1
|
Holme S, Sapia J, Davey M, Vanni S, Conibear E. An S-acylated N-terminus and a conserved loop regulate the activity of the ABHD17 deacylase. J Cell Biol 2025; 224:e202405042. [PMID: 39951021 PMCID: PMC11827582 DOI: 10.1083/jcb.202405042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/07/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The dynamic addition and removal of long-chain fatty acids modulate protein function and localization. The α/β hydrolase domain-containing (ABHD) 17 enzymes remove acyl chains from membrane-localized proteins such as the oncoprotein NRas, but how the ABHD17 proteins are regulated is unknown. Here, we used cell-based studies and molecular dynamics simulations to show that ABHD17 activity is controlled by two mobile elements-an S-acylated N-terminal helix and a loop-that flank the putative substrate-binding pocket. Multiple S-acylation events anchor the N-terminal helix in the membrane, enabling hydrophobic residues in the loop to engage with the bilayer. This stabilizes the conformation of both helix and loop, alters the conformation of the binding pocket, and optimally positions the enzyme for substrate engagement. S-acylation may be a general feature of acyl-protein thioesterases. By providing a mechanistic understanding of how the lipid modification of a lipid-removing enzyme promotes its enzymatic activity, this work contributes to our understanding of cellular S-acylation cycles.
Collapse
Affiliation(s)
- Sydney Holme
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer Sapia
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Elizabeth Conibear
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Harris WT, Altieri I, Gieck I, Johnson RJ. A conserved but structurally divergent loop in acyl protein thioesterase 1 regulates its catalytic activity, ligand binding, and folded stability. Proteins 2024; 92:693-704. [PMID: 38179877 DOI: 10.1002/prot.26661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Human acyl protein thioesterases (APTs) catalyze the depalmitoylation of S-acylated proteins attached to the plasma membrane, facilitating reversible cycles of membrane anchoring and detachment. We previously showed that a bacterial APT homologue, FTT258 from the gram-negative pathogen Francisella tularensis, exists in equilibrium between a closed and open state based on the structural dynamics of a flexible loop overlapping its active site. Although the structural dynamics of this loop are not conserved in human APTs, the amino acid sequence of this loop is highly conserved, indicating essential but divergent functions for this loop in human APTs. Herein, we investigated the role of this loop in regulating the catalytic activity, ligand binding, and protein folding of human APT1, a depalmitoylase connected with cancer, immune, and neurological signaling. Using a combination of substitutional analysis with kinetic, structural, and biophysical characterization, we show that even in its divergent structural location in human APT1 that this loop still regulates the catalytic activity of APT1 through contributions to ligand binding and substrate positioning. We confirmed previously known roles for multiple residues (Phe72 and Ile74) in substrate binding and catalysis while adding new roles in substrate selectivity (Pro69), in catalytic stabilization (Asp73 and Ile75), and in transitioning between the membrane binding β-tongue and substrate-binding loops (Trp71). Even conservative substitution of this tryptophan (Trp71) fulcrum led to complete loss of catalytic activity, a 13°C decrease in total protein stability, and drastic drops in ligand affinity, indicating that the combination of the size, shape, and aromaticity of Trp71 are essential to the proper structure of APT1. Mixing buried hydrophobic surface area with contributions to an exposed secondary surface pocket, Trp71 represents a previously unidentified class of essential tryptophans within α/β hydrolase structure and a potential allosteric binding site within human APTs.
Collapse
Affiliation(s)
- William Trey Harris
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| | - Isabelle Altieri
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| | - Isabella Gieck
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| | - R Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
S Mesquita F, Abrami L, Linder ME, Bamji SX, Dickinson BC, van der Goot FG. Mechanisms and functions of protein S-acylation. Nat Rev Mol Cell Biol 2024; 25:488-509. [PMID: 38355760 DOI: 10.1038/s41580-024-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty acid to a protein. Maintenance of the equilibrium between protein S-acylation and deacylation has demonstrated profound effects on various cellular processes, including innate immunity, inflammation, glucose metabolism and fat metabolism, as well as on brain and heart function. This Review provides an overview of current understanding of S-acylation and deacylation enzymes, their spatiotemporal regulation by sophisticated multilayered mechanisms, and their influence on protein function, cellular processes and physiological pathways. Furthermore, we examine how disruptions in protein S-acylation are associated with a broad spectrum of diseases from cancer to autoinflammatory disorders and neurological conditions.
Collapse
Affiliation(s)
- Francisco S Mesquita
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laurence Abrami
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maurine E Linder
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | - Shernaz X Bamji
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - F Gisou van der Goot
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Wang S, Xing X, Ma J, Zheng S, Song Q, Zhang P. Deacylases-structure, function, and relationship to diseases. FEBS Lett 2024; 598:959-977. [PMID: 38644468 DOI: 10.1002/1873-3468.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/28/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Reversible S-acylation plays a pivotal role in various biological processes, modulating protein functions such as subcellular localization, protein stability/activity, and protein-protein interactions. These modifications are mediated by acyltransferases and deacylases, among which the most abundant modification is S-palmitoylation. Growing evidence has shown that this rivalrous pair of modifications, occurring in a reversible cycle, is essential for various biological functions. Aberrations in this process have been associated with various diseases, including cancer, neurological disorders, and immune diseases. This underscores the importance of studying enzymes involved in acylation and deacylation to gain further insights into disease pathogenesis and provide novel strategies for disease treatment. In this Review, we summarize our current understanding of the structure and physiological function of deacylases, highlighting their pivotal roles in pathology. Our aim is to provide insights for further clinical applications.
Collapse
Affiliation(s)
- Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Jialin Ma
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, China
| |
Collapse
|
5
|
Speck SL, Wei X, Semenkovich CF. Depalmitoylation and cell physiology: APT1 as a mediator of metabolic signals. Am J Physiol Cell Physiol 2024; 326:C1034-C1041. [PMID: 38344800 PMCID: PMC11193526 DOI: 10.1152/ajpcell.00542.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/13/2024]
Abstract
More than half of the global population is obese or overweight, especially in Western countries, and this excess adiposity disrupts normal physiology to cause chronic diseases. Diabetes, an adiposity-associated epidemic disease, affects >500 million people, and cases are projected to exceed 1 billion before 2050. Lipid excess can impact physiology through the posttranslational modification of proteins, including the reversible process of S-palmitoylation. Dynamic palmitoylation cycling requires the S-acylation of proteins by acyltransferases and the depalmitoylation of these proteins mediated in part by acyl-protein thioesterases (APTs) such as APT1. Emerging evidence points to tissue-specific roles for the depalmitoylase APT1 in maintaining homeostasis in the vasculature, pancreatic islets, and liver. These recent findings raise the possibility that APT1 substrates can be therapeutically targeted to treat the complications of metabolic diseases.
Collapse
Affiliation(s)
- Sarah L Speck
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Xiaochao Wei
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
6
|
Néré R, Kouba S, Carreras-Sureda A, Demaurex N. S-acylation of Ca2+ transport proteins: molecular basis and functional consequences. Biochem Soc Trans 2024; 52:407-421. [PMID: 38348884 PMCID: PMC10903462 DOI: 10.1042/bst20230818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Calcium (Ca2+) regulates a multitude of cellular processes during fertilization and throughout adult life by acting as an intracellular messenger to control effector functions in excitable and non-excitable cells. Changes in intracellular Ca2+ levels are driven by the co-ordinated action of Ca2+ channels, pumps, and exchangers, and the resulting signals are shaped and decoded by Ca2+-binding proteins to drive rapid and long-term cellular processes ranging from neurotransmission and cardiac contraction to gene transcription and cell death. S-acylation, a lipid post-translational modification, is emerging as a critical regulator of several important Ca2+-handling proteins. S-acylation is a reversible and dynamic process involving the attachment of long-chain fatty acids (most commonly palmitate) to cysteine residues of target proteins by a family of 23 proteins acyltransferases (zDHHC, or PATs). S-acylation modifies the conformation of proteins and their interactions with membrane lipids, thereby impacting intra- and intermolecular interactions, protein stability, and subcellular localization. Disruptions of S-acylation can alter Ca2+ signalling and have been implicated in the development of pathologies such as heart disease, neurodegenerative disorders, and cancer. Here, we review the recent literature on the S-acylation of Ca2+ transport proteins of organelles and of the plasma membrane and highlight the molecular basis and functional consequence of their S-acylation as well as the therapeutic potential of targeting this regulation for diseases caused by alterations in cellular Ca2+ fluxes.
