1
|
Chen QX, Han Y. Retinal Adaptation in Response to Light and Dark Regimes in the Oriental Armyworm Mythimna separata (Lepidoptera: Noctuidae). INSECTS 2024; 15:135. [PMID: 38392554 PMCID: PMC10889546 DOI: 10.3390/insects15020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
The oriental armyworm, Mythimna separata (Walker), is a well-known nocturnal migratory pest that relies on its exceptional nocturnal vision for navigation during long-distance flights. In this study, we investigated the ultrastructure of the compound eyes of adult M. separata using transmission electron microscopy and quantitatively evaluated adaptational changes in the retina under light and dark conditions. The compound eyes of M. separata are superposition eyes with a clear zone. The retina shows remarkable anatomical differences under light and dark adaptation, primarily characterized by distinct patterns of rhabdoms within the clear zone: the rhabdoms are nearly absent under light adaptation, but become more voluminous under dark adaptation. In the distal, middle, and proximal sections of the clear zone, the cross-sectional areas of retinulae and rhabdoms, as well as the rhabdom occupation ratio, are significantly larger under dark adaptation than under light adaptation. Conversely, the opposite trend is observed beneath the clear zone. These results indicate remarkable plasticity in the M. separata retina throughout a normal daily cycle, providing a theoretical basis for improving searchlight and ground light trap techniques for the management of this migratory species.
Collapse
Affiliation(s)
- Qing-Xiao Chen
- Laboratory of Insect Evolution and Systematics, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Ying Han
- Laboratory of Insect Evolution and Systematics, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
2
|
Hoch H, Pingel M, Voigt D, Wyss U, Gorb S. Adhesive properties of Aphrophoridae spittlebug foam. J R Soc Interface 2024; 21:20230521. [PMID: 38196374 PMCID: PMC10777165 DOI: 10.1098/rsif.2023.0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Aphrophora alni spittlebug nymphs produce a wet foam from anal excrement fluid, covering and protecting themselves against numerous impacts. Foam fluid contact angles on normal (26°) and silanized glass (37°) suggest that the foam wets various substrates, including plant and arthropod surfaces. The pull-off force depends on the hydration state and is higher the more dry the fluid. Because the foam desiccates as fast as water, predators once captured struggle to free from drying foam, becoming stickier. The present study confirms that adhesion is one of the numerous foam characteristics resulting in multifunctional effects, which promote spittlebugs' survival and render the foam a smart, biocompatible material of biological, biomimetic and biomedical interest. The sustainable 'reuse' of large amounts of excrement for foam production and protection of the thin nymph integument suggests energetic and evolutionary advantages. Probably, that is why foam nests have evolved in different groups of organisms, such as spittlebugs, frogs and fish.
Collapse
Affiliation(s)
- Hannelore Hoch
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany
| | - Martin Pingel
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany
| | - Dagmar Voigt
- Botany, Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Urs Wyss
- Entofilm, Dahlmannstraße 2a, 24103 Kiel, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1–9, 24098 Kiel, Germany
| |
Collapse
|
3
|
Molecular characterization and elucidation of the function of Hap38 MAPK in the response of Helicoverpa armigera (Hübner) to UV-A stress. Sci Rep 2022; 12:18489. [PMID: 36323798 PMCID: PMC9630311 DOI: 10.1038/s41598-022-23363-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022] Open
Abstract
The cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), an important pest of cotton, is detrimental to cotton production. Light from UV-A ultraviolet lamps is regarded as a form of environmental stress for insects. In order to investigate the response of H. armigera exposed to UV-A, we explored Hap38 MAPK expression and functions. We hope that the findings of this study will lay the foundation for future investigations into the insect's phototaxis mechanism. A p38 MAPK was cloned and named Hap38 MAPK. A phylogenetic tree showed that Hap38 MAPK was highly conserved. The gene was highly expressed in the thorax and females. Under UV-A stress, the expression of the gene decreased significantly. After silencing Hap38 MAPK, the activity of the antioxidant enzymes SOD, POD, CAT, and GR decreased. This study suggested that Hap38 MAPK responds to UV-A irradiation and plays critical roles in the defense response to environmental stresses.
Collapse
|
4
|
Ruan HY, Meng JY, Yang CL, Zhou L, Zhang CY. Identification of Six Small Heat Shock Protein Genes in Ostrinia furnacalis (Lepidoptera: Pyralidae) and Analysis of Their Expression Patterns in Response to Environmental Stressors. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:7. [PMID: 36469365 PMCID: PMC9721345 DOI: 10.1093/jisesa/ieac069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 06/17/2023]
Abstract
Ostrinia furnacalis (Guenée) is a major insect pest in maize production that is highly adaptable to the environment. Small heat shock proteins (sHsps) are a class of chaperone proteins that play an important role in insect responses to various environmental stresses. The present study aimed to clarify the responses of six O. furnacalis sHsps to environmental stressors. In particular, we cloned six sHsp genes, namely, OfHsp24.2, OfHsp21.3, OfHsp20.7, OfHsp21.8, OfHsp29.7, and OfHsp19.9, from O. furnacalis. The putative proteins encoded by these genes contained a typical α-crystallin domain. Real-time quantitative polymerase chain reaction was used to analyze the differences in the expression of these genes at different developmental stages, in different tissues of male and female adults, and in O. furnacalis under UV-A and extreme temperature stresses. The six OfsHsp genes were expressed at significantly different levels based on the developmental stage and tissue type in male and female adults. Furthermore, all OfsHsp genes were significantly upregulated in both male and female adults under extreme temperature and UV-A stresses. Thus, O. furnacalis OfsHsp genes play important and unique regulatory roles in the developmental stages of the insect and in response to various environmental stressors.
