1
|
Lu ZY, Liao X, Jing WW, Liu KK, Ren QG, He YC, Hu D. Rational mutagenesis of an epoxide hydrolase and its structural mechanism for the enantioselectivity improvement toward chiral ortho-fluorostyrene oxide. Int J Biol Macromol 2024; 282:136864. [PMID: 39476898 DOI: 10.1016/j.ijbiomac.2024.136864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
Chiral (S)-o-fluorostyrene oxide (oFSO) and vicinal diol (R)-o-fluorophenylethane-1,2-diol (oFPED) are important intermediates for synthesizing treatments for neuropathic diseases. This study aimed to engineer Aspergillus usamii epoxide hydrolase (AuEH2) through a rational mutagenesis strategy to customize high enantioselectivity mutant for rac-oFSO. Out of 181 single-site mutants screened, six showed elevated enantiomeric ratio (E value) ranging from 32 to 108 according to E value and activity mutability landscapes. By combinatorial mutagenesis of A250I with other five single-site mutants, we constructed five double-site mutants, with the best-performing mutant, D5 (A250I/L344V), achieving an E value of 180. This mutant enabled the efficient kinetic resolution of 400 mM rac-oFSO in pure water system using E. coli/Aueh2A250I/L344V, yielding (S)-oFSO (>99 % ees, 50 % yields) and (R)-oFPED (>99 % eep, 50 % yieldp) with space-time yields (STYs) of 331.5 and 376.1 g/L/d, respectively. Combining crystal structure resolution with theoretical computations clarified the enantioselectivity mechanism of D5, demonstrating that A250I reduced the funnel-shaped substrate binding pocket (SBP) while L344V extended its bottom, enhancing specific recognition of (R)-oFSO and inhibiting (S)-oFSO hydrolysis. These findings provide valuable insights for designing highly enantioselective enzyme mutants, advancing the field of asymmetric synthesis of chiral compounds using green biocatalytic processes.
Collapse
Affiliation(s)
- Zhi-Yi Lu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Xiang Liao
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Wei-Wei Jing
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Kang-Kai Liu
- Changzhou Kaikang Biotechnology Co., Ltd., Changzhou 213164, PR China
| | - Qing-Gong Ren
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Die Hu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
2
|
Hwang J, Lee MJ, Lee SG, Do H, Lee JH. Structural insights into the distinct substrate preferences of two bacterial epoxide hydrolases. Int J Biol Macromol 2024; 264:130419. [PMID: 38423431 DOI: 10.1016/j.ijbiomac.2024.130419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/22/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Epoxide hydrolases (EHs), which catalyze the transformation of epoxides to diols, are present in many eukaryotic and prokaryotic organisms. They have recently drawn considerable attention from organic chemists owing to their application in the semisynthesis of enantiospecific diol compounds. Here, we report the crystal structures of BoEH from Bosea sp. PAMC 26642 and CaEH from Caballeronia sordidicola PAMC 26510 at 1.95 and 2.43 Å resolution, respectively. Structural analysis showed that the overall structures of BoEH and CaEH commonly possess typical α/β hydrolase fold with the same ring-opening residues (Tyr-Tyr) and conserved catalytic triad residues (Asp-Asp-His). However, the two enzymes were found to have significantly different sequence compositions in the cap domain region, which is involved in the formation of the substrate-binding site in both enzymes. Enzyme activity assay results showed that BoEH had the strongest activity toward the linear aliphatic substrates, whereas CaEH had a higher preference for aromatic- and cycloaliphatic substrates. Computational docking simulations and tunnel identification revealed important residues with different substrate-binding preferences. Collectively, structure comparison studies, together with ligand docking simulation results, suggested that the differences in substrate-binding site residues were highly correlated with substrate specificity.
Collapse
Affiliation(s)
- Jisub Hwang
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Min Ju Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sung Gu Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Hackwon Do
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea.
| | - Jun Hyuck Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea.
| |
Collapse
|
3
|
Bučko M, Kaniaková K, Hronská H, Gemeiner P, Rosenberg M. Epoxide Hydrolases: Multipotential Biocatalysts. Int J Mol Sci 2023; 24:7334. [PMID: 37108499 PMCID: PMC10138715 DOI: 10.3390/ijms24087334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Epoxide hydrolases are attractive and industrially important biocatalysts. They can catalyze the enantioselective hydrolysis of epoxides to the corresponding diols as chiral building blocks for bioactive compounds and drugs. In this review article, we discuss the state of the art and development potential of epoxide hydrolases as biocatalysts based on the most recent approaches and techniques. The review covers new approaches to discover epoxide hydrolases using genome mining and enzyme metagenomics, as well as improving enzyme activity, enantioselectivity, enantioconvergence, and thermostability by directed evolution and a rational design. Further improvements in operational and storage stabilization, reusability, pH stabilization, and thermal stabilization by immobilization techniques are discussed in this study. New possibilities for expanding the synthetic capabilities of epoxide hydrolases by their involvement in non-natural enzyme cascade reactions are described.
Collapse
Affiliation(s)
- Marek Bučko
- Department of Glycobiotechnology, Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia;
| | - Katarína Kaniaková
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (K.K.); (H.H.); (M.R.)
| | - Helena Hronská
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (K.K.); (H.H.); (M.R.)
| | - Peter Gemeiner
- Department of Glycobiotechnology, Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia;
| | - Michal Rosenberg
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (K.K.); (H.H.); (M.R.)
| |
Collapse
|
4
|
Borovsky D, Van Ekert E, Buytaert E, Peeters T, Rougé P. Cloning and characterization of Aedes aegypti juvenile hormone epoxide hydrolases (JHEHs). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21977. [PMID: 36254855 DOI: 10.1002/arch.21977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Juvenile hormone epoxide hydrolase (JHEH) plays an important role in the metabolism of juvenile hormone III (JH III) in insects. To study the role that JHEH plays in female Aedes aegypti JHEH 1, 2, and 3 complementary DNA (cDNAs) were cloned and sequenced. Northern blot analyses show that the three transcripts are expressed in the head thorax, the gut, the ovaries, and the fat body of females. Molecular modeling shows that the enzyme is a homodimer that binds JH III acid (JH IIIA) at the catalytic groove better than JH III. The cDNA of JHEH 1 and 2 are very similar indicating close relationship. Knocking down of jheh 1, 2, and 3 in adult female and larval Ae. aegypti using double-stranded RNA (dsRNA) did not affect egg development or caused adult mortality. Larvae that were fed bacterial cells expressing dsRNA against jheh 1, 2, and 3 grew normally. Treating blood-fed female Ae. aegypti with [12-3 H](10R) JH III and analyzing the metabolites by C18 reversed phase chromatography showed that JHEH preferred substrate is not JH III but JH IIIA. Genomic analysis of jheh 1, 2, and 3 indicate that jheh 1 and 2 are transcribed from a 1.53 kb DNA whereas jheh 3 is transcribed from a 10.9 kb DNA. All three genes are found on chromosome two at distinct locations. JHEH 2 was expressed in bacterial cells and purified by Ni affinity chromatography. Sequencing of the recombinant protein by MS/MS identified JHEH 2 as the expressed recombinant protein.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Tom Peeters
- Open BioLab Brussels, Erasmushogeschool, Brussels, Belgium
| | - Pierre Rougé
- Faculte des Sciences Pharmaceutiques, Toulouse, France
| |
Collapse
|
5
|
Characterization reveals a putative Epoxide hydrolase from Yarrowia lipolytica with the ability to convert rac-1,2-epoxyhexane to (R)-diol. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Borovsky D, Breyssens H, Buytaert E, Peeters T, Laroye C, Stoffels K, Rougé P. Cloning and Characterization of Drosophila melanogaster Juvenile Hormone Epoxide Hydrolases (JHEH) and Their Promoters. Biomolecules 2022; 12:biom12070991. [PMID: 35883546 PMCID: PMC9313241 DOI: 10.3390/biom12070991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
Juvenile hormone epoxide hydrolase (JHEH) plays an important role in the metabolism of JH III in insects. To study the control of JHEH in female Drosophila melanogaster, JHEH 1, 2 and 3 cDNAs were cloned and sequenced. Northern blot analyses showed that the three transcripts are expressed in the head thorax, the gut, the ovaries and the fat body of females. Molecular modeling shows that the enzyme is a homodimer that binds juvenile hormone III acid (JH IIIA) at the catalytic groove better than JH III. Analyses of the three JHEH promoters and expressing short promoter sequences behind a reporter gene (lacZ) in D. melanogaster cell culture identified a JHEH 3 promoter sequence (626 bp) that is 10- and 25-fold more active than the most active promoter sequences of JHEH 2 and JHEH 1, respectively. A transcription factor (TF) Sp1 that is involved in the activation of JHEH 3 promoter sequence was identified. Knocking down Sp1 using dsRNA inhibited the transcriptional activity of this promoter in transfected D. melanogaster cells and JH III and 20HE downregulated the JHEH 3 promoter. On the other hand, JH IIIA and farnesoic acid did not affect the promoter, indicating that JH IIIA is JHEH's preferred substrate. A transgenic D. melanogaster expressing a highly activated JHEH 3 promoter behind a lacZ reporter gene showed promoter transcriptional activity in many D. melanogaster tissues.