Collapse
Affiliation(s)
- Raphaël Néré
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sana Kouba
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Amado Carreras-Sureda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Cheng J, Du H, Zhou MS, Ji Y, Xie YQ, Huang HB, Zhang SH, Li F, Xiang L, Cai QY, Li YW, Li H, Li M, Zhao HM, Mo CH. Substrate-enzyme interactions and catalytic mechanism in a novel family VI esterase with dibutyl phthalate-hydrolyzing activity. ENVIRONMENT INTERNATIONAL 2023; 178:108054. [PMID: 37354883 DOI: 10.1016/j.envint.2023.108054] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/19/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Microbial degradation has been confirmed as effective and environmentally friendly approach to remediate phthalates from the environment, and hydrolase is an effective element for contaminant degradation. In the present study, a novel dibutyl phthalate (DBP)-hydrolyzing carboxylesterase (named PS06828) from Pseudomonas sp. PS1 was heterogeneously expressed in E. coli, which was identified as a new member of the lipolytic family VI. Purified PS06828 could efficiently degrade DBP with a wide range of temperature (25-37 °C) and pH (6.5-9.0). Multi-spectroscopy methods combined with molecular docking were employed to study the interaction of PS06828 with DBP. Fluorescence and UV-visible absorption spectra revealed the simultaneous presence of static and dynamic component in the fluorescence quenching of PS06828 by DBP. Synchronous fluorescence and circular dichroism spectra showed inconspicuous alteration in micro-environmental polarity around amino acid residues but obvious increasing of α-helix and reducing of β-sheet and random coil in protein conformation. Based on the information on exact binding sites of DBP on PS06828 provided by molecular docking, the catalytic mechanism mediated by key residues (Ser113, Asp166, and His197) was proposed and subsequently confirmed by site-directed mutagenesis. The results can strengthen our mechanistic understanding of family VI esterase involved in hydrolysis of phthalic acid esters, and provide a solid foundation for further enzymatic modification.
Collapse
Affiliation(s)
- Jiliang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huan Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou, China
| | - Meng-Sha Zhou
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuan Ji
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - You-Qun Xie
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - He-Biao Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shu-Hui Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meng Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Caswell B, Summers TJ, Licup GL, Cantu DC. Mutation Space of Spatially Conserved Amino Acid Sites in Proteins. ACS OMEGA 2023; 8:24302-24310. [PMID: 37457482 PMCID: PMC10339398 DOI: 10.1021/acsomega.3c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
The mutation space of spatially conserved (MSSC) amino acid residues is a protein structural quantity developed and described in this work. The MSSC quantifies how many mutations and which different mutations, i.e., the mutation space, occur in each amino acid site in a protein. The MSSC calculates the mutation space of amino acids in a target protein from the spatially conserved residues in a group of multiple protein structures. Spatially conserved amino acid residues are identified based on their relative positions in the protein structure. The MSSC examines each residue in a target protein, compares it to the residues present in the same relative position in other protein structures, and uses physicochemical criteria of mutations found in each conserved spatial site to quantify the mutation space of each amino acid in the target protein. The MSSC is analogous to scoring each site in a multiple sequence alignment but in three-dimensional space considering the spatial location of residues instead of solely the order in which they appear in a protein sequence. MSSC analysis was performed on example cases, and it reproduces the well-known observation that, regardless of secondary structure, solvent-exposed residues are more likely to be mutated than internal ones. The MSSC code is available on GitHub: "https://github.com/Cantu-Research-Group/Mutation_Space".
Collapse
|
9
|
Brown RWB, Sharma AI, Villanueva MR, Li X, Onguka O, Zilbermintz L, Nguyen H, Falk BA, Olson CL, Taylor JM, Epting CL, Kathayat RS, Amara N, Dickinson BC, Bogyo M, Engman DM. Trypanosoma brucei Acyl-Protein Thioesterase-like (TbAPT-L) Is a Lipase with Esterase Activity for Short and Medium-Chain Fatty Acids but Has No Depalmitoylation Activity. Pathogens 2022; 11:1245. [PMID: 36364996 PMCID: PMC9693859 DOI: 10.3390/pathogens11111245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 02/12/2024] Open
Abstract
Dynamic post-translational modifications allow the rapid, specific, and tunable regulation of protein functions in eukaryotic cells. S-acylation is the only reversible lipid modification of proteins, in which a fatty acid, usually palmitate, is covalently attached to a cysteine residue of a protein by a zDHHC palmitoyl acyltransferase enzyme. Depalmitoylation is required for acylation homeostasis and is catalyzed by an enzyme from the alpha/beta hydrolase family of proteins usually acyl-protein thioesterase (APT1). The enzyme responsible for depalmitoylation in Trypanosoma brucei parasites is currently unknown. We demonstrate depalmitoylation activity in live bloodstream and procyclic form trypanosomes sensitive to dose-dependent inhibition with the depalmitoylation inhibitor, palmostatin B. We identified a homologue of human APT1 in Trypanosoma brucei which we named TbAPT-like (TbAPT-L). Epitope-tagging of TbAPT-L at N- and C- termini indicated a cytoplasmic localization. Knockdown or over-expression of TbAPT-L in bloodstream forms led to robust changes in TbAPT-L mRNA and protein expression but had no effect on parasite growth in vitro, or cellular depalmitoylation activity. Esterase activity in cell lysates was also unchanged when TbAPT-L was modulated. Unexpectedly, recombinant TbAPT-L possesses esterase activity with specificity for short- and medium-chain fatty acid substrates, leading to the conclusion, TbAPT-L is a lipase, not a depalmitoylase.
Collapse
Affiliation(s)
- Robert W. B. Brown
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aabha I. Sharma
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Miguel Rey Villanueva
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaomo Li
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ouma Onguka
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leeor Zilbermintz
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Helen Nguyen
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ben A. Falk
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Cheryl L. Olson
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Joann M. Taylor
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Conrad L. Epting
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Rahul S. Kathayat
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Neri Amara
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bryan C. Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Matthew Bogyo
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David M. Engman
- Departments of Pathology, Microbiology-Immunology and Pediatrics, Northwestern University, Chicago, IL 60611, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
10
|
Imai T, Isozaki M, Ohura K. Esterases Involved in the Rapid Bioconversion of Esmolol after Intravenous Injection in Humans. Biol Pharm Bull 2022; 45:1544-1552. [PMID: 36184514 DOI: 10.1248/bpb.b22-00468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Esmolol is indicated for the acute and temporary control of ventricular rate due to its rapid onset of action and elimination at a rate greater than cardiac output. This rapid elimination is achieved by the hydrolysis of esmolol to esmolol acid. It has previously been reported that esmolol is hydrolyzed in the cytosol of red blood cells (RBCs). In order to elucidate the metabolic tissues and enzymes involved in the rapid elimination of esmolol, a hydrolysis study was performed using different fractions of human blood and liver. Esmolol was slightly hydrolyzed by washed RBCs and plasma proteins while it was extensively hydrolyzed in plasma containing white blood cells and platelets. The negligible hydrolysis of esmolol in RBCs is supported by its poor hydrolysis by esterase D, the sole cytosolic esterase in RBCs. In human liver microsomes, esmolol was rapidly hydrolyzed according to Michaelis-Menten kinetics, and its hepatic clearance, calculated by the well-stirred model, was limited by hepatic blood flow. An inhibition study and a hydrolysis study using individual recombinant esterases showed that human carboxylesterase 1 isozyme (hCE1) is the main metabolic enzyme of esmolol in both white blood cells and human liver. These studies also showed that acyl protein thioesterase 1 (APT1) is involved in the cytosolic hydrolysis of esmolol in the liver. The hydrolysis of esmolol by hCE1 and APT1 also results in its pulmonary metabolism, which might be a reason for its high total clearance (170-285 mL/min/kg bodyweight), 3.5-fold greater than cardiac output (80.0 mL/min/kg bodyweight).
Collapse
Affiliation(s)
- Teruko Imai
- Graduate School of Pharmaceutical Sciences, Kumamoto University.,Daiichi University of Pharmacy
| | - Mizuki Isozaki
- Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Kayoko Ohura
- Graduate School of Pharmaceutical Sciences, Kumamoto University.,Headquarters for Admissions and Education, Kumamoto University
| |
Collapse
|
11
|
Matrawy AA, Khalil AI, Embaby AM. Molecular study on recombinant cold-adapted, detergent- and alkali stable esterase (EstRag) from Lysinibacillus sp.: a member of family VI. World J Microbiol Biotechnol 2022; 38:217. [PMID: 36070019 PMCID: PMC9452428 DOI: 10.1007/s11274-022-03402-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Cold-adapted esterases have potential industrial applications. To fulfil the global continuous demand for these enzymes, a cold-adapted esterase member of family VI from Lysinibacillus sp. YS11 was cloned on pET-28b (+) vector and expressed in E. coli BL21(DE3) Rosetta cells for the first time. The open reading frame (654 bp: GenBank MT120818.1) encodes a polypeptide (designated EstRag: 217 amino acid residues). EstRag amino acid sequence has conserved esterase signature motifs: pentapeptide (GFSQG) and catalytic triad Ser110-Asp163-His194. EstRag 3D predicted model, built with LOMETS3 program, showed closest structural similarity to PDB 1AUO_A (esterase: Pseudomonas fluorescens); TM-align score program inferences. Purified EstRag to 9.28-fold, using Ni2+affinity agarose matrix, showed a single protein band (25 kDa) on SDS-PAGE, Km (0.031 mM) and Kcat/Km (657.7 s−1 mM−1) on p-NP-C2. Temperature and pH optima of EstRag were 35 °C and 8.0, respectively. EstRag was fully stable at 5–30 °C for 120 min and at pH(s) 8.0–10.0 after 24 h. EstRag activity (391.46 ± 0.009%) was impressively enhanced after 30 min preincubation with 5 mM Cu2+. EstRag retained full stability after 30 min pre-incubation with 0.1%(v/v) SDS, Triton X-100, and Tween-80. EstRag promising characteristics motivate performing guided evolution and industrial applications prospective studies.