Collapse
Affiliation(s)
- Hong-Yun Ruan
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou 550081, People’s Republic of China
| | - Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | - Lv Zhou
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | | |
Collapse
|
5
|
Lavrinenko IA, Donskikh AO, Minakov DA, Sirota AA. Analysis and classification of peanuts with fungal diseases based on real-time spectral processing. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:990-1000. [PMID: 35044871 DOI: 10.1080/19440049.2021.2017001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The study presents an approach to the analysis and classification of peanuts performed in order to detect kernels with fungi diseases, i.e. kernels prone to contamination with mycotoxigenic Aspergillus flavus (Aspergillus parasiticus). The aim of this study was to evaluate the effectiveness of luminescent spectroscopy with a violet laser (405 nm wavelength) as the excitation source of the fluorescence when applied for real-time detection of mould in peanuts performed by means of multispectral processing based on machine learning methods. We suggest a laboratory unit used to form, register, and process the luminescence spectra of peanuts in visible and near-infrared wavelength ranges in the real-time mode. The study demonstrated that contaminated peanuts have increased luminous intensity and show a redshift in the fluorescence peaks of the contaminated samples as compared to the pure ones. The difference in the fluorescence spectra of pure and contaminated kernels is compatible with the results obtained when traditional UV-light sources are used (365 nm). To classify peanuts by their spectral characteristics, neural network algorithms were used combined with dimensionality reduction methods. The paper presents the probabilities of incorrect recognition of the peanuts' type depending on the number of relevant secondary features determined when reducing the dimensionality of the initial data. When 10 spectral components were used, the error ratios were 0.7% or 0.3% depending on the method of reducing the dimensionality of the initial data.
Collapse
Affiliation(s)
- Igor A Lavrinenko
- Department of Human and Animal Physiology, Voronezh State University, Voronezh, Russia
| | - Artem O Donskikh
- Department of Information Security and Processing Technologies, Voronezh State University, Voronezh, Russia
| | - Dmitriy A Minakov
- Department of Information Security and Processing Technologies, Voronezh State University, Voronezh, Russia
| | - Alexander A Sirota
- Department of Information Security and Processing Technologies, Voronezh State University, Voronezh, Russia
| |
Collapse
|
6
|
Stella D, Kleisner K. Visible beyond Violet: How Butterflies Manage Ultraviolet. INSECTS 2022; 13:insects13030242. [PMID: 35323542 PMCID: PMC8955501 DOI: 10.3390/insects13030242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022]
Abstract
Ultraviolet (UV) means ‘beyond violet’ (from Latin ‘ultra’, meaning ‘beyond’), whereby violet is the colour with the highest frequencies in the ‘visible’ light spectrum. By ‘visible’ we mean human vision, but, in comparison to many other organisms, human visual perception is rather limited in terms of the wavelengths it can perceive. Still, this is why communication in the UV spectrum is often called hidden, although it most likely plays an important role in communicating various kinds of information among a wide variety of organisms. Since Silberglied’s revolutionary Communication in the Ultraviolet, comprehensive studies on UV signals in a wide list of genera are lacking. This review investigates the significance of UV reflectance (and UV absorption)—a feature often neglected in intra- and interspecific communication studies—mainly in Lepidoptera. Although the text focuses on various butterfly families, links and connections to other animal groups, such as birds, are also discussed in the context of ecology and the evolution of species. The basic mechanisms of UV colouration and factors shaping the characteristics of UV patterns are also discussed in a broad context of lepidopteran communication.
Collapse
Affiliation(s)
- David Stella
- Global Change Research Institute, The Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Philosophy and History of Science, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Karel Kleisner
- Department of Philosophy and History of Science, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| |
Collapse
|
7
|
Wen C, Pan Z, Liang S, Shen L, Wen X, Wang C. Fine Structure of the Visual System of Arge similis (Hymenoptera, Argidae). INSECTS 2022; 13:152. [PMID: 35206725 PMCID: PMC8880150 DOI: 10.3390/insects13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022]
Abstract
External morphology and ultrastructure of the visual system of Arge similis (Vollenhoven, 1860) adults were investigated by light microscopy, scanning electron microscopy, and transmission electron microscopy. Each compound eye contains 2022 ± 89 (mean ± SE) facets in males and 2223 ± 52 facets in females. Arge similis has an apposition kind of compound eye composed of a cornea, a crystalline cone of four cone cells, and a centrally fused rhabdom made up of the rhabdomeres of eight large retinular cells. Each crystalline cone is surrounded by primary and secondary pigment cells with black spherical screening pigment granules measuring 0.60 ± 0.02 and 0.41 ± 0.01 μm in diameter, respectively. Based on our findings, the compound eye of A. similis can be expected to exhibit high adaptability to light intensity changes.
Collapse
Affiliation(s)
| | | | | | | | - Xiujun Wen
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (C.W.); (Z.P.); (S.L.); (L.S.)
| | - Cai Wang
- Guangdong Key Laboratory for Innovation Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (C.W.); (Z.P.); (S.L.); (L.S.)
| |
Collapse
|
8
|
Yang CL, Meng JY, Zhou L, Yao MS, Zhang CY. Identification of five small heat shock protein genes in Spodoptera frugiperda and expression analysis in response to different environmental stressors. Cell Stress Chaperones 2021; 26:527-539. [PMID: 33609257 PMCID: PMC8065089 DOI: 10.1007/s12192-021-01198-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/30/2021] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
Spodoptera frugiperda (J. E. Smith) is a highly adaptable polyphagous migratory pest in tropical and subtropical regions. Small heat shock proteins (sHsps) are molecular chaperones that play important roles in the adaptation to various environment stressors. The present study aimed to clarify the response mechanisms of S. frugiperda to various environmental stressors. We obtained five S. furcifera sHsp genes (SfsHsp21.3, SfsHsp20, SfsHsp20.1, SfsHsp19.3, and SfsHsp29) via cloning. The putative proteins encoded by these genes contained a typical α-crystallin domain. The expression patterns of these genes during different developmental stages, in various tissues of male and female adults, as well as in response to extreme temperatures and UV-A stress were studied via real-time quantitative polymerase chain reaction. The results showed that the expression levels of all five SfsHsp genes differed among the developmental stages as well as among the different tissues of male and female adults. The expression levels of most SfsHsp genes under extreme temperatures and UV-A-induced stress were significantly upregulated in both male and female adults. In contrast, those of SfsHsp20.1 and SfsHsp19.3 were significantly downregulated under cold stress in male adults. Therefore, the different SfsHsp genes of S. frugiperda play unique regulatory roles during development as well as in response to various environmental stressors.