Collapse
Affiliation(s)
- Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence:
| | - Hilde Breyssens
- Zoological Institute, KU Leuven, 3000 Leuven, Belgium; (H.B.); (E.B.); (T.P.); (C.L.); (K.S.)
| | - Esther Buytaert
- Zoological Institute, KU Leuven, 3000 Leuven, Belgium; (H.B.); (E.B.); (T.P.); (C.L.); (K.S.)
| | - Tom Peeters
- Zoological Institute, KU Leuven, 3000 Leuven, Belgium; (H.B.); (E.B.); (T.P.); (C.L.); (K.S.)
- Open BioLab Brussels, Erasmushogeschool Brussels, 1210 Brussels, Belgium
| | - Carole Laroye
- Zoological Institute, KU Leuven, 3000 Leuven, Belgium; (H.B.); (E.B.); (T.P.); (C.L.); (K.S.)
| | - Karolien Stoffels
- Zoological Institute, KU Leuven, 3000 Leuven, Belgium; (H.B.); (E.B.); (T.P.); (C.L.); (K.S.)
| | - Pierre Rougé
- Faculte des Sciences Pharmaceutiques, 31400 Tolouse, France;
| |
Collapse
|
7
|
Tseng YY, Sanders MA, Zhang H, Zhou L, Chou CY, Granneman JG. Structural and functional insights into ABHD5, a ligand-regulated lipase co-activator. Sci Rep 2022; 12:2565. [PMID: 35173175 PMCID: PMC8850477 DOI: 10.1038/s41598-021-04179-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023] Open
Abstract
Alpha/beta hydrolase domain-containing protein 5 (ABHD5) is a highly conserved protein that regulates various lipid metabolic pathways via interactions with members of the perilipin (PLIN) and Patatin-like phospholipase domain-containing protein (PNPLA) protein families. Loss of function mutations in ABHD5 result in Chanarin-Dorfman Syndrome (CDS), characterized by ectopic lipid accumulation in numerous cell types and severe ichthyosis. Recent data demonstrates that ABHD5 is the target of synthetic and endogenous ligands that might be therapeutic beneficial for treating metabolic diseases and cancers. However, the structural basis of ABHD5 functional activities, such as protein-protein interactions and ligand binding is presently unknown. To address this gap, we constructed theoretical structural models of ABHD5 by comparative modeling and topological shape analysis to assess the spatial patterns of ABHD5 conformations computed in protein dynamics. We identified functionally important residues on ABHD5 surface for lipolysis activation by PNPLA2, lipid droplet targeting and PLIN-binding. We validated the computational model by examining the effects of mutating key residues in ABHD5 on an array of functional assays. Our integrated computational and experimental findings provide new insights into the structural basis of the diverse functions of ABHD5 as well as pathological mutations that result in CDS.
Collapse
Affiliation(s)
- Yan Yuan Tseng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA.
| | - Matthew A Sanders
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Huamei Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Li Zhou
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Chia-Yi Chou
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - James G Granneman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
8
|
Lim H, Jeon HN, Lim S, Jang Y, Kim T, Cho H, Pan JG, No KT. Evaluation of protein descriptors in computer-aided rational protein engineering tasks and its application in property prediction in SARS-CoV-2 spike glycoprotein. Comput Struct Biotechnol J 2022; 20:788-798. [PMID: 35222841 PMCID: PMC8841378 DOI: 10.1016/j.csbj.2022.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of protein engineering in the research and development of biopharmaceuticals and biomaterials has increased. Machine learning in computer-aided protein engineering can markedly reduce the experimental effort in identifying optimal sequences that satisfy the desired properties from a large number of possible protein sequences. To develop general protein descriptors for computer-aided protein engineering tasks, we devised new protein descriptors, one sequence-based descriptor (PCgrades), and three structure-based descriptors (PCspairs, 3D-SPIEs_5.4 Å, and 3D-SPIEs_8Å). While the PCgrades and PCspairs include general and statistical information in physicochemical properties in single and pairwise amino acids respectively, the 3D-SPIEs include specific and quantum–mechanical information with parameterized quantum mechanical calculations (FMO2-DFTB3/D/PCM). To evaluate the protein descriptors, we made prediction models with the new descriptors and previously developed descriptors for diverse protein datasets including protein expression and binding affinity change in SARS-CoV-2 spike glycoprotein. As a result, the newly devised descriptors showed a good performance in diverse datasets, in which the PCspairs showed the best performance (R2=0.783 for protein expression and R2=0.711 for binding affinity). As a result, the newly devised descriptors showed a good performance in diverse datasets, in which the PCspairs showed the best performance. Similar approaches with those descriptors would be promising and useful if the prediction models are trained with sufficient quantitative experimental data from high-throughput assays for industrial enzymes or protein drugs.
Collapse
|
9
|
Reetz MT, Garcia-Borràs M. The Unexplored Importance of Fleeting Chiral Intermediates in Enzyme-Catalyzed Reactions. J Am Chem Soc 2021; 143:14939-14950. [PMID: 34491742 PMCID: PMC8461649 DOI: 10.1021/jacs.1c04551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 02/07/2023]
Abstract
Decades of extensive research efforts by biochemists, organic chemists, and protein engineers have led to an understanding of the basic mechanisms of essentially all known types of enzymes, but in a formidable number of cases an essential aspect has been overlooked. The occurrence of short-lived chiral intermediates formed by symmetry-breaking of prochiral precursors in enzyme catalyzed reactions has been systematically neglected. We designate these elusive species as fleeting chiral intermediates and analyze such crucial questions as "Do such intermediates occur in homochiral form?" If so, what is the absolute configuration, and why did Nature choose that particular stereoisomeric form, even when the isolable final product may be achiral? Does the absolute configuration of a chiral product depend in any way on the absolute configuration of the fleeting chiral precursor? How does this affect the catalytic proficiency of the enzyme? If these issues continue to be unexplored, then an understanding of the mechanisms of many enzyme types remains incomplete. We have systematized the occurrence of these chiral intermediates according to their structures and enzyme types. This is followed by critical analyses of selected case studies and by final conclusions and perspectives. We hope that the fascinating concept of fleeting chiral intermediates will attract the attention of scientists, thereby opening an exciting new research field.
Collapse
Affiliation(s)
- Manfred T. Reetz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Marc Garcia-Borràs
- Institute
of Computational Chemistry and Catalysis (IQCC) and Departament de
Química, Universitat de Girona, Carrer Maria Aurèlia Capmany
69, 17003 Girona, Spain
| |
Collapse
|
10
|
Gautheron J, Morisseau C, Chung WK, Zammouri J, Auclair M, Baujat G, Capel E, Moulin C, Wang Y, Yang J, Hammock BD, Cerame B, Phan F, Fève B, Vigouroux C, Andreelli F, Jeru I. EPHX1 mutations cause a lipoatrophic diabetes syndrome due to impaired epoxide hydrolysis and increased cellular senescence. eLife 2021; 10:68445. [PMID: 34342583 PMCID: PMC8331186 DOI: 10.7554/elife.68445] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Epoxide hydrolases (EHs) regulate cellular homeostasis through hydrolysis of epoxides to less-reactive diols. The first discovered EH was EPHX1, also known as mEH. EH functions remain partly unknown, and no pathogenic variants have been reported in humans. We identified two de novo variants located in EPHX1 catalytic site in patients with a lipoatrophic diabetes characterized by loss of adipose tissue, insulin resistance, and multiple organ dysfunction. Functional analyses revealed that these variants led to the protein aggregation within the endoplasmic reticulum and to a loss of its hydrolysis activity. CRISPR-Cas9-mediated EPHX1 knockout (KO) abolished adipocyte differentiation and decreased insulin response. This KO also promoted oxidative stress and cellular senescence, an observation confirmed in patient-derived fibroblasts. Metreleptin therapy had a beneficial effect in one patient. This translational study highlights the importance of epoxide regulation for adipocyte function and provides new insights into the physiological roles of EHs in humans.