Collapse
Affiliation(s)
- Amira A Matrawy
- Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, P.O. Box 832, Chatby, 21526, Alexandria, Egypt
| | - Ahmed I Khalil
- Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, P.O. Box 832, Chatby, 21526, Alexandria, Egypt
| | - Amira M Embaby
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, P.O. Box 832, Chatby, 21526, Alexandria, Egypt.
| |
Collapse
|
12
|
Tang F, Liu Z, Chen X, Yang J, Wang Z, Li Z. Current knowledge of protein palmitoylation in gliomas. Mol Biol Rep 2022; 49:10949-10959. [PMID: 36044113 DOI: 10.1007/s11033-022-07809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Malignant tumor cells can obtain proliferative benefits from deviant metabolic networks. Emerging evidence suggests that lipid metabolism are dramatically altered in gliomas and excessive fatty acd accumulation is detrimentally correlated with the prognosis of glioma patients. Glioma cells possess remarkably high levels of free fatty acids, which, in turn, enhance post-translational modifications (e.g. palmitoylation). Our and other groups found that palmitoylational modification is essential for remaining intracellular homeostasis and cell survival. Disrupting the balance between palmitoylation and depalmitoylation affects glioma cell viability, apoptosis, invasion, self-renew and pyroptosis. In this review, we focused on summarizing roles and relevant mechanisms of protein palmitoylational modification in gliomas.
Collapse
Affiliation(s)
- Feng Tang
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Zhenyuan Liu
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Xi Chen
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Jinzhou Yang
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China
| | - Zefen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China.
| | - Zhiqiang Li
- Brain Glioma Center, Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Caswell BT, de Carvalho CC, Nguyen H, Roy M, Nguyen T, Cantu DC. Thioesterase enzyme families: Functions, structures, and mechanisms. Protein Sci 2022; 31:652-676. [PMID: 34921469 PMCID: PMC8862431 DOI: 10.1002/pro.4263] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Thioesterases are enzymes that hydrolyze thioester bonds in numerous biochemical pathways, for example in fatty acid synthesis. This work reports known functions, structures, and mechanisms of updated thioesterase enzyme families, which are classified into 35 families based on sequence similarity. Each thioesterase family is based on at least one experimentally characterized enzyme, and most families have enzymes that have been crystallized and their tertiary structure resolved. Classifying thioesterases into families allows to predict tertiary structures and infer catalytic residues and mechanisms of all sequences in a family, which is particularly useful because the majority of known protein sequence have no experimental characterization. Phylogenetic analysis of experimentally characterized thioesterases that have structures with the two main structural folds reveal convergent and divergent evolution. Based on tertiary structure superimposition, catalytic residues are predicted.
Collapse
Affiliation(s)
- Benjamin T. Caswell
- Department of Chemical and Materials EngineeringUniversity of Nevada, RenoRenoNevadaUSA
| | - Caio C. de Carvalho
- Department of Chemical and Materials EngineeringUniversity of Nevada, RenoRenoNevadaUSA
| | - Hung Nguyen
- Department of Computer Science and EngineeringUniversity of Nevada, RenoRenoNevadaUSA
| | - Monikrishna Roy
- Department of Computer Science and EngineeringUniversity of Nevada, RenoRenoNevadaUSA
| | - Tin Nguyen
- Department of Computer Science and EngineeringUniversity of Nevada, RenoRenoNevadaUSA
| | - David C. Cantu
- Department of Chemical and Materials EngineeringUniversity of Nevada, RenoRenoNevadaUSA
| |
Collapse
|
14
|
Li X, Shen L, Xu Z, Liu W, Li A, Xu J. Protein Palmitoylation Modification During Viral Infection and Detection Methods of Palmitoylated Proteins. Front Cell Infect Microbiol 2022; 12:821596. [PMID: 35155279 PMCID: PMC8829041 DOI: 10.3389/fcimb.2022.821596] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 01/31/2023] Open
Abstract
Protein palmitoylation—a lipid modification in which one or more cysteine thiols on a substrate protein are modified to form a thioester with a palmitoyl group—is a significant post-translational biological process. This process regulates the trafficking, subcellular localization, and stability of different proteins in cells. Since palmitoylation participates in various biological processes, it is related to the occurrence and development of multiple diseases. It has been well evidenced that the proteins whose functions are palmitoylation-dependent or directly involved in key proteins’ palmitoylation/depalmitoylation cycle may be a potential source of novel therapeutic drugs for the related diseases. Many researchers have reported palmitoylation of proteins, which are crucial for host-virus interactions during viral infection. Quite a few explorations have focused on figuring out whether targeting the acylation of viral or host proteins might be a strategy to combat viral diseases. All these remarkable achievements in protein palmitoylation have been made to technological advances. This paper gives an overview of protein palmitoylation modification during viral infection and the methods for palmitoylated protein detection. Future challenges and potential developments are proposed.
Collapse
Affiliation(s)
- Xiaoling Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Lingyi Shen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhao Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Aihua Li
- Clinical Lab, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Jun Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Jun Xu, ;
| |
Collapse
|
15
|
Petropavlovskiy A, Kogut J, Leekha A, Townsend C, Sanders S. A sticky situation: regulation and function of protein palmitoylation with a spotlight on the axon and axon initial segment. Neuronal Signal 2021; 5:NS20210005. [PMID: 34659801 PMCID: PMC8495546 DOI: 10.1042/ns20210005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
In neurons, the axon and axon initial segment (AIS) are critical structures for action potential initiation and propagation. Their formation and function rely on tight compartmentalisation, a process where specific proteins are trafficked to and retained at distinct subcellular locations. One mechanism which regulates protein trafficking and association with lipid membranes is the modification of protein cysteine residues with the 16-carbon palmitic acid, known as S-acylation or palmitoylation. Palmitoylation, akin to phosphorylation, is reversible, with palmitate cycling being mediated by substrate-specific enzymes. Palmitoylation is well-known to be highly prevalent among neuronal proteins and is well studied in the context of the synapse. Comparatively, how palmitoylation regulates trafficking and clustering of axonal and AIS proteins remains less understood. This review provides an overview of the current understanding of the biochemical regulation of palmitoylation, its involvement in various neurological diseases, and the most up-to-date perspective on axonal palmitoylation. Through a palmitoylation analysis of the AIS proteome, we also report that an overwhelming proportion of AIS proteins are likely palmitoylated. Overall, our review and analysis confirm a central role for palmitoylation in the formation and function of the axon and AIS and provide a resource for further exploration of palmitoylation-dependent protein targeting to and function at the AIS.
Collapse
Affiliation(s)
- Andrey A. Petropavlovskiy
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Jordan A. Kogut
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Arshia Leekha
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Charlotte A. Townsend
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| | - Shaun S. Sanders
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph N1G 2W1, Ontario, Canada
| |
Collapse
|
16
|
Chen JJ, Fan Y, Boehning D. Regulation of Dynamic Protein S-Acylation. Front Mol Biosci 2021; 8:656440. [PMID: 33981723 PMCID: PMC8107437 DOI: 10.3389/fmolb.2021.656440] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Protein S-acylation is the reversible addition of fatty acids to the cysteine residues of target proteins. It regulates multiple aspects of protein function, including the localization to membranes, intracellular trafficking, protein interactions, protein stability, and protein conformation. This process is regulated by palmitoyl acyltransferases that have the conserved amino acid sequence DHHC at their active site. Although they have conserved catalytic cores, DHHC enzymes vary in their protein substrate selection, lipid substrate preference, and regulatory mechanisms. Alterations in DHHC enzyme function are associated with many human diseases, including cancers and neurological conditions. The removal of fatty acids from acylated cysteine residues is catalyzed by acyl protein thioesterases. Notably, S-acylation is now known to be a highly dynamic process, and plays crucial roles in signaling transduction in various cell types. In this review, we will explore the recent findings on protein S-acylation, the enzymatic regulation of this process, and discuss examples of dynamic S-acylation.