Collapse
Affiliation(s)
- Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou, 550081, People's Republic of China
| | - Lv Zhou
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Meng-Shuang Yao
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| |
Collapse
|
9
|
Su L, Yang C, Meng J, Zhou L, Zhang C. Comparative transcriptome and metabolome analysis of Ostrinia furnacalis female adults under UV-A exposure. Sci Rep 2021; 11:6797. [PMID: 33762675 PMCID: PMC7990960 DOI: 10.1038/s41598-021-86269-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
Ultraviolet A (UV-A) radiation is a significant environmental factor that causes photoreceptor damage, apoptosis, and oxidative stress in insects. Ostrinia furnacalis is an important pest of corn. To understand the adaptation mechanisms of insect response to UV-A exposure, this study revealed differentially expressed genes (DEGs) and differently expressed metabolites (DEMs) in O. furnacalis under UV-A exposure. Three complementary DNA libraries were constructed from O. furnacalis adult females (CK, UV1h, and UV2h), and 50,106 expressed genes were obtained through Illumina sequencing. Of these, 157 and 637 DEGs were detected in UV1h and UV2h after UV-A exposure for 1 and 2 h, respectively, compared to CK, with 103 and 444 upregulated and 54 and 193 downregulated genes, respectively. Forty four DEGs were detected in UV2h compared to UV1h. Comparative transcriptome analysis between UV-treated and control groups revealed signal transduction, detoxification and stress response, immune defense, and antioxidative system involvement. Metabolomics analysis showed that 181 (UV1h vs. CK), 111 (UV2h vs. CK), and 34 (UV2h vs. UV1h) DEMs were obtained in positive ion mode, while 135 (UV1h vs. CK), 93 (UV2h vs. CK), and 36 (UV2h vs. UV1h) DEMs were obtained in negative ion mode. Moreover, UV-A exposure disturbed amino acid, sugar, and lipid metabolism. These findings provide insight for further studies on how insects protect themselves under UV-A stress.
Collapse
Affiliation(s)
- Li Su
- grid.443382.a0000 0004 1804 268XInstitute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Changli Yang
- grid.443382.a0000 0004 1804 268XInstitute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Jianyu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, 550081 People’s Republic of China
| | - Lv Zhou
- grid.443382.a0000 0004 1804 268XInstitute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Changyu Zhang
- grid.443382.a0000 0004 1804 268XInstitute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025 People’s Republic of China
| |
Collapse
|
10
|
Guo FZ, Ning SY, Feng JN, Liu B, He XH. Ultrastructure and morphology of the compound eyes of the predatory bug Montandoniola moraguesi (Insecta: Hemiptera: Anthocoridae). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 61:101030. [PMID: 33578074 DOI: 10.1016/j.asd.2021.101030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The morphology and ultrastructure of the compound eye of the predatory bug, Montandoniola moraguesi (Puton, 1986) was investigated using scanning and transmission electron microscopy. Its compound eyes, which contain ∼195 ommatidia per eye, have the following characteristics: each ommatidium possesses a laminated corneal lens measuring ∼9 μm in diameter and ∼7 μm in thickness, a tetrapartite eucone crystalline cone, which is approximately 5.5 μm long, like a dumbbell with the distal end larger than the proximal end, eight clustered retinula cells ∼25.6 μm in length, two primary pigment cells and eight secondary primary pigment cells. The rhabdomeres of the eight retinula cells form a circular, tiered rhabdom of two elongated and six peripheral retinula cells. The rhabdomeres of cells R7 and R8 are distributed along the basolateral surface of the cone and form a centrally-fused rhabdom that spans nearly the full length of the ommatidium. The microvilli of the peripheral rhabdom (R1-R6) are radially arranged and form a bilobed, V-like shape in the central rhabdom. Based on the similarity of the compound eye of M. moraguesi to the eyes of other predatory insect species, the evolution and function of eyes in predators are briefly discussed.
Collapse
Affiliation(s)
- Fu-Zhen Guo
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo-Ying Ning
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Institute of Zoology, Xi'an, Shaanxi 710032, China
| | - Ji-Nian Feng
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Hua He
- Key Laboratory of Plant Protection Resources and Pest Integrated Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Su L, Meng JY, Yang H, Zhang CY. Molecular Characterization and Expression of OfJNK and Ofp38 in Ostrinia furnacalis (Guenée) Under Different Environmental Stressors. Front Physiol 2020; 11:125. [PMID: 32158401 PMCID: PMC7052289 DOI: 10.3389/fphys.2020.00125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/04/2020] [Indexed: 01/02/2023] Open
Abstract
Ostrinia furnacalis, an important pest of corn, has substantial detrimental effects on corn production. The mitogen-activated protein kinase (MAPK) signaling pathway plays a pivotal role in an insect’s resistance to environmental stress. The expression levels of JNK and p38 have been well recorded in several insects under different environmental stressors, at different developmental stages, and in various tissue types; however, there is limited information on JNK and p38 in agricultural insects. To clarify the mechanism whereby O. furnacalis responds to environmental stress, we cloned JNK and p38 from O. furnacalis and subsequently named them OfJNK and Ofp38, respectively. Further, we examined the expression levels of OfJNK and Ofp38 under different environmental stressors. In this study, we obtained full-length sequences of OfJNK and Ofp38, and RT-qPCR results showed that these genes were expressed at all developmental stages, in various tissues (head, chest, abdomen, leg, wing, antennae, compound eye, midgut, and ovary) and under different environmental stressors (4°C and ultraviolet A treatment for 0, 30, 60, 90, and 120 min). The expression levels of OfJNK and Ofp38 were relatively higher in eggs and 3-day-old adult females than in other developmental stages. Moreover, the expression level of OfJNK was higher in the wings than in other tissues, whereas that of Ofp38 was significantly higher in the ovaries than in other tissues. OfJNK and Ofp38 showed high expression 90 min after being subjected to treatment at 4°C and ultraviolet A irradiation; the expression of Ofp38 peaked at 30 min, whereas that of OfJNK peaked at 60 min. These results indicate that O. furnacalis differs in terms of its response under different environmental stressors. In summary, our results will provide a foundation for additional research needed to determine the role of the MAPK signaling pathway and the underlying mechanisms by which it shows resistance to environmental stresses in insects.