Collapse
Affiliation(s)
- Jeremie Gautheron
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, United States.,Deparment of Medicine, Columbia University Irving Medical Center, New York, United States
| | - Jamila Zammouri
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Martine Auclair
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Genevieve Baujat
- Service de Génétique Clinique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Emilie Capel
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Celia Moulin
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Yuxin Wang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Jun Yang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, United States
| | - Barbara Cerame
- Goryeb Children's Hospital, Atlantic Health Systems, Morristown Memorial Hospital, Morristown, United States
| | - Franck Phan
- Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Service de Diabétologie-Métabolisme, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Sorbonne Université-Inserm UMRS_1269, Paris, France
| | - Bruno Fève
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Centre National de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service de Diabétologie et Endocrinologie de la Reproduction, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Corinne Vigouroux
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Centre National de Référence des Pathologies Rares de l'Insulino-Sécrétion et de l'Insulino-Sensibilité (PRISIS), Service de Diabétologie et Endocrinologie de la Reproduction, Hôpital Saint-Antoine, AP-HP, Paris, France.,Laboratoire commun de Biologie et Génétique Moléculaires, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Fabrizio Andreelli
- Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Service de Diabétologie-Métabolisme, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Sorbonne Université-Inserm UMRS_1269, Paris, France
| | - Isabelle Jeru
- Sorbonne Université-Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Institute of Cardiometabolism and Nutrition (ICAN), CHU Pitié-Salpêtrière - Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Laboratoire commun de Biologie et Génétique Moléculaires, Hôpital Saint-Antoine, AP-HP, Paris, France
| |
Collapse
|
11
|
Wen Z, Hu D, Hu BC, Zhang D, Huang JF, Wu MC. Structure-guided improvement in the enantioselectivity of an Aspergillus usamii epoxide hydrolase for the gram-scale kinetic resolution of ortho-trifluoromethyl styrene oxide. Enzyme Microb Technol 2021; 146:109778. [PMID: 33812566 DOI: 10.1016/j.enzmictec.2021.109778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 11/26/2022]
Abstract
Microtuning the substrate-binding pocket (SBP) of EHs has emerged as an effective approach to manipulate their enantio- or regio-selectivities and activities towards target substrates. Here, the enantioselectivity (enantiomeric ratio, E) of AuEH2 towards a racemic (rac-) ortho-trifluoromethyl styrene oxide (o-TFMSO) was improved via microtuning its SBP. Based on the analysis on the crystal structure of AuEH2, its specific residues I192, Y216, R322 and L344 lining the SBP in close to the catalytic triad were identified for site-saturation mutagenesis. After screening, five single-site mutants were selected with E values elevated from 8 to 12-25 towards rac-o-TFMSO. To further improve E, four double-site mutants were constructed by combinatorial mutagenesis of AuEH2R322V separately with AuEH2I192V, AuEH2Y216F, AuEH2L344A and AuEH2L344C. Among all the mutants, AuEH2R322V/L344C possessed the largest E of 83 with activity of 67 U/g wet cell. The kinetic resolution of 200 mM rac-o-TFMSO was conducted at 0 °C for 5.5 h using 80 mg/mL wet cells of E. coli/Aueh2R322V/L344C, a transformant expressing AuEH2R322V/L344C, retaining (S)-o-TFMSO with 98.4 % ees and 49.3 % yields. Furthermore, the molecular docking simulation analysis indicated that AuEH2R322V/L344C more enantiopreferentially attacks the terminal carbon (Cβ) in the oxirane ring of (R)-o-TFMSO than AuEH2.
Collapse
Affiliation(s)
- Zheng Wen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Die Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, PR China
| | - Bo-Chun Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Dong Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Jian-Feng Huang
- The Affiliated Hospital of Jiangnan University, Wuxi, 214122, PR China.
| | - Min-Chen Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
12
|
Taher NM, Hvorecny KL, Burke CM, Gilman MS, Heussler GE, Adolf-Bryfogle J, Bahl CD, O'Toole GA, Madden DR. Biochemical and structural characterization of two cif-like epoxide hydrolases from Burkholderia cenocepacia. Curr Res Struct Biol 2021; 3:72-84. [PMID: 34235487 PMCID: PMC8244358 DOI: 10.1016/j.crstbi.2021.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 11/04/2022] Open
Abstract
Epoxide hydrolases catalyze the conversion of epoxides to vicinal diols in a range of cellular processes such as signaling, detoxification, and virulence. These enzymes typically utilize a pair of tyrosine residues to orient the substrate epoxide ring in the active site and stabilize the hydrolysis intermediate. A new subclass of epoxide hydrolases that utilize a histidine in place of one of the tyrosines was established with the discovery of the CFTR Inhibitory Factor (Cif) from Pseudomonas aeruginosa. Although the presence of such Cif-like epoxide hydrolases was predicted in other opportunistic pathogens based on sequence analyses, only Cif and its homolog aCif from Acinetobacter nosocomialis have been characterized. Here we report the biochemical and structural characteristics of Cfl1 and Cfl2, two Cif-like epoxide hydrolases from Burkholderia cenocepacia. Cfl1 is able to hydrolyze xenobiotic as well as biological epoxides that might be encountered in the environment or during infection. In contrast, Cfl2 shows very low activity against a diverse set of epoxides. The crystal structures of the two proteins reveal quaternary structures that build on the well-known dimeric assembly of the α/β hydrolase domain, but broaden our understanding of the structural diversity encoded in novel oligomer interfaces. Analysis of the interfaces reveals both similarities and key differences in sequence conservation between the two assemblies, and between the canonical dimer and the novel oligomer interfaces of each assembly. Finally, we discuss the effects of these higher-order assemblies on the intra-monomer flexibility of Cfl1 and Cfl2 and their possible roles in regulating enzymatic activity.
Collapse
Affiliation(s)
- Noor M. Taher
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Kelli L. Hvorecny
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Cassandra M. Burke
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Morgan S.A. Gilman
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Gary E. Heussler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jared Adolf-Bryfogle
- Institute for Protein Innovation, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christopher D. Bahl
- Institute for Protein Innovation, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - George A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Dean R. Madden
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
13
|
The Multifaceted Role of Epoxide Hydrolases in Human Health and Disease. Int J Mol Sci 2020; 22:ijms22010013. [PMID: 33374956 PMCID: PMC7792612 DOI: 10.3390/ijms22010013] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
Epoxide hydrolases (EHs) are key enzymes involved in the detoxification of xenobiotics and biotransformation of endogenous epoxides. They catalyze the hydrolysis of highly reactive epoxides to less reactive diols. EHs thereby orchestrate crucial signaling pathways for cell homeostasis. The EH family comprises 5 proteins and 2 candidate members, for which the corresponding genes are not yet identified. Although the first EHs were identified more than 30 years ago, the full spectrum of their substrates and associated biological functions remain partly unknown. The two best-known EHs are EPHX1 and EPHX2. Their wide expression pattern and multiple functions led to the development of specific inhibitors. This review summarizes the most important points regarding the current knowledge on this protein family and highlights the particularities of each EH. These different enzymes can be distinguished by their expression pattern, spectrum of associated substrates, sub-cellular localization, and enzymatic characteristics. We also reevaluated the pathogenicity of previously reported variants in genes that encode EHs and are involved in multiple disorders, in light of large datasets that were made available due to the broad development of next generation sequencing. Although association studies underline the pleiotropic and crucial role of EHs, no data on high-effect variants are confirmed to date.
Collapse
|
14
|
Hu D, Hu BC, Wen Z, Zhang D, Liu YY, Zang J, Wu MC. Nearly perfect kinetic resolution of racemic o-nitrostyrene oxide by AuEH2, a microsomal epoxide hydrolase from Aspergillus usamii, with high enantio- and regio-selectivity. Int J Biol Macromol 2020; 169:1-7. [PMID: 33316339 DOI: 10.1016/j.ijbiomac.2020.12.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022]
Abstract
Only a few known epoxide hydrolases (EHs) displayed activity towards o-nitrostyrene oxide (4a), presumably owing to the large steric hindrance caused by o-nitro substituent. Therefore, excavating EHs with high activity and enantio- and/or regio-selectivity towards racemic (rac-) 4a is essential but challenging. Here, AuEH2 from Aspergillus usamii was expressed in E. coli BL21(DE3). E. coli/Aueh2, an E. coli transformant expressing AuEH2, possessed EH activities of 16.2-184 U/g wet cell towards rac-styrene oxide (1a) and its derivatives (2a-13a), and the largest enantiomeric ratio of 96 towards rac-4a. The regioselectivity coefficients, βR and βS, of AuEH2 were determined to be 99.2% and 98.9%, suggesting that it regiopreferentially attacks the Cβ in the oxirane rings of (R)- and (S)-4a. Then, the nearly perfect kinetic resolution of 20 mM rac-4a in pure water was carried out using 20 mg/mL wet cells of E. coli/Aueh2 at 25 °C for 50 min, retaining (S)-4a with over 99% ees and 48.9% yields, while producing (R)-o-nitrophenyl-1,2-ethanediol (4b) with 95.3% eep and 49.8% yieldp. To elucidate the molecular mechanism of AuEH2 with high enantiopreference for (R)-4a, its crystal structure was solved by X-ray diffraction and the molecular docking of AuEH2 with (R)- or (S)-4a was simulated.