Collapse
|
17
|
Abrami L, Audagnotto M, Ho S, Marcaida MJ, Mesquita FS, Anwar MU, Sandoz PA, Fonti G, Pojer F, Peraro MD, van der Goot FG. Palmitoylated acyl protein thioesterase APT2 deforms membranes to extract substrate acyl chains. Nat Chem Biol 2021; 17:438-447. [PMID: 33707782 PMCID: PMC7610442 DOI: 10.1038/s41589-021-00753-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/27/2020] [Accepted: 01/26/2021] [Indexed: 01/31/2023]
Abstract
Many biochemical reactions require controlled recruitment of proteins to membranes. This is largely regulated by posttranslational modifications. A frequent one is S-acylation, which consists of the addition of acyl chains and can be reversed by poorly understood acyl protein thioesterases (APTs). Using a panel of computational and experimental approaches, we dissect the mode of action of the major cellular thioesterase APT2 (LYPLA2). We show that soluble APT2 is vulnerable to proteasomal degradation, from which membrane binding protects it. Interaction with membranes requires three consecutive steps: electrostatic attraction, insertion of a hydrophobic loop and S-acylation by the palmitoyltransferases ZDHHC3 or ZDHHC7. Once bound, APT2 is predicted to deform the lipid bilayer to extract the acyl chain bound to its substrate and capture it in a hydrophobic pocket to allow hydrolysis. This molecular understanding of APT2 paves the way to understand the dynamics of APT2-mediated deacylation of substrates throughout the endomembrane system.
Collapse
Affiliation(s)
- Laurence Abrami
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Martina Audagnotto
- Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Sylvia Ho
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Maria Jose Marcaida
- Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | | | - Muhammad U. Anwar
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Patrick A. Sandoz
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Giulia Fonti
- Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland,Corresponding Authors: F. Gisou van der Goot () and Matteo Dal Peraro ()
| | - F. Gisou van der Goot
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland,Corresponding Authors: F. Gisou van der Goot () and Matteo Dal Peraro ()
| |
Collapse
|
18
|
Swarbrick CMD, Nanson JD, Patterson EI, Forwood JK. Structure, function, and regulation of thioesterases. Prog Lipid Res 2020; 79:101036. [PMID: 32416211 DOI: 10.1016/j.plipres.2020.101036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 01/15/2023]
Abstract
Thioesterases are present in all living cells and perform a wide range of important biological functions by catalysing the cleavage of thioester bonds present in a diverse array of cellular substrates. Thioesterases are organised into 25 families based on their sequence conservation, tertiary and quaternary structure, active site configuration, and substrate specificity. Recent structural and functional characterisation of thioesterases has led to significant changes in our understanding of the regulatory mechanisms that govern enzyme activity and their respective cellular roles. The resulting dogma changes in thioesterase regulation include mechanistic insights into ATP and GDP-mediated regulation by oligomerisation, the role of new key regulatory regions, and new insights into a conserved quaternary structure within TE4 family members. Here we provide a current and comparative snapshot of our understanding of thioesterase structure, function, and regulation across the different thioesterase families.
Collapse
Affiliation(s)
| | - Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Edward I Patterson
- Centre for Neglected Tropical Diseases, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Boorooma Street, Wagga Wagga, New South Wales, Australia.
| |
Collapse
|
19
|
Denesyuk A, Dimitriou PS, Johnson MS, Nakayama T, Denessiouk K. The acid-base-nucleophile catalytic triad in ABH-fold enzymes is coordinated by a set of structural elements. PLoS One 2020; 15:e0229376. [PMID: 32084230 PMCID: PMC7034887 DOI: 10.1371/journal.pone.0229376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/05/2020] [Indexed: 01/09/2023] Open
Abstract
The alpha/beta-Hydrolases (ABH) are a structural class of proteins that are found widespread in nature and includes enzymes that can catalyze various reactions in different substrates. The catalytic versatility of the ABH fold enzymes, which has been a valuable property in protein engineering applications, is based on a similar acid-base-nucleophile catalytic mechanism. In our research, we are concerned with the structure that surrounds the key units of the catalytic machinery, and we have previously found conserved structural organizations that coordinate the catalytic acid, the catalytic nucleophile and the residues of the oxyanion hole. Here, we explore the architecture that surrounds the catalytic histidine at the active sites of enzymes from 40 ABH fold families, where we have identified six conserved interactions that coordinate the catalytic histidine next to the catalytic acid and the catalytic nucleophile. Specifically, the catalytic nucleophile is coordinated next to the catalytic histidine by two weak hydrogen bonds, while the catalytic acid is directly involved in the coordination of the catalytic histidine through by two weak hydrogen bonds. The imidazole ring of the catalytic histidine is coordinated by a CH-π contact and a hydrophobic interaction. Moreover, the catalytic triad residues are connected with a residue that is located at the core of the active site of ABH fold, which is suggested to be the fourth member of a “structural catalytic tetrad”. Besides their role in the stability of the catalytic mechanism, the conserved elements of the catalytic site are actively involved in ligand binding and affect other properties of the catalytic activity, such as substrate specificity, enantioselectivity, pH optimum and thermostability of ABH fold enzymes. These properties are regularly targeted in protein engineering applications, and thus, the identified conserved structural elements can serve as potential modification sites in order to develop ABH fold enzymes with altered activities.
Collapse
Affiliation(s)
- Alexander Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
- * E-mail:
| | - Polytimi S. Dimitriou
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
20
|
Cao Y, Qiu T, Kathayat RS, Azizi SA, Thorne AK, Ahn D, Fukata Y, Fukata M, Rice PA, Dickinson BC. ABHD10 is an S-depalmitoylase affecting redox homeostasis through peroxiredoxin-5. Nat Chem Biol 2019; 15:1232-1240. [PMID: 31740833 PMCID: PMC6871660 DOI: 10.1038/s41589-019-0399-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
S-palmitoylation is a reversible lipid post-translational modification that has been observed on mitochondrial proteins, but both the regulation and functional consequences of mitochondrial S-palmitoylation are poorly understood. Here, we show that perturbing the “erasers” of S-palmitoylation, acyl protein thioesterases (APTs), with either pan-active inhibitors or a new mitochondrial-targeted APT inhibitor, diminishes the antioxidant buffering capacity of mitochondria. Surprisingly, this effect was not mediated by the only known mitochondrial APT, but rather by a resident mitochondrial protein with no known endogenous function, ABHD10. We show that ABHD10 is a new member of the APT family of regulatory proteins and identify peroxiredoxin 5 (PRDX5), a key antioxidant protein, as the first target of ABHD10 S-depalmitoylase activity. We then discover that ABHD10 regulates the S-palmitoylation status of the nucleophilic active site residue of PRDX5, providing a direct mechanistic connection between ABHD10-mediated S-depalmitoylation of PRDX5 and its antioxidant capacity.
Collapse
Affiliation(s)
- Yang Cao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Tian Qiu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Rahul S Kathayat
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.,Medical Scientist Training Program, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
| | - Anneke K Thorne
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Daniel Ahn
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
21
|
Palmitoylation in apicomplexan parasites: from established regulatory roles to putative new functions. Mol Biochem Parasitol 2019; 230:16-23. [PMID: 30978365 DOI: 10.1016/j.molbiopara.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/17/2019] [Accepted: 04/07/2019] [Indexed: 01/28/2023]
Abstract
This minireview aims to provide a comprehensive synthesis on protein palmitoylation in apicomplexan parasites and higher eukaryotes where most of the data is available. Apicomplexan parasites encompass numerous obligate intracellular parasites with significant health risk to animals and humans. Protein palmitoylation is a widespread post-translational modification that plays important regulatory roles in several physiological and pathological states. Functional studies demonstrate that many processes important for parasites are regulated by protein palmitoylation. Structural analyses suggest that enzymes responsible for the palmitoylation process have a conserved architecture in eukaryotes although there are particular differences which could be related to their substrate specificities. Interestingly, with the publication of T. gondii and P. falciparum palmitoylomes new possible regulatory functions are unveiled. Here we focus our discussion on data from both palmitoylomes that suggest that palmitoylation of nuclear proteins regulate different chromatin-related processes such as nucleosome assembly and stability, transcription, translation and DNA repair.
Collapse
|
22
|
Kores K, Lešnik S, Bren U, Janežič D, Konc J. Discovery of Novel Potential Human Targets of Resveratrol by Inverse Molecular Docking. J Chem Inf Model 2019; 59:2467-2478. [PMID: 30883115 DOI: 10.1021/acs.jcim.8b00981] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resveratrol is a polyphenol known for its antioxidant and anti-inflammatory properties, which support its use as a treatment for variety of diseases. There are already known connections of resveratrol to chemoprevention of cancer because of its ability to prevent tumor initiation and inhibit tumor promotion and progression. Resveratrol is also believed to be important in cardiovascular diseases and neurological disorders, such as Alzheimer's disease. Using an inverse molecular docking approach, we sought to find new potential targets of resveratrol. Docking of resveratrol into each ProBiS predicted binding site of >38 000 protein structures from the Protein Data Bank was examined, and a number of novel potential targets into which resveratrol was docked successfully were found. These explain known actions or predict new effects of resveratrol. The results included three human proteins that are already known to bind resveratrol. A majority of proteins discovered however have no already described connections with resveratrol. We report new potential target human proteins and proteins connected with different organisms into which resveratrol can dock. Our results reveal previously unknown potential target human proteins, whose connection with cardiovascular and neurological disorders could lead to new potential treatments for variety of diseases. We believe that our research could help in future experimental studies on revestratol bioactivity in humans.