Collapse
Affiliation(s)
- Li Su
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, China
| | - Hong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| | - Chang-Yu Zhang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
12
|
Electrophysiological adaptations of insect photoreceptors and their elementary responses to diurnal and nocturnal lifestyles. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:55-69. [PMID: 31858215 PMCID: PMC6995784 DOI: 10.1007/s00359-019-01392-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Nocturnal vision in insects depends on the ability to reliably detect scarce photons. Nocturnal insects tend to have intrinsically more sensitive and larger rhabdomeres than diurnal species. However, large rhabdomeres have relatively high membrane capacitance (Cm), which can strongly low-pass filter the voltage bumps, widening and attenuating them. To investigate the evolution of photoreceptor signaling under near dark, we recorded elementary current and voltage responses from a number of species in six insect orders. We found that the gain of phototransduction increased with Cm, so that nocturnal species had relatively large and prolonged current bumps. Consequently, although the voltage bump amplitude correlated negatively with Cm, the strength of the total voltage signal increased. Importantly, the background voltage noise decreased strongly with increasing Cm, yielding a notable increase in signal-to-noise ratio for voltage bumps. A similar decrease in the background noise with increasing Cm was found in intracellular recordings in vivo. Morphological measurements of rhabdomeres were consistent with our Cm estimates. Our results indicate that the increased photoreceptor Cm in nocturnal insects is a major sensitivity-boosting and noise-suppressing adaptation. However, by requiring a compensatory increase in the gain of phototransduction, this adaptation comes at the expense of the signaling bandwidth.
Collapse
|
13
|
Owens ACS, Lewis SM. The impact of artificial light at night on nocturnal insects: A review and synthesis. Ecol Evol 2018; 8:11337-11358. [PMID: 30519447 PMCID: PMC6262936 DOI: 10.1002/ece3.4557] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 07/14/2018] [Indexed: 02/06/2023] Open
Abstract
In recent decades, advances in lighting technology have precipitated exponential increases in night sky brightness worldwide, raising concerns in the scientific community about the impact of artificial light at night (ALAN) on crepuscular and nocturnal biodiversity. Long-term records show that insect abundance has declined significantly over this time, with worrying implications for terrestrial ecosystems. The majority of investigations into the vulnerability of nocturnal insects to artificial light have focused on the flight-to-light behavior exhibited by select insect families. However, ALAN can affect insects in other ways as well. This review proposes five categories of ALAN impact on nocturnal insects, highlighting past research and identifying key knowledge gaps. We conclude with a summary of relevant literature on bioluminescent fireflies, which emphasizes the unique vulnerability of terrestrial light-based communication systems to artificial illumination. Comprehensive understanding of the ecological impacts of ALAN on diverse nocturnal insect taxa will enable researchers to seek out methods whereby fireflies, moths, and other essential members of the nocturnal ecosystem can coexist with humans on an increasingly urbanized planet.
Collapse
Affiliation(s)
| | - Sara M. Lewis
- Department of BiologyTufts UniversityMedfordMassachusetts
| |
Collapse
|
14
|
Zhang C, Meng J. Identification of differentially expressed proteins in Ostrinia furnacalis adults after exposure to ultraviolet A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25071-25079. [PMID: 29936613 DOI: 10.1007/s11356-018-2580-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Ultraviolet A (UVA), the major component of solar UV irradiation, is an important environmental factor inducing damage to insects including cell death, photoreceptor damage, and oxidative stress. In order to improve understanding of the adaptation mechanisms of insect after UVA exposure, a comparative proteomic analysis was carried out to reveal differential protein expression in Ostrinia furnacalis. Three-day-old adults were treated with UVA for 1 h. Total proteins of control and UVA-treated insects were examined using two-dimensional electrophoresis (2-DE). 2-DE analysis demonstrated that 19 proteins were increased and 18 proteins were decreased significantly in O. furnacalis after UVA exposure, respectively. Thirty differentially expressed proteins were successfully identified by mass spectrometry. The identified proteins were involved in diverse biological processes, such as signal transduction, transport processing, cellular stress, metabolisms, and cytoskeleton organization. Our results reveal that the response patterns of O. furnacalis to UVA irradiation are complex and provide novel insights into the adaptation response to UVA irradiation stress.
Collapse
Affiliation(s)
- Changyu Zhang
- Guizhou Key Laboratory for Plant Pest Management of Mountain Region, College of Agriculture, Guizhou University, Guiyang, China.