Collapse
Affiliation(s)
- Die Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Bo-Chun Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zheng Wen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Dong Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - You-Yi Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Jia Zang
- The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, PR China.
| | - Min-Chen Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
15
|
Zhang C, Li C, Zhu XX, Liu YY, Zhao J, Wu MC. Highly regio- and enantio-selective hydrolysis of two racemic epoxides by GmEH3, a novel epoxide hydrolase from Glycine max. Int J Biol Macromol 2020; 164:2795-2803. [PMID: 32763395 DOI: 10.1016/j.ijbiomac.2020.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 11/29/2022]
Abstract
A novel epoxide hydrolase from Glycine max, designated GmEH3, was excavated based on the computer-aided analysis. Then, gmeh3, a GmEH3-encoding gene, was cloned and successfully expressed in E. coli Rosetta(DE3). Among the ten investigated rac-epoxides, GmEH3 possessed the highest and best complementary regioselectivities (regioselectivity coefficients, αS = 93.7% and βR = 97.2%) in the asymmetric hydrolysis of rac-m-chlorostyrene oxide (5a), and the highest enantioselectivity (enantiomeric ratio, E = 55.6) towards rac-phenyl glycidyl ether (7a). The catalytic efficiency (kcatS/KmS = 2.50 mM-1 s-1) of purified GmEH3 for (S)-5a was slightly higher than that (kcatR/KmR = 1.52 mM-1 s-1) for (R)-5a, whereas the kcat/Km (5.16 mM-1 s-1) for (S)-7a was much higher than that (0.09 mM-1 s-1) for (R)-7a. Using 200 mg/mL wet cells of E. coli/gmeh3 as the biocatalyst, the scale-up enantioconvergent hydrolysis of 150 mM rac-5a at 25 °C for 1.5 h afforded (R)-5b with 90.2% eep and 95.4% yieldp, while the kinetic resolution of 500 mM rac-7a for 2.5 h retained (R)-7a with over 99% ees and 43.2% yields. Furthermore, the sources of high regiocomplementarity of GmEH3 for (S)- and (R)-5a as well as high enantioselectivity towards rac-7a were analyzed via molecular docking (MD) simulation.
Collapse
Affiliation(s)
- Chen Zhang
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China
| | - Chuang Li
- College of Biological and Chemical Engineering, Auhui Polytechnic University, Wuhu 241000, PR China
| | - Xiu-Xiu Zhu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China
| | - You-Yi Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Jun Zhao
- The Affiliated Wuxi Matemity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, PR China.
| | - Min-Chen Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
16
|
Sarparast M, Dattmore D, Alan J, Lee KSS. Cytochrome P450 Metabolism of Polyunsaturated Fatty Acids and Neurodegeneration. Nutrients 2020; 12:E3523. [PMID: 33207662 PMCID: PMC7696575 DOI: 10.3390/nu12113523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Due to the aging population in the world, neurodegenerative diseases have become a serious public health issue that greatly impacts patients' quality of life and adds a huge economic burden. Even after decades of research, there is no effective curative treatment for neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) have become an emerging dietary medical intervention for health maintenance and treatment of diseases, including neurodegenerative diseases. Recent research demonstrated that the oxidized metabolites, particularly the cytochrome P450 (CYP) metabolites, of PUFAs are beneficial to several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease; however, their mechanism(s) remains unclear. The endogenous levels of CYP metabolites are greatly affected by our diet, endogenous synthesis, and the downstream metabolism. While the activity of omega-3 (ω-3) CYP PUFA metabolites and omega-6 (ω-6) CYP PUFA metabolites largely overlap, the ω-3 CYP PUFA metabolites are more active in general. In this review, we will briefly summarize recent findings regarding the biosynthesis and metabolism of CYP PUFA metabolites. We will also discuss the potential mechanism(s) of CYP PUFA metabolites in neurodegeneration, which will ultimately improve our understanding of how PUFAs affect neurodegeneration and may identify potential drug targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
| | - Devon Dattmore
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Jamie Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
17
|
Tormet-González GD, Wilson C, de Oliveira GS, dos Santos JC, de Oliveira LG, Dias MVB. An epoxide hydrolase from endophytic Streptomyces shows unique structural features and wide biocatalytic activity. Acta Crystallogr D Struct Biol 2020; 76:868-875. [PMID: 32876062 PMCID: PMC7466753 DOI: 10.1107/s2059798320010402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/28/2020] [Indexed: 11/12/2022] Open
Abstract
The genus Streptomyces is characterized by the production of a wide variety of secondary metabolites with remarkable biological activities and broad antibiotic capabilities. The presence of an unprecedented number of genes encoding hydrolytic enzymes with industrial appeal such as epoxide hydrolases (EHs) reveals its resourceful microscopic machinery. The whole-genome sequence of Streptomyces sp. CBMAI 2042, an endophytic actinobacterium isolated from Citrus sinensis branches, was explored by genome mining, and a putative α/β-epoxide hydrolase named B1EPH2 and encoded by 344 amino acids was selected for functional and structural studies. The crystal structure of B1EPH2 was obtained at a resolution of 2.2 Å and it was found to have a similar fold to other EHs, despite its hexameric quaternary structure, which contrasts with previously solved dimeric and monomeric EH structures. While B1EPH2 has a high sequence similarity to EHB from Mycobacterium tuberculosis, its cavity is similar to that of human EH. A group of 12 aromatic and aliphatic racemic epoxides were assayed to determine the activity of B1EPH2; remarkably, this enzyme was able to hydrolyse all the epoxides to the respective 1,2-diols, indicating a wide-range substrate scope acceptance. Moreover, the (R)- and (S)-enantiomers of styrene oxide, epichlorohydrin and 1,2-epoxybutane were used to monitor enantiopreference. Taken together, the functional and structural analyses indicate that this enzyme is an attractive biocatalyst for future biotechnological applications.
Collapse
Affiliation(s)
- Gabriela D. Tormet-González
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas-SP 3083-970, Brazil
| | - Carolina Wilson
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Avenida Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
- Department of Biology, IBILCE – University of State of São Paulo, São José do Rio Preto-SP 15054-000, Brazil
| | - Gabriel Stephani de Oliveira
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Avenida Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
| | - Jademilson Celestino dos Santos
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Avenida Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
| | - Luciana G. de Oliveira
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, Campinas-SP 3083-970, Brazil
| | - Marcio Vinicius Bertacine Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, Avenida Prof. Lineu Prestes 1374, São Paulo-SP 05508-000, Brazil
- Department of Biology, IBILCE – University of State of São Paulo, São José do Rio Preto-SP 15054-000, Brazil
- Department of Chemistry, University of Warwick, Warwick CV4 7AL, United Kingdom
| |
Collapse
|
18
|
Stojanovski G, Dobrijevic D, Hailes HC, Ward JM. Identification and catalytic properties of new epoxide hydrolases from the genomic data of soil bacteria. Enzyme Microb Technol 2020; 139:109592. [PMID: 32732040 PMCID: PMC7429986 DOI: 10.1016/j.enzmictec.2020.109592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 05/07/2020] [Indexed: 11/25/2022]
Abstract
Epoxide hydrolases (EHs) catalyse the conversion of epoxides into vicinal diols. These enzymes have extensive value in biocatalysis as they can generate enantiopure epoxides and diols which are important and versatile synthetic intermediates for the fine chemical and pharmaceutical industries. Despite these benefits, they have seen limited use in the bioindustry and novel EHs continue to be reported in the literature. We identified twenty-nine putative EHs within the genomes of soil bacteria. Eight of these EHs were explored in terms of their activity. Two limonene epoxide hydrolases (LEHs) and one ⍺/β EH were active on a model compound styrene oxide and its ring-substituted derivatives, with low to good percentage conversions of 18-86%. Further exploration of the substrate scope with enantiopure (R)-styrene oxide and (S)-styrene oxide, showed different epoxide ring opening regioselectivities. Two enzymes, expressed from plasmids pQR1984 and pQR1990 de-symmetrised the meso-epoxide cyclohexene oxide, forming the (R,R)-diol with high enantioselectivity. Two LEHs, from plasmids pQR1980 and pQR1982 catalysed the hydrolysis of (+) and (-) limonene oxide, with diastereomeric preference for the (1S,2S,4R)- and (1R,2R,4S)-diol products, respectively. The enzyme from plasmid pQR1982 had a good substrate scope for a LEH, being active towards styrene oxide, its analogues, cyclohexene oxide and 1,2-epoxyhexane in addition to (±)-limonene oxide. The enzymes from plasmids pQR1982 and pQR1984 had good substrate scopes and their enzymatic properties were characterised with respect to styrene oxide. They had comparable temperature optima and pQR1984 had 70% activity in the presence of 40% of the green solvent MeOH, a useful property for bio-industrial applications. Overall, this study has provided novel EHs with potential value in industrial biocatalysis.
Collapse
Affiliation(s)
- Gorjan Stojanovski
- Department of Biochemical Engineering, University College London, Bernard Katz, London WC1E 6BT, UK.
| | - Dragana Dobrijevic
- Department of Biochemical Engineering, University College London, Bernard Katz, London WC1E 6BT, UK.
