus S-140. J Bacteriol 2002; 184:7013-24. [PMID: 12446651 PMCID: PMC135466 DOI: 10.1128/jb.184.24.7013-7024.2002] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leinamycin (LNM), produced by Streptomyces atroolivaceus, is a thiazole-containing hybrid peptide-polyketide natural product structurally characterized with an unprecedented 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a 18-member macrolactam ring. LNM exhibits a broad spectrum of antimicrobial and antitumor activities, most significantly against tumors that are resistant to clinically important anticancer drugs, resulting from its DNA cleavage activity in the presence of a reducing agent. Using a PCR approach to clone a thiazole-forming nonribosomal peptide synthetase (NRPS) as a probe, we localized a 172-kb DNA region from S. atroolivaceus S-140 that harbors the lnm biosynthetic gene cluster. Sequence analysis of 11-kb DNA revealed three genes, lnmG, lnmH, and lnmI, and the deduced product of lnmI is characterized by domains characteristic to both NRPS and polyketide synthase (PKS). The involvement of the cloned gene cluster in LNM biosynthesis was confirmed by disrupting the lnmI gene to generate non-LNM-producing mutants and by characterizing LnmI as a hybrid NRPS-PKS megasynthetase, the NRPS module of which specifies for L-Cys and catalyzes thiazole formation. These results have now set the stage for full investigations of LNM biosynthesis and for generation of novel LNM analogs by combinatorial biosynthesis.
Collapse
Affiliation(s)
- Yi-Qiang Cheng
- Division of Pharmaceutical Sciences. Department of Chemistry, University of Wisconsin, Madison 53705, USA
| | | | | |
Collapse
|
17
|
Zang H, Breydo L, Mitra K, Dannaldson J, Gates KS. DNA alkylation by leinamycin can be triggered by cyanide and phosphines. Bioorg Med Chem Lett 2001; 11:1511-5. [PMID: 11412971 DOI: 10.1016/s0960-894x(01)00196-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous work has shown that alkylation of DNA by the antitumor agent leinamycin (1) is potentiated by reaction of the antibiotic with thiols. Here, it is shown that other soft nucleophiles such as cyanide and phosphines can also trigger DNA alkylation by leinamycin. Overall, the results suggest that reactions of cyanide and phosphines with leinamycin produce the oxathiolanone intermediate (2), which is known to undergo rearrangement to the DNA-alkylating episulfonium ion 4.
Collapse
Affiliation(s)
- H Zang
- Departments of Chemistry and Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
18
|
Breydo L, Zang H, Mitra K, Gates KS. Thiol-independent DNA alkylation by leinamycin. J Am Chem Soc 2001; 123:2060-1. [PMID: 11456831 DOI: 10.1021/ja003309r] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|