| | - Jianyu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, China
| |
Collapse
|
15
|
Ali A, Rashid MA, Huang QY, Lei CL. Influence of UV-A radiation on oxidative stress and antioxidant enzymes in Mythimna separata (Lepidoptera: Noctuidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8392-8398. [PMID: 28185177 DOI: 10.1007/s11356-017-8514-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/26/2017] [Indexed: 05/13/2023]
Abstract
Abiotic stress factors, including ultraviolet (UV) radiation, significantly affect insect life. UV-A radiation (320-400 nm) has been widely used for insect control since it increases the production of ROS and causes oxidative cell damage. In the present study, we evaluated the effects of UV-A irradiation on an important pest in China, the ear-cutting caterpillar, Mythimna separata (Lepidoptera: Noctuidae). We exposed 3-day-old M. separata adults to UV-A radiation for different periods of time (0, 30, 60, 90, and 120 min) and evaluated the resulting total antioxidant capacity and the activity of the antioxidant enzymes superoxide dismutase, catalase, peroxidase, and glutathione-S-transferase. The total antioxidant capacity significantly increased after exposure to UV-A radiation for 60 min but decreased after 90 and 120 min of exposure, compared with the control. The antioxidant activity of glutathione-S-transferase, superoxide dismutase, catalase, and peroxidase increased after 60-min exposure, and it was decreased at the longest exposure period 120 min. The longest exposure time period relatively activates the xenobiotic detoxifying enzymes like glutathione-S-transferase, superoxide dismutase, catalase, and peroxidase enzymes. The longest duration of UV-A radiation may cooperate with pesticide detoxification mechanism in insects, making them more susceptible to insecticides. Our results demonstrated that UV irradiation causes oxidative stress, affects the activity of antioxidant enzymes, and disturbs the physiology of M. separata adults.
Collapse
Affiliation(s)
- Arif Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Adnan Rashid
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiu Ying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
16
|
Molecular cloning, expression, and stress response of the estrogen-related receptor gene (AccERR) from Apis cerana cerana. Naturwissenschaften 2016; 103:24. [PMID: 26922780 DOI: 10.1007/s00114-016-1340-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/24/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Estrogen-related receptor (ERR), which belongs to the nuclear receptor superfamily, has been implicated in diverse physiological processes involving the estrogen signaling pathway. However, little information is available on ERR in Apis cerana cerana. In this report, we isolated the ERR gene and investigated its involvement in antioxidant defense. Quantitative real-time polymerase chain reaction (qPCR) revealed that the highest mRNA expression occurred in eggs during different developmental stages. The expression levels of AccERR were highest in the muscle, followed by the rectum. The predicted transcription factor binding sites in the promoter of AccERR suggested that AccERR potentially functions in early development and in environmental stress responses. The expression of AccERR was induced by cold (4 °C), heat (42 °C), ultraviolet light (UV), HgCl2, and various types of pesticides (phoxim, deltamethrin, triadimefon, and cyhalothrin). Western blot was used to measure the expression levels of AccERR protein. These data suggested that AccERR might play a vital role in abiotic stress responses.
Collapse
|
17
|
Rocha M, Kimler KJ, Leming MT, Hu X, Whaley MA, O'Tousa JE. Expression and light-triggered movement of rhodopsins in the larval visual system of mosquitoes. ACTA ACUST UNITED AC 2015; 218:1386-92. [PMID: 25750414 DOI: 10.1242/jeb.111526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
Abstract
During the larval stages, the visual system of the mosquito Aedes aegypti contains five stemmata, often referred to as larval ocelli, positioned laterally on each side of the larval head. Here we show that stemmata contain two photoreceptor types, distinguished by the expression of different rhodopsins. The rhodopsin Aaop3 (GPROP3) is expressed in the majority of the larval photoreceptors. There are two small clusters of photoreceptors located within the satellite and central stemmata that express the rhodopsin Aaop7 (GPROP7) instead of Aaop3. Electroretinogram analysis of transgenic Aaop7 Drosophila indicates that Aaop3 and Aaop7, both classified as long-wavelength rhodopsins, possess similar but not identical spectral properties. Light triggers an extensive translocation of Aaop3 from the photosensitive rhabdoms to the cytoplasmic compartment, whereas light-driven translocation of Aaop7 is limited. The results suggest that these photoreceptor cell types play distinct roles in larval vision. An additional component of the larval visual system is the adult compound eye, which starts to develop at the anterior face of the larval stemmata during the 1st instar stage. The photoreceptors of the developing compound eye show rhodopsin expression during the 4th larval instar stage, consistent with indications from previous reports that the adult compound eye contributes to larval and pupal visual capabilities.
Collapse
Affiliation(s)
- Manuel Rocha
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kyle J Kimler
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew T Leming
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xiaobang Hu
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michelle A Whaley
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joseph E O'Tousa
- Department of Biological Sciences and Eck Institute for Global Health, Galvin Life Science Building, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
18
|
Meyer-Rochow VB. Compound eyes of insects and crustaceans: Some examples that show there is still a lot of work left to be done. INSECT SCIENCE 2015; 22:461-481. [PMID: 24574199 DOI: 10.1111/1744-7917.12117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
Similarities and differences between the 2 main kinds of compound eye (apposition and superposition) are briefly explained before several promising topics for research on compound eyes are being introduced. Research on the embryology and molecular control of the development of the insect clear-zone eye with superposition optics is one of the suggestions, because almost all of the developmental work on insect eyes in the past has focused on eyes with apposition optics. Age- and habitat-related ultrastructural studies of the retinal organization are another suggestion and the deer cad Lipoptena cervi, which has an aerial phase during which it is winged followed by a several months long parasitic phase during which it is wingless, is mentioned as a candidate species. Sexual dimorphism expressing itself in many species as a difference in eye structure and function provides another promising field for compound eye researchers and so is a focus on compound eye miniaturization in very small insects, especially those that are aquatic and belong to species, in which clear-zone eyes are diagnostic or are tiny insects that are not aquatic, but belong to taxa like the Diptera for instance, in which open rather than closed rhabdoms are the rule. Structures like interommatidial hairs and glands as well as corneal microridges are yet another field that could yield interesting results and in the past has received insufficient consideration. Finally, the dearth of information on distance vision and depth perception is mentioned and a plea is made to examine the photic environment inside the foam shelters of spittle bugs, chrysales of pupae and other structures shielding insects and crustaceans.