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - John M Ward
- Department of Biochemical Engineering, University College London, Bernard Katz, London WC1E 6BT, UK.
| |
Collapse
|
19
|
Ou X, Peng F, Wu X, Xu P, Zong M, Lou W. Efficient protein expression in a robust Escherichia coli strain and its application for kinetic resolution of racemic glycidyl o-methylphenyl ether in high concentration. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Mitusińska K, Skalski T, Góra A. Simple Selection Procedure to Distinguish between Static and Flexible Loops. Int J Mol Sci 2020; 21:ijms21072293. [PMID: 32225102 PMCID: PMC7177474 DOI: 10.3390/ijms21072293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/02/2022] Open
Abstract
Loops are the most variable and unorganized elements of the secondary structure of proteins. Their ability to shift their shape can play a role in the binding of small ligands, enzymatic catalysis, or protein–protein interactions. Due to the loop flexibility, the positions of their residues in solved structures show the largest B-factors, or in a worst-case scenario can be unknown. Based on the loops’ movements’ timeline, they can be divided into slow (static) and fast (flexible). Although most of the loops that are missing in experimental structures belong to the flexible loops group, the computational tools for loop reconstruction use a set of static loop conformations to predict the missing part of the structure and evaluate the model. We believe that these two loop types can adopt different conformations and that using scoring functions appropriate for static loops is not sufficient for flexible loops. We showed that common model evaluation methods, are insufficient in the case of flexible solvent-exposed loops. Instead, we recommend using the potential energy to evaluate such loop models. We provide a novel model selection method based on a set of geometrical parameters to distinguish between flexible and static loops without the use of molecular dynamics simulations. We have also pointed out the importance of water network and interactions with the solvent for the flexible loop modeling.
Collapse
Affiliation(s)
- Karolina Mitusińska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland;
| | - Tomasz Skalski
- Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland;
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland;
- Correspondence: ; Tel.: +48-322371659
| |
Collapse
|
21
|
Denesyuk A, Dimitriou PS, Johnson MS, Nakayama T, Denessiouk K. The acid-base-nucleophile catalytic triad in ABH-fold enzymes is coordinated by a set of structural elements. PLoS One 2020; 15:e0229376. [PMID: 32084230 PMCID: PMC7034887 DOI: 10.1371/journal.pone.0229376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/05/2020] [Indexed: 01/09/2023] Open
Abstract
The alpha/beta-Hydrolases (ABH) are a structural class of proteins that are found widespread in nature and includes enzymes that can catalyze various reactions in different substrates. The catalytic versatility of the ABH fold enzymes, which has been a valuable property in protein engineering applications, is based on a similar acid-base-nucleophile catalytic mechanism. In our research, we are concerned with the structure that surrounds the key units of the catalytic machinery, and we have previously found conserved structural organizations that coordinate the catalytic acid, the catalytic nucleophile and the residues of the oxyanion hole. Here, we explore the architecture that surrounds the catalytic histidine at the active sites of enzymes from 40 ABH fold families, where we have identified six conserved interactions that coordinate the catalytic histidine next to the catalytic acid and the catalytic nucleophile. Specifically, the catalytic nucleophile is coordinated next to the catalytic histidine by two weak hydrogen bonds, while the catalytic acid is directly involved in the coordination of the catalytic histidine through by two weak hydrogen bonds. The imidazole ring of the catalytic histidine is coordinated by a CH-π contact and a hydrophobic interaction. Moreover, the catalytic triad residues are connected with a residue that is located at the core of the active site of ABH fold, which is suggested to be the fourth member of a “structural catalytic tetrad”. Besides their role in the stability of the catalytic mechanism, the conserved elements of the catalytic site are actively involved in ligand binding and affect other properties of the catalytic activity, such as substrate specificity, enantioselectivity, pH optimum and thermostability of ABH fold enzymes. These properties are regularly targeted in protein engineering applications, and thus, the identified conserved structural elements can serve as potential modification sites in order to develop ABH fold enzymes with altered activities.
Collapse
Affiliation(s)
- Alexander Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
- * E-mail:
| | - Polytimi S. Dimitriou
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
22
|
Bauer TL, Buchholz PCF, Pleiss J. The modular structure of α/β-hydrolases. FEBS J 2019; 287:1035-1053. [PMID: 31545554 DOI: 10.1111/febs.15071] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022]
Abstract
The α/β-hydrolase fold family is highly diverse in sequence, structure and biochemical function. To investigate the sequence-structure-function relationships, the Lipase Engineering Database (https://led.biocatnet.de) was updated. Overall, 280 638 protein sequences and 1557 protein structures were analysed. All α/β-hydrolases consist of the catalytically active core domain, but they might also contain additional structural modules, resulting in 12 different architectures: core domain only, additional lids at three different positions, three different caps, additional N- or C-terminal domains and combinations of N- and C-terminal domains with caps and lids respectively. In addition, the α/β-hydrolases were distinguished by their oxyanion hole signature (GX-, GGGX- and Y-types). The N-terminal domains show two different folds, the Rossmann fold or the β-propeller fold. The C-terminal domains show a β-sandwich fold. The N-terminal β-propeller domain and the C-terminal β-sandwich domain are structurally similar to carbohydrate-binding proteins such as lectins. The classification was applied to the newly discovered polyethylene terephthalate (PET)-degrading PETases and MHETases, which are core domain α/β-hydrolases of the GX- and the GGGX-type respectively. To investigate evolutionary relationships, sequence networks were analysed. The degree distribution followed a power law with a scaling exponent γ = 1.4, indicating a highly inhomogeneous network which consists of a few hubs and a large number of less connected sequences. The hub sequences have many functional neighbours and therefore are expected to be robust toward possible deleterious effects of mutations. The cluster size distribution followed a power law with an extrapolated scaling exponent τ = 2.6, which strongly supports the connectedness of the sequence space of α/β-hydrolases. DATABASE: Supporting data about domains from other proteins with structural similarity to the N- or C-terminal domains of α/β-hydrolases are available in Data Repository of the University of Stuttgart (DaRUS) under doi: https://doi.org/10.18419/darus-458.
Collapse
Affiliation(s)
- Tabea L Bauer
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| | - Patrick C F Buchholz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| |
Collapse
|
23
|
Yu D, Wang JB, Reetz MT. Exploiting Designed Oxidase-Peroxygenase Mutual Benefit System for Asymmetric Cascade Reactions. J Am Chem Soc 2019; 141:5655-5658. [PMID: 30920820 PMCID: PMC6727617 DOI: 10.1021/jacs.9b01939] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
A unique P450 monooxygenase–peroxygenase
mutual benefit
system was designed as the core element in the construction of a biocatalytic
cascade reaction sequence leading from 3-phenyl propionic acid to
(R)-phenyl glycol. In this system, P450 monooxygenase
(P450-BM3) and P450 peroxygenase (OleTJE) not only function
as catalysts for the crucial initial reactions, they also ensure an
internal in situ H2O2 recycle mechanism that
avoids its accumulation and thus prevents possible toxic effects.
By directed evolution of P450-BM3 as the catalyst in the enantioselective
epoxidation of the styrene-intermediate, formed from 3-phenyl propionic
acid, and the epoxide hydrolase ANEH for final hydrolytic ring opening,
(R)-phenyl glycol and 9 derivatives thereof were
synthesized from the respective carboxylic acids in one-pot processes
with high enantioselectivity.
Collapse
Affiliation(s)
- Da Yu
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering , Hunan Normal University , 410081 Changsha , People's Republic of China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering , Hunan Normal University , 410081 Changsha , People's Republic of China
| | - Jian-Bo Wang
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering , Hunan Normal University , 410081 Changsha , People's Republic of China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering , Hunan Normal University , 410081 Changsha , People's Republic of China
| | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Muelheim an der Ruhr , Germany.,Fachbereich Chemie, Philipps-Universität Marburg , Hans-Meerwein-Strasse 4 , 35032 Marburg , Germany
| |
Collapse
|
24
|
Hujslová M, Bystrianský L, Benada O, Gryndler M. Fungi, a neglected component of acidophilic biofilms: do they have a potential for biotechnology? Extremophiles 2019; 23:267-275. [PMID: 30840146 DOI: 10.1007/s00792-019-01085-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/25/2019] [Indexed: 01/18/2023]
Abstract
Fungi from extreme environments, including acidophilic ones, belong to biotechnologically most attractive organisms. They can serve as a source of enzymes and metabolites with potentially uncommon properties and may actively participate within bioremediation processes. In respect of their biotechnological potential, extremophilic fungi are mostly studied as individual species. Nevertheless, microorganisms rarely live separately and they form biofilms instead. Living in biofilms is the most successful life strategy on the Earth and the biofilm is the most abundant form of life in extreme environments including highly acidic ones. Compared to bacterial fraction, fungal part of acidophilic biofilms represents a largely unexplored source of organisms with possible use in biotechnology and especially data on biofilms of highly acidic soils are missing. The functioning of the biofilm results from interactions between organisms whose metabolic capabilities are efficiently combined. When we look on acidophilic fungi and their biotechnological potential we should take this fact into account as well. The practical problem to be resolved in connection with extensive studies of exploitable properties and abilities of acidophilic fungi is the methodology of isolation of strains from the nature. In this respect, novel isolation techniques should be developed.