Collapse
Affiliation(s)
- Katarina Kores
- University of Maribor , Faculty for Chemistry and Chemical Technology Maribor , Smetanova ulica 17 , SI-2000 Maribor , Slovenia
| | - Samo Lešnik
- National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia
| | - Urban Bren
- University of Maribor , Faculty for Chemistry and Chemical Technology Maribor , Smetanova ulica 17 , SI-2000 Maribor , Slovenia.,National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia.,University of Primorska , Faculty of Mathematics, Natural Sciences and Information Technology , Glagoljaška 8 , SI-6000 Koper , Slovenia
| | - Dušanka Janežič
- University of Primorska , Faculty of Mathematics, Natural Sciences and Information Technology , Glagoljaška 8 , SI-6000 Koper , Slovenia
| | - Janez Konc
- National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia.,University of Primorska , Faculty of Mathematics, Natural Sciences and Information Technology , Glagoljaška 8 , SI-6000 Koper , Slovenia
| |
Collapse
|
23
|
Wepy JA, Galligan JJ, Kingsley PJ, Xu S, Goodman MC, Tallman KA, Rouzer CA, Marnett LJ. Lysophospholipases cooperate to mediate lipid homeostasis and lysophospholipid signaling. J Lipid Res 2018; 60:360-374. [PMID: 30482805 DOI: 10.1194/jlr.m087890] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
Lysophospholipids (LysoPLs) are bioactive lipid species involved in cellular signaling processes and the regulation of cell membrane structure. LysoPLs are metabolized through the action of lysophospholipases, including lysophospholipase A1 (LYPLA1) and lysophospholipase A2 (LYPLA2). A new X-ray crystal structure of LYPLA2 compared with a previously published structure of LYPLA1 demonstrated near-identical folding of the two enzymes; however, LYPLA1 and LYPLA2 have displayed distinct substrate specificities in recombinant enzyme assays. To determine how these in vitro substrate preferences translate into a relevant cellular setting and better understand the enzymes' role in LysoPL metabolism, CRISPR-Cas9 technology was utilized to generate stable KOs of Lypla1 and/or Lypla2 in Neuro2a cells. Using these cellular models in combination with a targeted lipidomics approach, LysoPL levels were quantified and compared between cell lines to determine the effect of losing lysophospholipase activity on lipid metabolism. This work suggests that LYPLA1 and LYPLA2 are each able to account for the loss of the other to maintain lipid homeostasis in cells; however, when both are deleted, LysoPL levels are dramatically increased, causing phenotypic and morphological changes to the cells.
Collapse
Affiliation(s)
- James A Wepy
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - James J Galligan
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Philip J Kingsley
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Shu Xu
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Michael C Goodman
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Keri A Tallman
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Carol A Rouzer
- Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Lawrence J Marnett
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146 .,Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| |
Collapse
|
24
|
Dimitriou PS, Denesyuk AI, Nakayama T, Johnson MS, Denessiouk K. Distinctive structural motifs co-ordinate the catalytic nucleophile and the residues of the oxyanion hole in the alpha/beta-hydrolase fold enzymes. Protein Sci 2018; 28:344-364. [PMID: 30311984 DOI: 10.1002/pro.3527] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022]
Abstract
The alpha/beta-hydrolases (ABH) are among the largest structural families of proteins that are found in nature. Although they vary in their sequence and function, the ABH enzymes use a similar acid-base-nucleophile catalytic mechanism to catalyze reactions on different substrates. Because ABH enzymes are biocatalysts with a wide range of potential applications, protein engineering has taken advantage of their catalytic versatility to develop enzymes with industrial applications. This study is a comprehensive analysis of 40 ABH enzyme families focusing on two identified substructures: the nucleophile zone and the oxyanion zone, which co-ordinate the catalytic nucleophile and the residues of the oxyanion hole, and independently reported as critical for the enzymatic activity. We also frequently observed an aromatic cluster near the nucleophile and oxyanion zones, and opposite the ligand-binding site. The nucleophile zone, the oxyanion zone and the residue cluster enriched in aromatic side chains comprise a three-dimensional structural organization that shapes the active site of ABH enzymes and plays an important role in the enzymatic function by structurally stabilizing the catalytic nucleophile and the residues of the oxyanion hole. The structural data support the notion that the aromatic cluster can participate in co-ordination of the catalytic histidine loop, and properly place the catalytic histidine next to the catalytic nucleophile.
Collapse
Affiliation(s)
- Polytimi S Dimitriou
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
| | - Alexander I Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Toru Nakayama
- Tohoku University, Biomolecular Engineering, Sendai, Miyagi, 980-8579, Japan
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, Turku, 20520, Finland
| |
Collapse
|
25
|
Gratacòs-Batlle E, Olivella M, Sánchez-Fernández N, Yefimenko N, Miguez-Cabello F, Fadó R, Casals N, Gasull X, Ambrosio S, Soto D. Mechanisms of CPT1C-Dependent AMPAR Trafficking Enhancement. Front Mol Neurosci 2018; 11:275. [PMID: 30135643 PMCID: PMC6092487 DOI: 10.3389/fnmol.2018.00275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022] Open
Abstract
In neurons, AMPA receptor (AMPAR) function depends essentially on their constituent components:the ion channel forming subunits and ion channel associated proteins. On the other hand, AMPAR trafficking is tightly regulated by a vast number of intracellular neuronal proteins that bind to AMPAR subunits. It has been recently shown that the interaction between the GluA1 subunit of AMPARs and carnitine palmitoyltransferase 1C (CPT1C), a novel protein partner of AMPARs, is important in modulating surface expression of these ionotropic glutamate receptors. Indeed, synaptic transmission in CPT1C knockout (KO) mice is diminished supporting a positive trafficking role for that protein. However, the molecular mechanisms of such modulation remain unknown although a putative role of CPT1C in depalmitoylating GluA1 has been hypothesized. Here, we explore that possibility and show that CPT1C effect on AMPARs is likely due to changes in the palmitoylation state of GluA1. Based on in silico analysis, Ser 252, His 470 and Asp 474 are predicted to be the catalytic triad responsible for CPT1C palmitoyl thioesterase (PTE) activity. When these residues are mutated or when PTE activity is inhibited, the CPT1C effect on AMPAR trafficking is abolished, validating the CPT1C catalytic triad as being responsible for PTE activity on AMPAR. Moreover, the histidine residue (His 470) of CPT1C is crucial for the increase in GluA1 surface expression in neurons and the H470A mutation impairs the depalmitoylating catalytic activity of CPT1C. Finally, we show that CPT1C effect seems to be specific for this CPT1 isoform and it takes place solely at endoplasmic reticulum (ER). This work adds another facet to the impressive degree of molecular mechanisms regulating AMPAR physiology.
Collapse
Affiliation(s)
- Esther Gratacòs-Batlle
- Laboratori de Neurofisiologia, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mireia Olivella
- Grup de Recerca en Bioinformàtica i Estadística Mèdica, Universitat de Vic, Barcelona, Spain
| | - Nuria Sánchez-Fernández
- Laboratori de Neurofisiologia, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Natalia Yefimenko
- Laboratori de Neurobiologia, Department de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Campus Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Federico Miguez-Cabello
- Laboratori de Neurofisiologia, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Rut Fadó
- Department de Ciències Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Núria Casals
- Department de Ciències Bàsiques, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Xavier Gasull
- Laboratori de Neurofisiologia, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Santiago Ambrosio
- Unitat de Bioquímica, Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus Universitari de Bellvitge, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques de Bellvitge (IDIBELL), Barcelona, Spain
| | - David Soto
- Laboratori de Neurofisiologia, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
26
|
Zaballa ME, van der Goot FG. The molecular era of protein S-acylation: spotlight on structure, mechanisms, and dynamics. Crit Rev Biochem Mol Biol 2018; 53:420-451. [DOI: 10.1080/10409238.2018.1488804] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- María-Eugenia Zaballa
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Sadeghi RS, Kulej K, Kathayat RS, Garcia BA, Dickinson BC, Brady DC, Witze ES. Wnt5a signaling induced phosphorylation increases APT1 activity and promotes melanoma metastatic behavior. eLife 2018; 7:34362. [PMID: 29648538 PMCID: PMC5919757 DOI: 10.7554/elife.34362] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/11/2018] [Indexed: 11/13/2022] Open
Abstract
Wnt5a has been implicated in melanoma progression and metastasis, although the exact downstream signaling events that contribute to melanoma metastasis are poorly understood. Wnt5a signaling results in acyl protein thioesterase 1 (APT1) mediated depalmitoylation of pro-metastatic cell adhesion molecules CD44 and MCAM, resulting in increased melanoma invasion. The mechanistic details that underlie Wnt5a-mediated regulation of APT1 activity and cellular function remain unknown. Here, we show Wnt5a signaling regulates APT1 activity through induction of APT1 phosphorylation and we further investigate the functional role of APT1 phosphorylation on its depalmitoylating activity. We found phosphorylation increased APT1 depalmitoylating activity and reduced APT1 dimerization. We further determined APT1 phosphorylation increases melanoma invasion in vitro, and also correlated with increased tumor grade and metastasis. Our results further establish APT1 as an important regulator of melanoma invasion and metastatic behavior. Inhibition of APT1 may represent a novel way to treat Wnt5a driven cancers.