Collapse
|
19
|
Jia H, Sun R, Shi W, Yan Y, Li H, Guo X, Xu B. Characterization of a mitochondrial manganese superoxide dismutase gene from Apis cerana cerana and its role in oxidative stress. JOURNAL OF INSECT PHYSIOLOGY 2014; 60:68-79. [PMID: 24269344 DOI: 10.1016/j.jinsphys.2013.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 05/16/2023]
Abstract
Mitochondrial manganese superoxide dismutase (mMnSOD) plays a vital role in the defense against reactive oxygen species (ROS) in eukaryotic mitochondria. In this study, we isolated and identified a mMnSOD gene from Apis cerana cerana, which we named AccSOD2. Several putative transcription factor-binding sites were identified within the 5'-flanking region of AccSOD2, which suggests that AccSOD2 may be involved in organismal development and/or environmental stress responses. Quantitative real-time PCR analysis showed that AccSOD2 is highly expressed in larva and pupae during different developmental stages. In addition, the expression of AccSOD2 could be induced by cold (4 °C), heat (42 °C), H2O2, ultraviolet light (UV), HgCl2, and pesticide treatment. Using a disc diffusion assay, we provide evidence that recombinant AccSOD2 protein can play a functional role in protecting cells from oxidative stress. Finally, the in vivo activities of AccSOD2 were measured under a variety of stressful conditions. Taken together, our results indicate that AccSOD2 plays an important role in cellular stress responses and anti-oxidative processes and that it may be of critical importance to honeybee survival.
Collapse
Affiliation(s)
- Haihong Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Rujiang Sun
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China; Yantai Research Institute, China Agricultural University, Yantai, Shandong 264670, PR China
| | - Weina Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Yan Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
20
|
Zhou LJ, Zhu ZH, Liu ZX, Ma WH, Desneux N, Lei CL. Identification and transcriptional profiling of differentially expressed genes associated with response to UVA radiation in Drosophila melanogaster (Diptera: Drosophilidae). ENVIRONMENTAL ENTOMOLOGY 2013; 42:1110-1117. [PMID: 24331622 DOI: 10.1603/en12319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ultraviolet A (UVA) radiation, the major component of solar ultraviolet (UV) radiation reaching the earth's surface, leads to negative effects in insects, such as oxidative stress, photoreceptor damage, and cell death. To better understand the molecular mechanisms of insect response to UVA radiation, suppression subtractive hybridization (SSH) and real-time quantitative polymerase chain reaction approaches were combined to reveal differential transcript expression in Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). In this study, two subtractive cDNA libraries were constructed and sequenced, obtaining 131 high-quality unique expressed sequence tags (ESTs) that were up- or downregulated in D. melanogaster exposed to UVA radiation for 0.5 h. Of the 131 ESTs, 102 unique ESTs were differentially expressed and classified into 10 functional categories. The results showed that UVA radiation induces expression of genes related to stress and defense response and metabolism. Potential transcription factor binding motifs upstream of these genes are associated with multiple signaling pathways that may help the insect cope with the stress of UVA radiation. To our knowledge, this is the first analysis of insect response to UVA radiation at the transcriptional level. Our results reveal that UVA radiation influences the expression profiles of stress-responsive genes and provide further insights into the mechanisms of adaptive response to UVA radiation stress.
Collapse
Affiliation(s)
- Li-Jun Zhou
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Shizi Moutain Rd., Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
21
|
Insausti TC, Le Gall M, Lazzari CR. Oxidative stress, photodamage and the role of screening pigments in insect eyes. ACTA ACUST UNITED AC 2013; 216:3200-7. [PMID: 23661779 DOI: 10.1242/jeb.082818] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using red-eyed mutant triatomine bugs (Hemiptera: Reduvidae), we tested the hypothesis of an alternative function of insect screening pigments against oxidative stress. To test our hypothesis, we studied the morphological and physiological changes associated with the mutation. We found that wild-type eyes possess a great amount of brown and red screening pigment inside the primary and secondary pigment cells as well as in the retinular cells. Red-eyed mutants, however, have only scarce red granules inside the pigmentary cells. We then compared the visual sensitivity of red-eyed mutants and wild types by measuring the photonegative responses of insects reared in light:dark cycles [12 h:12 h light:dark (LD)] or constant darkness (DD). Finally, we analyzed both the impact of oxidative stress associated with blood ingestion and photodamage of UV light on the eye retina. We found that red-eyed mutants reared in DD conditions were the most sensitive to the light intensities tested. Retinae of LD-reared mutants were gradually damaged over the life cycle, while for DD-reared insects retinae were conserved intact. No retinal damage was observed in non-fed mutants exposed to UV light for 2 weeks, whereas insects fed on blood prior to UV exposure showed clear signs of retinal damage. Wild-type insects exposed to UV light showed a marked increase in the amount and density of screening pigments.
Collapse
Affiliation(s)
- Teresita C Insausti
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université François Rabelais, Tours, France
| | | | | |
Collapse
|
22
|
Wang Y, Wang L, Zhu Z, Ma W, Lei C. The molecular characterization of antioxidant enzyme genes in Helicoverpa armigera adults and their involvement in response to ultraviolet-A stress. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1250-1258. [PMID: 22750691 DOI: 10.1016/j.jinsphys.2012.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 06/01/2023]
Abstract
Ultraviolet (UV) radiation can cause oxidative stress in insects. To gain insight into the roles of different antioxidant enzymes of Helicoverpa armigera adults in response to oxidative stress caused by UV-A at a molecular level, three antioxidant enzyme genes [encoding copper zinc superoxide dismutase (Cu/ZnSOD), catalase (CAT) and glutathione peroxidase (GPX)] were cloned. The deduced amino acid sequences of these genes are similar to that of other insects. In addition, the expression profiles of genes from a classic antioxidant defense system, comprising Cu/ZnSOD, manganese superoxide dismutase (MnSOD), CAT, thioredoxin peroxidase, GPX and glutathione-S-transferase, were also determined. The results indicated that all antioxidant enzyme genes (except MnSOD in females) were significantly upregulated at certain time points (from 30 to 90min) in both male and female adults of H. armigera following UV-A radiation. We also found that longer periods of radiation exposure did not yield higher levels of mRNA expression. Furthermore, changes of determined physiological parameters (glutathione, Cu/ZnSOD and MnSOD activity) were basically consistent with the gene expression profiles. We therefore infer that the different antioxidant enzymes of H. armigera act in a coordinated manner at the transcriptional level against oxidative stress caused by UV-A radiation.