Collapse
Affiliation(s)
- Martina Hujslová
- Laboratory of Fungal biology, Institute of Microbiology ASCR, Vídeňská 1083, 14220, Prague, Czech Republic.
| | - Lukáš Bystrianský
- Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Za válcovnou 1000/8, 400 01, Ústí nad Labem, Czech Republic
| | - Oldřich Benada
- Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Za válcovnou 1000/8, 400 01, Ústí nad Labem, Czech Republic.,Laboratory of Molecular Structure Characterization, Institute of Microbiology ASCR, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Milan Gryndler
- Department of Biology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Za válcovnou 1000/8, 400 01, Ústí nad Labem, Czech Republic
| |
Collapse
|
25
|
Sun Z, Liu Q, Qu G, Feng Y, Reetz MT. Utility of B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability. Chem Rev 2019; 119:1626-1665. [PMID: 30698416 DOI: 10.1021/acs.chemrev.8b00290] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
26
|
Dimitriou PS, Denesyuk AI, Nakayama T, Johnson MS, Denessiouk K. Distinctive structural motifs co-ordinate the catalytic nucleophile and the residues of the oxyanion hole in the alpha/beta-hydrolase fold enzymes. Protein Sci 2018; 28:344-364. [PMID: 30311984 DOI: 10.1002/pro.3527] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022]
Abstract
The alpha/beta-hydrolases (ABH) are among the largest structural families of proteins that are found in nature. Although they vary in their sequence and function, the ABH enzymes use a similar acid-base-nucleophile catalytic mechanism to catalyze reactions on different substrates. Because ABH enzymes are biocatalysts with a wide range of potential applications, protein engineering has taken advantage of their catalytic versatility to develop enzymes with industrial applications. This study is a comprehensive analysis of 40 ABH enzyme families focusing on two identified substructures: the nucleophile zone and the oxyanion zone, which co-ordinate the catalytic nucleophile and the residues of the oxyanion hole, and independently reported as critical for the enzymatic activity. We also frequently observed an aromatic cluster near the nucleophile and oxyanion zones, and opposite the ligand-binding site. The nucleophile zone, the oxyanion zone and the residue cluster enriched in aromatic side chains comprise a three-dimensional structural organization that shapes the active site of ABH enzymes and plays an important role in the enzymatic function by structurally stabilizing the catalytic nucleophile and the residues of the oxyanion hole. The structural data support the notion that the aromatic cluster can participate in co-ordination of the catalytic histidine loop, and properly place the catalytic histidine next to the catalytic nucleophile.
Collapse
Affiliation(s)
- Polytimi S Dimitriou
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
| | - Alexander I Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Toru Nakayama
- Tohoku University, Biomolecular Engineering, Sendai, Miyagi, 980-8579, Japan
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, Turku, 20520, Finland
| |
Collapse
|
27
|
Zaugg J, Gumulya Y, Bodén M, Mark AE, Malde AK. Effect of Binding on Enantioselectivity of Epoxide Hydrolase. J Chem Inf Model 2018; 58:630-640. [DOI: 10.1021/acs.jcim.7b00353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Julian Zaugg
- School of Chemistry and Molecular Biosciences, University of Queensland, 4072 Brisbane, Australia
| | - Yosephine Gumulya
- School of Chemistry and Molecular Biosciences, University of Queensland, 4072 Brisbane, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, University of Queensland, 4072 Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, 4072 Brisbane, Australia
| | - Alan E. Mark
- School of Chemistry and Molecular Biosciences, University of Queensland, 4072 Brisbane, Australia
- Institute for Molecular Bioscience, University of Queensland, 4072 Brisbane, Australia
| | - Alpeshkumar K. Malde
- School of Chemistry and Molecular Biosciences, University of Queensland, 4072 Brisbane, Australia
| |
Collapse
|
28
|
An JU, Song YS, Kim KR, Ko YJ, Yoon DY, Oh DK. Biotransformation of polyunsaturated fatty acids to bioactive hepoxilins and trioxilins by microbial enzymes. Nat Commun 2018; 9:128. [PMID: 29317615 PMCID: PMC5760719 DOI: 10.1038/s41467-017-02543-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/08/2017] [Indexed: 12/18/2022] Open
Abstract
Hepoxilins (HXs) and trioxilins (TrXs) are involved in physiological processes such as inflammation, insulin secretion and pain perception in human. They are metabolites of polyunsaturated fatty acids (PUFAs), including arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid, formed by 12-lipoxygenase (LOX) and epoxide hydrolase (EH) expressed by mammalian cells. Here, we identify ten types of HXs and TrXs, produced by the prokaryote Myxococcus xanthus, of which six types are new, namely, HXB5, HXD3, HXE3, TrXB5, TrXD3 and TrXE3. We succeed in the biotransformation of PUFAs into eight types of HXs (>35% conversion) and TrXs (>10% conversion) by expressing M. xanthus 12-LOX or 11-LOX with or without EH in Escherichia coli. We determine 11-hydroxy-eicosatetraenoic acid, HXB3, HXB4, HXD3, TrXB3 and TrXD3 as potential peroxisome proliferator-activated receptor-γ partial agonists. These findings may facilitate physiological studies and drug development based on lipid mediators. Hepoxilins (HXs) and trioxilins (TrXs) are lipid metabolites with roles in inflammation and insulin secretion. Here, the authors discover a prokaryotic source of HXs and TrXs, identify the biosynthetic enzymes and heterologously express HXs and TrXs in E. coli.
Collapse
Affiliation(s)
- Jung-Ung An
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yong-Seok Song
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Kyoung-Rok Kim
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yoon-Joo Ko
- National Center for Inter-University Research Facilities (NCIRF), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Do-Young Yoon
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
29
|
Hu D, Tang C, Li C, Kan T, Shi X, Feng L, Wu M. Stereoselective Hydrolysis of Epoxides by reVrEH3, a Novel Vigna radiata Epoxide Hydrolase with High Enantioselectivity or High and Complementary Regioselectivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9861-9870. [PMID: 29058432 DOI: 10.1021/acs.jafc.7b03804] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To provide more options for the stereoselective hydrolysis of epoxides, an epoxide hydrolase (VrEH3) gene from Vigna radiata was cloned and expressed in Escherichia coli. Recombinant VrEH3 displayed the maximum activity at pH 7.0 and 45 °C and high stability at pH 4.5-7.5 and 55 °C. Notably, reVrEH3 exhibited high and complementary regioselectivity toward styrene oxides 1a-3a and high enantioselectivity (E = 48.7) toward o-cresyl glycidyl ether 9a. To elucidate these interesting phenomena, the interactions of the three-dimensional structure between VrEH3 and enantiomers of 1a and 9a were analyzed by molecular docking simulation. Using E. coli/vreh3 whole cells, gram-scale preparations of (R)-1b and (R)-9a were performed by enantioconvergent hydrolysis of 100 mM rac-1a and kinetic resolution of 200 mM rac-9a in the buffer-free water system at 25 °C. These afforded (R)-1b with >99% eep and 78.7% overall yield after recrystallization and (R)-9a with >99% ees, 38.7% overall yield, and 12.7 g/L/h space-time yield.