Collapse
Affiliation(s)
- Rochelle Shirin Sadeghi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Katarzyna Kulej
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | | | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Bryan C Dickinson
- Department of Chemistry, University of Chicago, Chicago, United States
| | - Donita C Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Eric S Witze
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
28
|
Won SJ, Cheung See Kit M, Martin BR. Protein depalmitoylases. Crit Rev Biochem Mol Biol 2018; 53:83-98. [PMID: 29239216 PMCID: PMC6009847 DOI: 10.1080/10409238.2017.1409191] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
Protein depalmitoylation describes the removal of thioester-linked long chain fatty acids from cysteine residues in proteins. For many S-palmitoylated proteins, this process is promoted by acyl protein thioesterase enzymes, which catalyze thioester hydrolysis to solubilize and displace substrate proteins from membranes. The closely related enzymes acyl protein thioesterase 1 (APT1; LYPLA1) and acyl protein thioesterase 2 (APT2; LYPLA2) were initially identified from biochemical assays as G protein depalmitoylases, yet later were shown to accept a number of S-palmitoylated protein and phospholipid substrates. Leveraging the development of isoform-selective APT inhibitors, several studies report distinct roles for APT enzymes in growth factor and hormonal signaling. Recent crystal structures of APT1 and APT2 reveal convergent acyl binding channels, suggesting additional factors beyond acyl chain recognition mediate substrate selection. In addition to APT enzymes, the ABHD17 family of hydrolases contributes to the depalmitoylation of Ras-family GTPases and synaptic proteins. Overall, enzymatic depalmitoylation ensures efficient membrane targeting by balancing the palmitoylation cycle, and may play additional roles in signaling, growth, and cell organization. In this review, we provide a perspective on the biochemical, structural, and cellular analysis of protein depalmitoylases, and outline opportunities for future studies of systems-wide analysis of protein depalmitoylation.
Collapse
Affiliation(s)
- Sang Joon Won
- a Program in Chemical Biology , University of Michigan , Ann Arbor , MI , USA
| | | | - Brent R Martin
- a Program in Chemical Biology , University of Michigan , Ann Arbor , MI , USA
- b Department of Chemistry , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
29
|
Morgan AH, Rees DJ, Andrews ZB, Davies JS. Ghrelin mediated neuroprotection - A possible therapy for Parkinson's disease? Neuropharmacology 2017; 136:317-326. [PMID: 29277488 DOI: 10.1016/j.neuropharm.2017.12.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/15/2017] [Accepted: 12/17/2017] [Indexed: 12/31/2022]
Abstract
Parkinson's disease is a common age-related neurodegenerative disorder affecting 10 million people worldwide, but the mechanisms underlying its pathogenesis are still unclear. The disease is characterised by dopamine nerve cell loss in the mid-brain and intra-cellular accumulation of α-synuclein that results in motor and non-motor dysfunction. In this review, we discuss the neuroprotective effects of the stomach hormone, ghrelin, in models of Parkinson's disease. Recent findings suggest that it may modulate mitochondrial function and autophagic clearance of impaired organelle in response to changes in cellular energy balance. We consider the putative cellular mechanisms underlying ghrelin-action and the possible role of ghrelin mimetics in slowing or preventing Parkinson's disease progression. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Alwena H Morgan
- Molecular Neurobiology, Institute of Life Science, Medical School, Swansea University, UK
| | - Daniel J Rees
- Molecular Neurobiology, Institute of Life Science, Medical School, Swansea University, UK
| | - Zane B Andrews
- Biomedicine Discovery Institute & Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Jeffrey S Davies
- Molecular Neurobiology, Institute of Life Science, Medical School, Swansea University, UK.
| |
Collapse
|
30
|
Bürger M, Willige BC, Chory J. A hydrophobic anchor mechanism defines a deacetylase family that suppresses host response against YopJ effectors. Nat Commun 2017; 8:2201. [PMID: 29259199 PMCID: PMC5736716 DOI: 10.1038/s41467-017-02347-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 01/09/2023] Open
Abstract
Several Pseudomonas and Xanthomonas species are plant pathogens that infect the model organism Arabidopsis thaliana and important crops such as Brassica. Resistant plants contain the infection by rapid cell death of the infected area through the hypersensitive response (HR). A family of highly related α/β hydrolases is involved in diverse processes in all domains of life. Functional details of their catalytic machinery, however, remained unclear. We report the crystal structures of α/β hydrolases representing two different clades of the family, including the protein SOBER1, which suppresses AvrBsT-incited HR in Arabidopsis. Our results reveal a unique hydrophobic anchor mechanism that defines a previously unknown family of protein deacetylases. Furthermore, this study identifies a lid-loop as general feature for substrate turnover in acyl-protein thioesterases and the described family of deacetylases. Furthermore, we found that SOBER1's biological function is not restricted to Arabidopsis thaliana and not limited to suppress HR induced by AvrBsT.
Collapse
Affiliation(s)
- Marco Bürger
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Björn C Willige
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Joanne Chory
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
31
|
Wlodawer A, Li M, Dauter Z. High-Resolution Cryo-EM Maps and Models: A Crystallographer's Perspective. Structure 2017; 25:1589-1597.e1. [PMID: 28867613 PMCID: PMC5657611 DOI: 10.1016/j.str.2017.07.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022]
Abstract
The appearance of ten high-resolution cryoelectron microscopy (cryo-EM) maps of proteins, ribosomes, and viruses was compared with the experimentally phased crystallographic electron density maps of four proteins. We found that maps calculated at a similar resolution by the two techniques are quite comparable in their appearance, although cryo-EM maps, even when sharpened, seem to be a little less detailed. An analysis of models fitted to the cryo-EM maps indicated the presence of significant problems in almost all of them, including incorrect geometry, clashes between atoms, and discrepancies between the map density and the fitted models. In particular, the treatment of the atomic displacement (B) factors was meaningless in almost all analyzed cryo-EM models. Stricter cryo-EM structure deposition standards and their better enforcement are needed.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| | - Mi Li
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, NCI, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
32
|
Daniotti JL, Pedro MP, Valdez Taubas J. The role of S-acylation in protein trafficking. Traffic 2017; 18:699-710. [DOI: 10.1111/tra.12510] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Jose L. Daniotti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Maria P. Pedro
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Javier Valdez Taubas
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET; Universidad Nacional de Córdoba; Córdoba Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba; Córdoba Argentina
| |
Collapse
|
33
|
Dimitriou PS, Denesyuk A, Takahashi S, Yamashita S, Johnson MS, Nakayama T, Denessiouk K. Alpha/beta-hydrolases: A unique structural motif coordinates catalytic acid residue in 40 protein fold families. Proteins 2017. [DOI: 10.1002/prot.25338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Polytimi S. Dimitriou
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering; Åbo Akademi University; Turku 20520 Finland
| | - Alexander Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering; Åbo Akademi University; Turku 20520 Finland
- Institute for Biological Instrumentation of the Russian Academy of Sciences; Pushchino 142290 Russia
| | - Seiji Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering; Tohoku University; Sendai Miyagi 980-8579 Japan
| | - Satoshi Yamashita
- Division of Material Chemistry, Graduate School of Natural Science and Technology; Kanazawa University; Kanazawa Ishikawa 920-1192 Japan
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering; Åbo Akademi University; Turku 20520 Finland
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering; Tohoku University; Sendai Miyagi 980-8579 Japan
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering; Åbo Akademi University; Turku 20520 Finland
| |
Collapse
|
34
|
Huo YY, Li S, Huang J, Rong Z, Wang Z, Li Z, Ji R, Kuang S, Cui HL, Li J, Xu XW. Crystal structure of Pelagibacterium halotolerans PE8: New insight into its substrate-binding pattern. Sci Rep 2017; 7:4422. [PMID: 28667306 PMCID: PMC5493697 DOI: 10.1038/s41598-017-04550-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/17/2017] [Indexed: 11/16/2022] Open
Abstract
Lysophospholipase_carboxylesterase (LPCE) has highly conserved homologs in many diverse species ranging from bacteria to humans, as well as substantial biological significance and potential therapeutic implications. However, its biological function and catalytic mechanism remain minimally investigated because of the lack of structural information. Here, we report the crystal structure of a bacterial esterase PE8 belonging to the LPCE family. The crystal structure of PE8 was solved with a high resolution of 1.66 Å. Compared with other homologs in the family, significant differences were observed in the amino acid sequence, three-dimensional structure, and substrate-binding pattern. Residue Arg79 undergoes configuration switching when binding to the substrate and forms a unique wall, leading to a relatively closed cavity in the substrate-binding pocket compared with the relatively more open and longer clefts in other homologs. Moreover, the mutant Met122Ala showed much stronger substrate affinity and higher catalytic efficiency because less steric repulsion acted on the substrates. Taken together, these results showed that, in PE8, Arg79 and Met122 play important roles in substrate binding and the binding pocket shaping, respectively. Our study provides new insight into the catalytic mechanism of LPCE, which may facilitate the development of structure-based therapeutics and other biocatalytic applications.