Collapse
Affiliation(s)
- Yong Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
23
|
Sang W, Ma WH, Qiu L, Zhu ZH, Lei CL. The involvement of heat shock protein and cytochrome P450 genes in response to UV-A exposure in the beetle Tribolium castaneum. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:830-836. [PMID: 22430495 DOI: 10.1016/j.jinsphys.2012.03.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 05/31/2023]
Abstract
Sunlight is an important environmental factor that affects all living organisms on Earth. Ultraviolet A (UV-A) is one of the many frequency bands found in sunlight. Many animals use UV-A to attain visual cues, for example, in foraging and mate selection. However, UV-A can also induce damage, such as oxidative stress, DNA lesions and apoptosis. In the present study, we investigated the effects of UV-A on the survival, fecundity and expression profiles of several stress-responsive genes belonging to the heat shock protein (Hsp) and the cytochrome CYP6BQ families from the adult red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). The results showed that short-term UV-A exposure (365 nm, <4h) did not influence the survival or fecundity of the beetles; however, Hsp27, Hsp68, Hsp83, CYP6BQ4 and CYP6BQ8 mRNA levels significantly increased during the first 2h of UV-A exposure. Among them, Hsp68 was the most highly up-regulated, increasing by 8.9-fold. These results indicate that these genes may participate in the defense against harmful UV-A radiation. In addition, we investigated the potential transcription factor binding motifs (TFBMs) in the promoter sequences of genes induced in similar pattern from the Hsp and P450 gene families; the results indicated that, these motifs are highly homologous to environmental stress transcription factor binding sites in mammals. Our experiments revealed that UV-A irradiation could influence the expression profile of stress-responsive genes, such as Hsps and P450s, which have universal TFBMs, and that these genes may be involved in reducing the ecological challenges posed by irradiation.
Collapse
Affiliation(s)
- Wen Sang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Institute of Insect Resources, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Mishra M, Meyer-Rochow VB. Eyes of male and female Orgyia antiqua (Lepidoptera; Lymantriidae) react differently to an exposure with UV-A. Micron 2008; 39:471-80. [PMID: 17419066 DOI: 10.1016/j.micron.2007.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 01/31/2007] [Accepted: 02/01/2007] [Indexed: 11/25/2022]
Abstract
The structural organization of the eyes belonging to 12 winged male and 12 wingless female Orgyia antiqua moths, exposed for 1 h to UV-radiation (lambda(max)=351 nm) of 1.4 kW/m2, was compared with that of 12 male and 12 female non-irradiated control specimens. Following the UV-exposure, the screening pigments were found in a position indicative of extreme light-adaptation. Extensive formations of vesicles along the perimeter of the cones as well as disintegrating ER in the cone cytoplasm were noticeable, especially in the eye of the female. On the retinal side of the clearzone, the microvilli of the rhabdoms had become affected by the UV in characteristic ways: in the male eye, retinal cell damage in the form of microvillar swellings and disintegrations were largely confined to just two cells per ommatidium, placed opposite to each other. The female eye, once again, exhibited greater vulnerability and more widespread microvillar disruptions that affected all of the ommatidial retinula cells. The greater resistance of the eye of the male to an exposure with UV makes sense, if we consider the consequences of the retinal damage, which would clearly be a more severe handicap for an actively flying individual than for an almost sedentary one like the wingless female.
Collapse
Affiliation(s)
- Monalisa Mishra
- Faculty of Engineering and Sciences, Jacobs University (formerly known as International University Bremen), P.O. Box 750561, D-28725 Bremen, Germany
| | | |
Collapse
|
26
|
Meyer-Rochow VB, Mishra M. Structure and putative function of dark- and light-adapted as well as UV-exposed eyes of the food store pest Psyllipsocus ramburi Sélys-longchamps (Insecta: Psocoptera: Psyllipsocidae). JOURNAL OF INSECT PHYSIOLOGY 2007; 53:157-69. [PMID: 17196612 DOI: 10.1016/j.jinsphys.2006.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/13/2006] [Accepted: 11/15/2006] [Indexed: 05/13/2023]
Abstract
The psocopteran Psyllipsocus ramburi Sélys-Longchamps can render food stuffs unpalatable and may serve as an intermediate host for cestodes. Its two circular compound eyes consist of about 26 facets, capped by strongly convexly curved corneae of 10-18 microm in diameter. Corneal nipples or interommatidial hairs are not developed. Beneath each corneal lens a cluster of four cone cells, enveloped by two primary pigment cells, separates an ommatidial group of eight retinula cells from the inner corneal surface. Membrane specializations of the retinula cells, known as the microvilli, measure 60 nm in diameter, and collectively make up the rhabdom, which is columnar in shape and has a distal diameter of 4 or 5 microm, depending on whether it is day- or night-adapted. Cone cell lengths measure 4.5 microm during the day and 8.5 microm at night and retinula cell screening pigments closely approach the edge of the rhabdom during the day. A 1-h exposure to UV-A (lambda(max)=351 nm) of ca. 1200 lx causes an almost total destruction of the photoreceptive membranes of the rhabdom and bleached all retinula cell screening pigments, but not the pigment grains of the primary pigment cells. Calculations, based on the anatomical data, suggest that the eyes are adapted to function under dim light levels, but cannot produce sharp images since their best possible acceptance angles are 22 degrees and 28 degrees in light- and dark-adapted states, respectively. Destruction of vision, likely affecting biorhythm and reproduction, by exposing the insects to UV-A may offer an alternative to the use of chemicals in controlling these insects.