Collapse
Affiliation(s)
| | - Cunduo Tang
- Nanyang Provincial Engineering Laboratory of Insect Bio-reactor, Nanyang Normal University , Henan 473061, China
| | | | | | | | | | | |
Collapse
|
30
|
Wilson C, De Oliveira GS, Adriani PP, Chambergo FS, Dias MV. Structure of a soluble epoxide hydrolase identified in Trichoderma reesei. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1039-1045. [DOI: 10.1016/j.bbapap.2017.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/14/2017] [Accepted: 05/08/2017] [Indexed: 01/01/2023]
|
31
|
Dimitriou PS, Denesyuk A, Takahashi S, Yamashita S, Johnson MS, Nakayama T, Denessiouk K. Alpha/beta-hydrolases: A unique structural motif coordinates catalytic acid residue in 40 protein fold families. Proteins 2017. [DOI: 10.1002/prot.25338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Polytimi S. Dimitriou
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering; Åbo Akademi University; Turku 20520 Finland
| | - Alexander Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering; Åbo Akademi University; Turku 20520 Finland
- Institute for Biological Instrumentation of the Russian Academy of Sciences; Pushchino 142290 Russia
| | - Seiji Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering; Tohoku University; Sendai Miyagi 980-8579 Japan
| | - Satoshi Yamashita
- Division of Material Chemistry, Graduate School of Natural Science and Technology; Kanazawa University; Kanazawa Ishikawa 920-1192 Japan
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering; Åbo Akademi University; Turku 20520 Finland
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering; Tohoku University; Sendai Miyagi 980-8579 Japan
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering; Åbo Akademi University; Turku 20520 Finland
| |
Collapse
|
32
|
Saenz-Méndez P, Katz A, Pérez-Kempner ML, Ventura ON, Vázquez M. Structural insights into human microsomal epoxide hydrolase by combined homology modeling, molecular dynamics simulations, and molecular docking calculations. Proteins 2017; 85:720-730. [DOI: 10.1002/prot.25251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/07/2016] [Accepted: 12/18/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Patricia Saenz-Méndez
- Computational Chemistry and Biology Group; Facultad de Química; UdelaR, Isidoro de María 1614 Montevideo 11800 Uruguay
- Department of Chemistry and Molecular Biology; University of Gothenburg; Göteborg 405 30 Sweden
| | - Aline Katz
- Computational Chemistry and Biology Group; Facultad de Química; UdelaR, Isidoro de María 1614 Montevideo 11800 Uruguay
| | - María Lucía Pérez-Kempner
- Pharmaceutical Science Department; Facultad de Química; UdelaR, General Flores 2124 Montevideo 11800 Uruguay
| | - Oscar N. Ventura
- Computational Chemistry and Biology Group; Facultad de Química; UdelaR, Isidoro de María 1614 Montevideo 11800 Uruguay
| | - Marta Vázquez
- Pharmaceutical Science Department; Facultad de Química; UdelaR, General Flores 2124 Montevideo 11800 Uruguay
| |
Collapse
|
33
|
Lind MES, Himo F. Quantum Chemical Modeling of Enantioconvergency in Soluble Epoxide Hydrolase. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01562] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Maria E. S. Lind
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
34
|
Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during Plasmodium falciparum Infection. mBio 2016; 7:mBio.01538-16. [PMID: 27795395 PMCID: PMC5082902 DOI: 10.1128/mbio.01538-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Erythrocytes are reservoirs of important epoxide-containing lipid signaling molecules, including epoxyeicosatrienoic acids (EETs). EETs function as vasodilators and anti-inflammatory modulators in the bloodstream. Bioactive EETs are hydrolyzed to less active diols (dihydroxyeicosatrienoic acids) by epoxide hydrolases (EHs). The malaria parasite Plasmodium falciparum infects host red blood cells (RBCs) and exports hundreds of proteins into the RBC compartment. In this study, we show that two parasite epoxide hydrolases, P. falciparum epoxide hydrolases 1 (PfEH1) and 2 (PfEH2), both with noncanonical serine nucleophiles, are exported to the periphery of infected RBCs. PfEH1 and PfEH2 were successfully expressed in Escherichia coli, and they hydrolyzed physiologically relevant erythrocyte EETs. Mutations in active site residues of PfEH1 ablated the ability of the enzyme to hydrolyze an epoxide substrate. Overexpression of PfEH1 or PfEH2 in parasite-infected RBCs resulted in a significant alteration in the epoxide fatty acids stored in RBC phospholipids. We hypothesize that the parasite disruption of epoxide-containing signaling lipids leads to perturbed vascular function, creating favorable conditions for binding and sequestration of infected RBCs to the microvascular endothelium. The malaria parasite exports hundreds of proteins into the erythrocyte compartment. However, for most of these proteins, their physiological function is unknown. In this study, we investigate two “hypothetical” proteins of the α/β-hydrolase fold family that share sequence similarity with epoxide hydrolases (EHs)—enzymes that destroy bioactive epoxides. Altering EH expression in parasite-infected erythrocytes resulted in a significant change in the epoxide fatty acids stored in the host cell. We propose that these EH enzymes may help the parasite to manipulate host blood vessel opening and inflame the vessel walls as they pass through the circulation system. Understanding how the malaria parasite interacts with its host RBCs will aid in our ability to combat this deadly disease.
Collapse
|
35
|
de Oliveira GS, Adriani PP, Borges FG, Lopes AR, Campana PT, Chambergo FS. Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization. Int J Biol Macromol 2016; 89:569-74. [DOI: 10.1016/j.ijbiomac.2016.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
|
36
|
Sun P, Leeson C, Zhi X, Leng F, Pierce RH, Henry MS, Rein KS. Characterization of an epoxide hydrolase from the Florida red tide dinoflagellate, Karenia brevis. PHYTOCHEMISTRY 2016; 122:11-21. [PMID: 26626160 PMCID: PMC4724521 DOI: 10.1016/j.phytochem.2015.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/19/2015] [Accepted: 11/05/2015] [Indexed: 05/11/2023]
Abstract
Epoxide hydrolases (EH, EC 3.3.2.3) have been proposed to be key enzymes in the biosynthesis of polyether (PE) ladder compounds such as the brevetoxins which are produced by the dinoflagellate Karenia brevis. These enzymes have the potential to catalyze kinetically disfavored endo-tet cyclization reactions. Data mining of K. brevis transcriptome libraries revealed two classes of epoxide hydrolases: microsomal and leukotriene A4 (LTA4) hydrolases. A microsomal EH was cloned and expressed for characterization. The enzyme is a monomeric protein with molecular weight 44kDa. Kinetic parameters were evaluated using a variety of epoxide substrates to assess substrate selectivity and enantioselectivity, as well as its potential to catalyze the critical endo-tet cyclization of epoxy alcohols. Monitoring of EH activity in high and low toxin producing cultures of K. brevis over a three week period showed consistently higher activity in the high toxin producing culture implicating the involvement of one or more EH in brevetoxin biosynthesis.
Collapse
Affiliation(s)
- Pengfei Sun
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Cristian Leeson
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Xiaoduo Zhi
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| | - Richard H Pierce
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| | - Michael S Henry
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| | - Kathleen S Rein
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
37
|
Abstract
With the advent of directed evolution of stereoselective enzymes almost 20 years ago and the rapid development of this exciting area of research, the traditional limitations of biocatalysts in organic chemistry have been eliminated.
Collapse
Affiliation(s)
- Guangyue Li
- Max-Planck-Institut für Kohlenforschung
- Kaiser-Wilhelm-Platz 1
- 45470, Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung
- Kaiser-Wilhelm-Platz 1
- 45470, Mülheim an der Ruhr
- Germany
- Fachbereich Chemie
| |
Collapse
|
38
|
Václavíková R, Hughes DJ, Souček P. Microsomal epoxide hydrolase 1 (EPHX1): Gene, structure, function, and role in human disease. Gene 2015. [PMID: 26216302 DOI: 10.1016/j.gene.2015.07.071] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Microsomal epoxide hydrolase (EPHX1) is an evolutionarily highly conserved biotransformation enzyme for converting epoxides to diols. Notably, the enzyme is able to either detoxify or bioactivate a wide range of substrates. Mutations and polymorphic variants in the EPHX1 gene have been associated with susceptibility to several human diseases including cancer. This review summarizes the key knowledge concerning EPHX1 gene and protein structure, expression pattern and regulation, and substrate specificity. The relevance of EPHX1 for human pathology is especially discussed.
Collapse
Affiliation(s)
- Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - David J Hughes
- Centre for Systems Medicine, Department of Physiology, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Plzen, Charles University in Prague, Plzen, Czech Republic.
| |
Collapse
|
39
|
Expression of a novel epoxide hydrolase of Aspergillus usamii E001 in Escherichia coli and its performance in resolution of racemic styrene oxide. ACTA ACUST UNITED AC 2015; 42:671-80. [DOI: 10.1007/s10295-015-1604-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/16/2015] [Indexed: 11/27/2022]
Abstract
Abstract
The full-length cDNA sequence of Aueh2, a gene encoding an epoxide hydrolase of Aspergillus usamii E001 (abbreviated to AuEH2), was amplified from the total RNA. Synchronously, the complete DNA sequence containing 5′, 3′ flanking regions, eight exons and seven introns was cloned from the genomic DNA. In addition, a cDNA fragment of Aueh2 encoding a 395-aa AuEH2 was expressed in Escherichia coli. The catalytic activity of recombinant AuEH2 (re-AuEH2) was 1.44 U/ml using racemic styrene oxide (SO) as the substrate. The purified re-AuEH2 displayed the maximum activity at pH 7.0 and 35 °C. It was highly stable at a pH range of 5.0–7.5, and at 40 °C or below. Its activity was not obviously influenced by β-mercaptoethanol, EDTA and most of metal ions tested, but was inhibited by Hg2+, Sn2+, Cu2+, Fe3+ and Zn2+. The K m and V max of re-AuEH2 were 5.90 mM and 20.1 U/mg towards (R)-SO, while 7.66 mM and 3.19 U/mg towards (S)-SO. Its enantiomeric ratio (E) for resolution of racemic SO was 24.2 at 10 °C. The experimental result of re-AuEH2 biasing towards (R)-SO was consistent with the analytical one by molecular docking (MD) simulation.