Collapse
Affiliation(s)
- Ying-Yi Huo
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, 310012, China
| | - Suhua Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Jing Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Zhen Rong
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, 310012, China
| | - Zhao Wang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhengyang Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Rui Ji
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Siyun Kuang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Heng-Lin Cui
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China.
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, 310012, China.
| |
Collapse
|
35
|
Won SJ, Davda D, Labby KJ, Hwang SY, Pricer R, Majmudar JD, Armacost KA, Rodriguez LA, Rodriguez CL, Chong FS, Torossian KA, Palakurthi J, Hur ES, Meagher JL, Brooks CL, Stuckey JA, Martin BR. Molecular Mechanism for Isoform-Selective Inhibition of Acyl Protein Thioesterases 1 and 2 (APT1 and APT2). ACS Chem Biol 2016; 11:3374-3382. [PMID: 27748579 DOI: 10.1021/acschembio.6b00720] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Post-translational S-palmitoylation directs the trafficking and membrane localization of hundreds of cellular proteins, often involving a coordinated palmitoylation cycle that requires both protein acyl transferases (PATs) and acyl protein thioesterases (APTs) to actively redistribute S-palmitoylated proteins toward different cellular membrane compartments. This process is necessary for the trafficking and oncogenic signaling of S-palmitoylated Ras isoforms, and potentially many peripheral membrane proteins. The depalmitoylating enzymes APT1 and APT2 are separately conserved in all vertebrates, suggesting unique functional roles for each enzyme. The recent discovery of the APT isoform-selective inhibitors ML348 and ML349 has opened new possibilities to probe the function of each enzyme, yet it remains unclear how each inhibitor achieves orthogonal inhibition. Herein, we report the high-resolution structure of human APT2 in complex with ML349 (1.64 Å), as well as the complementary structure of human APT1 bound to ML348 (1.55 Å). Although the overall peptide backbone structures are nearly identical, each inhibitor adopts a distinct conformation within each active site. In APT1, the trifluoromethyl group of ML348 is positioned above the catalytic triad, but in APT2, the sulfonyl group of ML349 forms hydrogen bonds with active site resident waters to indirectly engage the catalytic triad and oxyanion hole. Reciprocal mutagenesis and activity profiling revealed several differing residues surrounding the active site that serve as critical gatekeepers for isoform accessibility and dynamics. Structural and biochemical analysis suggests the inhibitors occupy a putative acyl-binding region, establishing the mechanism for isoform-specific inhibition, hydrolysis of acyl substrates, and structural orthogonality important for future probe development.
Collapse
Affiliation(s)
- Sang Joon Won
- Program
in Chemical Biology, ‡Department of Chemistry, §Department of Biophysics, and ∥Life Sciences
Institute, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Dahvid Davda
- Program
in Chemical Biology, ‡Department of Chemistry, §Department of Biophysics, and ∥Life Sciences
Institute, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Kristin J. Labby
- Program
in Chemical Biology, ‡Department of Chemistry, §Department of Biophysics, and ∥Life Sciences
Institute, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Sin Ye Hwang
- Program
in Chemical Biology, ‡Department of Chemistry, §Department of Biophysics, and ∥Life Sciences
Institute, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Rachel Pricer
- Program
in Chemical Biology, ‡Department of Chemistry, §Department of Biophysics, and ∥Life Sciences
Institute, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Jaimeen D. Majmudar
- Program
in Chemical Biology, ‡Department of Chemistry, §Department of Biophysics, and ∥Life Sciences
Institute, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Kira A. Armacost
- Program
in Chemical Biology, ‡Department of Chemistry, §Department of Biophysics, and ∥Life Sciences
Institute, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Laura A. Rodriguez
- Program
in Chemical Biology, ‡Department of Chemistry, §Department of Biophysics, and ∥Life Sciences
Institute, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Christina L. Rodriguez
- Program
in Chemical Biology, ‡Department of Chemistry, §Department of Biophysics, and ∥Life Sciences
Institute, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Fei San Chong
- Program
in Chemical Biology, ‡Department of Chemistry, §Department of Biophysics, and ∥Life Sciences
Institute, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Kristopher A. Torossian
- Program
in Chemical Biology, ‡Department of Chemistry, §Department of Biophysics, and ∥Life Sciences
Institute, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Jasmine Palakurthi
- Program
in Chemical Biology, ‡Department of Chemistry, §Department of Biophysics, and ∥Life Sciences
Institute, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Edward S. Hur
- Program
in Chemical Biology, ‡Department of Chemistry, §Department of Biophysics, and ∥Life Sciences
Institute, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Jennifer L. Meagher
- Program
in Chemical Biology, ‡Department of Chemistry, §Department of Biophysics, and ∥Life Sciences
Institute, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Charles L. Brooks
- Program
in Chemical Biology, ‡Department of Chemistry, §Department of Biophysics, and ∥Life Sciences
Institute, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Jeanne A. Stuckey
- Program
in Chemical Biology, ‡Department of Chemistry, §Department of Biophysics, and ∥Life Sciences
Institute, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| | - Brent R. Martin
- Program
in Chemical Biology, ‡Department of Chemistry, §Department of Biophysics, and ∥Life Sciences
Institute, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
36
|
Cho E, Park M. Palmitoylation in Alzheimers disease and other neurodegenerative diseases. Pharmacol Res 2016; 111:133-151. [DOI: 10.1016/j.phrs.2016.06.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
|
37
|
Abstract
Protein palmitoylation is a dynamic post-translational modification, where the 16-carbon fatty acid, palmitate, is added to cysteines of proteins to modulate protein sorting, targeting and signalling. Palmitate removal from proteins is mediated by acyl protein thioesterases (APTs). Although initially identified as lysophospholipases, increasing evidence suggests APT1 and APT2 are the major APTs that mediate the depalmitoylation of diverse cellular substrates. Here, we describe the conserved functions of APT1 and APT2 across organisms and discuss the possibility that these enzymes are members of a larger family of depalmitoylation enzymes.
Collapse
|
38
|
Fako VE, Zhang JT, Liu JY. Mechanism of Orlistat Hydrolysis by the Thioesterase of Human Fatty Acid Synthase. ACS Catal 2014; 4:3444-3453. [PMID: 25309810 PMCID: PMC4188697 DOI: 10.1021/cs500956m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 08/15/2014] [Indexed: 01/25/2023]
Abstract
Fatty acid synthase (FASN), the sole protein capable of de novo synthesis of free fatty acids, is overexpressed in a wide variety of human cancers and is associated with poor prognosis and aggressiveness of these cancers. Orlistat, an FDA-approved drug for obesity treatment that inhibits pancreatic lipases in the GI tract, also inhibits the thioesterase (TE) of human FASN. The cocrystal structure of TE with orlistat shows a pseudo TE dimer containing two different forms of orlistat in the active site, an intermediate that is covalently bound to a serine residue (Ser2308) and a hydrolyzed and inactivated product. In this study, we attempted to understand the mechanism of TE-catalyzed orlistat hydrolysis by examining the role of the hexyl tail of the covalently bound orlistat in water activation for hydrolysis using molecular dynamics simulations. We found that the hexyl tail of the covalently bound orlistat undergoes a conformational transition, which is accompanied by destabilization of a hydrogen bond between a hydroxyl moiety of orlistat and the catalytic His2481 of TE that in turn leads to an increased hydrogen bonding between water molecules and His2481 and increased chance for water activation to hydrolyze the covalent bond between orlistat and Ser2308. Thus, the conformation of the hexyl tail of orlistat plays an important role in orlistat hydrolysis. Strategies that stabilize the hexyl tail may lead to the design of more potent irreversible inhibitors that target FASN and block TE activity with greater endurance.