Collapse
Affiliation(s)
- Victor Benno Meyer-Rochow
- International University Bremen, Faculty of Engineering and Sciences, D-28725 Bremen, P.O. Box 750561, Germany.
| | | |
Collapse
|
27
|
Meyer-Rochow VB, Reid WA, Gal J. An ultrastructural study of the eye of Gomphiocephalus hodgsoni, a collembolan from Antarctica. Polar Biol 2004. [DOI: 10.1007/s00300-004-0672-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
de Oliveira Miguel NC, Meyer-Rochow VB, Allodi S. A structural study of the retinal photoreceptor, plexiform and ganglion cell layers following exposure to UV-B and UV-C radiation in the albino rat. Micron 2003; 34:395-404. [PMID: 14680926 DOI: 10.1016/s0968-4328(03)00081-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2003] [Revised: 06/03/2003] [Accepted: 06/12/2003] [Indexed: 01/12/2023]
Abstract
Over the last two decades, ultraviolet radiation levels (UV), reaching the Earth's surface, have been increasing at a rate of 1.5% per each 1% loss of the ozone layer. Moreover, artificial UV-sources have also proliferated and contributed to the rising UV-stress that many organisms have to face. To assess how the vertebrate retina responds to an exposure of short wavelength UV, we focused our attention on the rat retina, observing photoreceptor (containing outer and inner segments of rods and cones), inner plexiform, and ganglion cell layers by light and transmission electron microscopy using conventional and cytochemical techniques. We analyzed how cells of the layers in question responded to a 30 min exposure to UV-C and UV-B radiation with doses of 7200 and 590 J/cm(2), respectively. The results show that there are significant changes in the nuclei and cytoplasmic organelles of the exposed retinae when compared with those of the unexposed controls. The changes include an increase in heterochromatin, distension of rough endoplasmic reticulum, mitochondrial disruptions, and increases in the number of myelin bodies. The recorded morphological changes, especially those of the ganglion cells, are suggestive of apoptotic processes and show that the exposure of vertebrate retina to wavelengths ranging from 254 to 312 nm can produce alterations that are likely to impact negatively on the retina's proper functioning.
Collapse
Affiliation(s)
- Nadia Campos de Oliveira Miguel
- Departamento de Histologia e Embriologia, Centro de Ciencias da Saude (CCS), Instituto de Ciencias Biomedicas (ICB), Universidade Federal do Rio de Janeiro, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
29
|
de Oliveira Miguel NC, Meyer-Rochow VB, Allodi S. Ultrastructural study of first and second order neurons in the visual system of the crab Ucides cordatus following exposure to ultraviolet radiation. Micron 2003; 33:627-37. [PMID: 12475559 DOI: 10.1016/s0968-4328(02)00030-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The visual system as an interface between the environment and the living organism can serve as a sensitive indicator especially in studies that deal with effects of radiation. The crab retina as the seat of the photoreceptors and the lamina ganglionaris as the place of second order neurons were the targets of our study. Conventional specimen preparation techniques for transmission electron microscopy (TEM) are adequate to preserve any modifications that may occur as a consequence of the experimental treatment. In this study we analyzed by TEM how retinal and lamina ganglionaris cells of the crab Ucides cordatus responded to a 30 min exposure to ultraviolet C (UV-C) and ultraviolet B (UV-B) radiation with doses of 7200 and 590J/cm(2), respectively. The results show that damaged cells occurred in both retina and lamina ganglionaris, but that the retinal cells were affected to a greater extent. Morphological alterations of the pigment granules and an increase in the quantity of lipid droplets of the retinal cells were also observed. Additional changes include an increase in heterochromatin, nuclear karyolyses and karyorrhexes, distention of rough endoplasmic reticulum and mitochondrial disruptions. The observed morphological changes are indicative of apoptotic processes and show that an exposure to light of wavelengths of 254 and 312 nm may be injurious to the visual system of invertebrates.
Collapse
Affiliation(s)
- Nádia Campos de Oliveira Miguel
- Departamento de Histologia e Embriologia, Centro de Ciências da Saude, Instituto de Ciencias Biomédicas, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
30
|
Keskinen E, Takaku Y, Meyer-Rochow VB, Hariyama T. Postembryonic eye growth in the seashore isopod Ligia exotica (Crustacea, Isopoda). THE BIOLOGICAL BULLETIN 2002; 202:223-231. [PMID: 12086993 DOI: 10.2307/1543472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The eye of Ligia exotica is of the apposition type and has open rhabdoms. The facets are hexagonal, and the dioptric apparatus consists of a flat cornea and a spherical crystalline cone placed in the center of two large cone cells. Each ommatidium has seven regular retinula cells and one eccentric cell; a basement membrane forms the proximal boundary of the retina. With increases in body size from 0.6 to almost 4.0 cm, facet numbers and ommatidial diameters increased from 800 to 1500 and 35 microm to 100 microm, respectively; eye length and width grew from 1.2 to 3.2 and 0.9 to 2.5 mm, respectively; and length of dioptric apparatus and width of retinal layer changed from 70 microm to 180 microm and about 70 microm to 120 microm. Visual angles and interommatidial angles of centrally located ommatidia remained constant at about 30 and 6.9 degrees, respectively. An almost perfect linear relationship was found when eye length was plotted against the product between the square root of the total number of ommatidia and the ommatidial diameter. No difference between males and females was observed in any of the relationships, but the results suggest that, compared with smaller specimens, larger ones possess increased absolute sensitivity in single ommatidia, increased sensitivity to point sources, and overall larger angular visual fields for the eye in its totality. This means that larger individuals of L. exotica (which are also faster) have an advantage over smaller individuals at night, but that smaller individuals may cope better with bright lights. Vision in L. exotica seems useful not only in detecting potential danger, but also in locating and approaching cliffs from a distance of 2-4 m when swimming in seawater.
Collapse
Affiliation(s)
- Essi Keskinen
- Department of Biology, University of Oulu, P.O. Box 3000, Finland
| | | | | | | |
Collapse
|