Collapse
|
40
|
Sun Y, Zhao H, Wang J, Zhu J, Wu S. Identification and regulation of the catalytic promiscuity of (−)-γ-lactamase from Microbacterium hydrocarbonoxydans. Appl Microbiol Biotechnol 2015; 99:7559-68. [DOI: 10.1007/s00253-015-6503-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/17/2015] [Indexed: 02/02/2023]
|
41
|
Obeso JI, Maestro B, Sanz JM, Olivera ER, Luengo JM. The loss of function of PhaC1 is a survival mechanism that counteracts the stress caused by the overproduction of poly-3-hydroxyalkanoates in Pseudomonas putidaΔfadBA. Environ Microbiol 2015; 17:3182-94. [PMID: 25627209 DOI: 10.1111/1462-2920.12753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/12/2014] [Indexed: 12/01/2022]
Abstract
The poly-3-hydroxylkanoate (PHA)-overproducing mutant Pseudomonas putida U ΔfadBA (PpΔfadBA) lacks the genes encoding the main β-oxidation pathway (FadBA). This strain accumulates enormous amounts of bioplastics when cultured in chemically defined media containing PHA precursors (different n-alkanoic or n-aryl-alkanoic acids) and an additional carbon source. In medium containing glucose or 4-hydroxy-phenylacetate, the mutant does not accumulate PHAs and grows just as the wild type (P. putida U). However, when the carbon source is octanoate, growth is severely impaired, suggesting that in PpΔfadBA, the metabolic imbalance resulting from a lower rate of β-oxidation, together with the accumulation of bioplastics, causes severe physiological stress. Here, we show that PpΔfadBA efficiently counteracts this latter effect via a survival mechanism involving the introduction of spontaneous mutations that block PHA accumulation. Surprisingly, genetic analyses of the whole pha cluster revealed that these mutations occurred only in the gene encoding one of the polymerases (phaC1) and that the loss of PhaC1 function was enough to prevent PHA synthesis. The influence of these mutations on the structure of PhaC1 and the existence of a protein-protein (PhaC1-PhaC2) interaction that explains the functionality of the polymerization system are discussed herein.
Collapse
Affiliation(s)
- José I Obeso
- Departamento de Biología Molecular, Facultad de Veterinaria, Universidad de León, León, 24071, Spain
| | - Beatriz Maestro
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, 03202, Spain
| | - Jesús M Sanz
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, 03202, Spain
| | - Elías R Olivera
- Departamento de Biología Molecular, Facultad de Veterinaria, Universidad de León, León, 24071, Spain
| | - José M Luengo
- Departamento de Biología Molecular, Facultad de Veterinaria, Universidad de León, León, 24071, Spain
| |
Collapse
|
42
|
Chemoenzymatic enantioconvergent hydrolysis of p-nitrostyrene oxide into (R)-p-nitrophenyl glycol by a newly cloned epoxide hydrolase VrEH2 from Vigna radiata. CATAL COMMUN 2015. [DOI: 10.1016/j.catcom.2014.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Kong XD, Yuan S, Li L, Chen S, Xu JH, Zhou J. Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates. Proc Natl Acad Sci U S A 2014; 111:15717-22. [PMID: 25331869 PMCID: PMC4226085 DOI: 10.1073/pnas.1404915111] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Optically pure epoxides are essential chiral precursors for the production of (S)-propranolol, (S)-alprenolol, and other β-adrenergic receptor blocking drugs. Although the enzymatic production of these bulky epoxides has proven difficult, here we report a method to effectively improve the activity of BmEH, an epoxide hydrolase from Bacillus megaterium ECU1001 toward α-naphthyl glycidyl ether, the precursor of (S)-propranolol, by eliminating the steric hindrance near the potential product-release site. Using X-ray crystallography, mass spectrum, and molecular dynamics calculations, we have identified an active tunnel for substrate access and product release of this enzyme. The crystal structures revealed that there is an independent product-release site in BmEH that was not included in other reported epoxide hydrolase structures. By alanine scanning, two mutants, F128A and M145A, targeted to expand the potential product-release site displayed 42 and 25 times higher activities toward α-naphthyl glycidyl ether than the wild-type enzyme, respectively. These results show great promise for structure-based rational design in improving the catalytic efficiency of industrial enzymes for bulky substrates.
Collapse
Affiliation(s)
- Xu-Dong Kong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; and
| | - Shuguang Yuan
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; and
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China;
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; and
| |
Collapse
|
44
|
El-Sherbeni AA, El-Kadi AOS. The role of epoxide hydrolases in health and disease. Arch Toxicol 2014; 88:2013-32. [PMID: 25248500 DOI: 10.1007/s00204-014-1371-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/11/2014] [Indexed: 01/09/2023]
Abstract
Epoxide hydrolases (EH) are ubiquitously expressed in all living organisms and in almost all organs and tissues. They are mainly subdivided into microsomal and soluble EH and catalyze the hydration of epoxides, three-membered-cyclic ethers, to their corresponding dihydrodiols. Owning to the high chemical reactivity of xenobiotic epoxides, microsomal EH is considered protective enzyme against mutagenic and carcinogenic initiation. Nevertheless, several endogenously produced epoxides of fatty acids function as important regulatory mediators. By mediating the formation of cytotoxic dihydrodiol fatty acids on the expense of cytoprotective epoxides of fatty acids, soluble EH is considered to have cytotoxic activity. Indeed, the attenuation of microsomal EH, achieved by chemical inhibitors or preexists due to specific genetic polymorphisms, is linked to the aggravation of the toxicity of xenobiotics, as well as the risk of cancer and inflammatory diseases, whereas soluble EH inhibition has been emerged as a promising intervention against several diseases, most importantly cardiovascular, lung and metabolic diseases. However, there is reportedly a significant overlap in substrate selectivity between microsomal and soluble EH. In addition, microsomal and soluble EH were found to have the same catalytic triad and identical molecular mechanism. Consequently, the physiological functions of microsomal and soluble EH are also overlapped. Thus, studying the biological effects of microsomal or soluble EH alterations needs to include the effects on both the metabolism of reactive metabolites, as well as epoxides of fatty acids. This review focuses on the multifaceted role of EH in the metabolism of xenobiotic and endogenous epoxides and the impact of EH modulations.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | | |
Collapse
|
45
|
Zhou K, Jia N, Hu C, Jiang YL, Yang JP, Chen Y, Li S, Li WF, Zhou CZ. Crystal structure of juvenile hormone epoxide hydrolase from the silkwormBombyx mori. Proteins 2014; 82:3224-9. [DOI: 10.1002/prot.24676] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 07/28/2014] [Accepted: 08/06/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Kang Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences; University of Science and Technology of China; Hefei Anhui 230027 People's Republic of China
| | - Ning Jia
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences; University of Science and Technology of China; Hefei Anhui 230027 People's Republic of China
| | - Chen Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences; University of Science and Technology of China; Hefei Anhui 230027 People's Republic of China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences; University of Science and Technology of China; Hefei Anhui 230027 People's Republic of China
| | - Jie-Pin Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences; University of Science and Technology of China; Hefei Anhui 230027 People's Republic of China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences; University of Science and Technology of China; Hefei Anhui 230027 People's Republic of China
| | - Sheng Li
- Key Laboratory of Developmental and Evolutionary Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 People's Republic of China
| | - Wei-Fang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences; University of Science and Technology of China; Hefei Anhui 230027 People's Republic of China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences; University of Science and Technology of China; Hefei Anhui 230027 People's Republic of China
| |
Collapse
|
46
|
Beloti LL, Costa BZ, Toledo MA, Santos CA, Crucello A, Fávaro MT, Santiago AS, Mendes JS, Marsaioli AJ, Souza AP. A novel and enantioselective epoxide hydrolase from Aspergillus brasiliensis CCT 1435: Purification and characterization. Protein Expr Purif 2013; 91:175-83. [DOI: 10.1016/j.pep.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/21/2013] [Accepted: 08/03/2013] [Indexed: 10/26/2022]
|
47
|
Affiliation(s)
- Artur Gora
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories,
Department
of Experimental Biology and Research Centre for Toxic Compounds in
the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Centre for Clinical
Research, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
48
|
Duarah A, Goswami A, Bora TC, Talukdar M, Gogoi BK. Enantioconvergent Biohydrolysis of Racemic Styrene Oxide to R-phenyl-1, 2-ethanediol by a Newly Isolated Filamentous Fungus Aspergillus tubingensis TF1. Appl Biochem Biotechnol 2013; 170:1965-73. [DOI: 10.1007/s12010-013-0324-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 06/09/2013] [Indexed: 11/29/2022]
|
49
|
Wu S, Li A, Chin YS, Li Z. Enantioselective Hydrolysis of Racemic and Meso-Epoxides with Recombinant Escherichia coli Expressing Epoxide Hydrolase from Sphingomonas sp. HXN-200: Preparation of Epoxides and Vicinal Diols in High ee and High Concentration. ACS Catal 2013. [DOI: 10.1021/cs300804v] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Shuke Wu
- Department
of Chemical and Biomolecular
Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
- Singapore-MIT Alliance, National University of Singapore, 4 Engineering Drive
3, Singapore 117576
| | - Aitao Li
- Department
of Chemical and Biomolecular
Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| | - Yit Siang Chin
- Department
of Chemical and Biomolecular
Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| | - Zhi Li
- Department
of Chemical and Biomolecular
Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
- Singapore-MIT Alliance, National University of Singapore, 4 Engineering Drive
3, Singapore 117576
| |
Collapse
|
50
|
Liao RZ, Thiel W. Determinants of Regioselectivity and Chemoselectivity in Fosfomycin Resistance Protein FosA from QM/MM Calculations. J Phys Chem B 2013; 117:1326-36. [DOI: 10.1021/jp4002719] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rong-Zhen Liao
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| |
Collapse
|