Collapse
Affiliation(s)
| | | | - Jing-Yuan Liu
- Department
of Computer and Information Science, Indiana University-Purdue University, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States
| |
Collapse
|
39
|
Edmonds MJ, Morgan A. A systematic analysis of protein palmitoylation in Caenorhabditis elegans. BMC Genomics 2014; 15:841. [PMID: 25277130 PMCID: PMC4192757 DOI: 10.1186/1471-2164-15-841] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 08/26/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Palmitoylation is a reversible post-translational protein modification which involves the addition of palmitate to cysteine residues. Palmitoylation is catalysed by the DHHC family of palmitoyl-acyl transferases (PATs) and reversibility is conferred by palmitoyl-protein thioesterases (PPTs). Mutations in genes encoding both classes of enzymes are associated with human diseases, notably neurological disorders, underlining their importance. Despite the pivotal role of yeast studies in discovering PATs, palmitoylation has not been studied in the key animal model Caenorhabditis elegans. RESULTS Analysis of the C. elegans genome identified fifteen PATs, using the DHHC cysteine-rich domain, and two PPTs, by homology. The twelve uncategorised PATs were officially named using a dhhc-x system. Genomic data on these palmitoylation enzymes and those in yeast, Drosophila and humans was collated and analysed to predict properties and relationships in C. elegans. All available C. elegans strains containing a mutation in a palmitoylation enzyme were analysed and a complete library of RNA interference (RNAi) feeding plasmids against PAT or PPT genes was generated. To test for possible redundancy, double RNAi was performed against selected closely related PATs and both PPTs. Animals were screened for phenotypes including size, longevity and sensory and motor neuronal functions. Although some significant differences were observed with individual mutants or RNAi treatment, in general there was little impact on these phenotypes, suggesting that genetic buffering exists within the palmitoylation network in worms. CONCLUSIONS This study reports the first characterisation of palmitoylation in C. elegans using both in silico and in vivo approaches, and opens up this key model organism for further detailed study of palmitoylation in future.
Collapse
Affiliation(s)
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St,, Liverpool L69 3BX, UK.
| |
Collapse
|
40
|
Vartak N, Papke B, Grecco HE, Rossmannek L, Waldmann H, Hedberg C, Bastiaens PIH. The autodepalmitoylating activity of APT maintains the spatial organization of palmitoylated membrane proteins. Biophys J 2014; 106:93-105. [PMID: 24411241 DOI: 10.1016/j.bpj.2013.11.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 02/07/2023] Open
Abstract
The localization and signaling of S-palmitoylated peripheral membrane proteins is sustained by an acylation cycle in which acyl protein thioesterases (APTs) depalmitoylate mislocalized palmitoylated proteins on endomembranes. However, the APTs are themselves reversibly S-palmitoylated, which localizes thioesterase activity to the site of the antagonistc palmitoylation activity on the Golgi. Here, we resolve this conundrum by showing that palmitoylation of APTs is labile due to autodepalmitoylation, creating two interconverting thioesterase pools: palmitoylated APT on the Golgi and depalmitoylated APT in the cytoplasm, with distinct functionality. By imaging APT-substrate catalytic intermediates, we show that it is the depalmitoylated soluble APT pool that depalmitoylates substrates on all membranes in the cell, thereby establishing its function as release factor of mislocalized palmitoylated proteins in the acylation cycle. The autodepalmitoylating activity on the Golgi constitutes a homeostatic regulation mechanism of APT levels at the Golgi that ensures robust partitioning of APT substrates between the plasma membrane and the Golgi.
Collapse
Affiliation(s)
- Nachiket Vartak
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Bjoern Papke
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Hernan E Grecco
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Lisaweta Rossmannek
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany; Faculty of Chemistry, Technical University Dortmund, Dortmund, Germany
| | - Christian Hedberg
- Department of Chemical Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany; Faculty of Chemistry, Technical University Dortmund, Dortmund, Germany.
| |
Collapse
|
41
|
Chavda B, Arnott JA, Planey SL. Targeting protein palmitoylation: selective inhibitors and implications in disease. Expert Opin Drug Discov 2014; 9:1005-19. [DOI: 10.1517/17460441.2014.933802] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Burzin Chavda
- The Commonwealth Medical College, Department of Basic Sciences, Scranton, PA 18509, USA
| | - John A Arnott
- The Commonwealth Medical College, Department of Basic Sciences, Scranton, PA 18509, USA
| | - Sonia Lobo Planey
- The Commonwealth Medical College, Department of Basic Sciences, Scranton, PA 18509, USA
| |
Collapse
|
42
|
Shipston MJ. Ion channel regulation by protein S-acylation. J Gen Physiol 2014; 143:659-78. [PMID: 24821965 PMCID: PMC4035745 DOI: 10.1085/jgp.201411176] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/18/2014] [Indexed: 01/09/2023] Open
Abstract
Protein S-acylation, the reversible covalent fatty-acid modification of cysteine residues, has emerged as a dynamic posttranslational modification (PTM) that controls the diversity, life cycle, and physiological function of numerous ligand- and voltage-gated ion channels. S-acylation is enzymatically mediated by a diverse family of acyltransferases (zDHHCs) and is reversed by acylthioesterases. However, for most ion channels, the dynamics and subcellular localization at which S-acylation and deacylation cycles occur are not known. S-acylation can control the two fundamental determinants of ion channel function: (1) the number of channels resident in a membrane and (2) the activity of the channel at the membrane. It controls the former by regulating channel trafficking and the latter by controlling channel kinetics and modulation by other PTMs. Ion channel function may be modulated by S-acylation of both pore-forming and regulatory subunits as well as through control of adapter, signaling, and scaffolding proteins in ion channel complexes. Importantly, cross-talk of S-acylation with other PTMs of both cysteine residues by themselves and neighboring sites of phosphorylation is an emerging concept in the control of ion channel physiology. In this review, I discuss the fundamentals of protein S-acylation and the tools available to investigate ion channel S-acylation. The mechanisms and role of S-acylation in controlling diverse stages of the ion channel life cycle and its effect on ion channel function are highlighted. Finally, I discuss future goals and challenges for the field to understand both the mechanistic basis for S-acylation control of ion channels and the functional consequence and implications for understanding the physiological function of ion channel S-acylation in health and disease.
Collapse
Affiliation(s)
- Michael J Shipston
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD Scotland, UK
| |
Collapse
|
43
|
Blaskovic S, Adibekian A, Blanc M, van der Goot GF. Mechanistic effects of protein palmitoylation and the cellular consequences thereof. Chem Phys Lipids 2014; 180:44-52. [PMID: 24534427 DOI: 10.1016/j.chemphyslip.2014.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022]
Abstract
S-palmitoylation involves the attachment of a 16-carbon long fatty acid chain to the cysteine residues of proteins. The process is enzymatic and dynamic with DHHC enzymes mediating palmitoylation and acyl-protein thioesterases reverting the reaction. Proteins that undergo this modification span almost all cellular functions. While the increase in hydrophobicity generated by palmitoylation has the obvious consequence of triggering membrane association, the effects on transmembrane proteins are less intuitive and span a vast range. We review here the current knowledge on palmitoylating and depalmitoylating enzymes, the methods that allow the study of this lipid modification and which drugs can affect it, and finally we focus on four cellular processes for which recent studies reveal an involvement of palmitoylation: endocytosis, reproduction and cell growth, fat and sugar homeostasis and signal transduction at the synapse.
Collapse
Affiliation(s)
- Sanja Blaskovic
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015 Lausanne, Switzerland
| | - Alexander Adibekian
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Mathieu Blanc
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015 Lausanne, Switzerland
| | - Gisou F van der Goot
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
44
|
Abstract
The covalent attachment of palmitate to proteins can alter protein-lipid and protein-protein interactions thereby influencing protein function. Palmitoylation is a reversible post-translational modification. Thus, like protein phosphorylation, protein palmitoylation can function in activation-dependent signaling pathways. This review will provide an overview of the mechanisms and regulation of protein palmitoylation and focus on the role of palmitoylation in signal transduction pathways of lymphocytes and platelets.
Collapse
Affiliation(s)
- Robert Flaumenhaft
- Beth Israel Deaconess Medical Center, Harvard Medical School, Division of Hemostasis and Thrombosis, Department of Medicine, Boston, MA, 02215, USA.
| | | |
Collapse
|
45
|
Filippova EV, Weston LA, Kuhn ML, Geissler B, Gehring AM, Armoush N, Adkins CT, Minasov G, Dubrovska I, Shuvalova L, Winsor JR, Lavis LD, Satchell KJF, Becker DP, Anderson WF, Johnson RJ. Large scale structural rearrangement of a serine hydrolase from Francisella tularensis facilitates catalysis. J Biol Chem 2013; 288:10522-35. [PMID: 23430251 DOI: 10.1074/jbc.m112.446625] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tularemia is a deadly, febrile disease caused by infection by the gram-negative bacterium, Francisella tularensis. Members of the ubiquitous serine hydrolase protein family are among current targets to treat diverse bacterial infections. Herein we present a structural and functional study of a novel bacterial carboxylesterase (FTT258) from F. tularensis, a homologue of human acyl protein thioesterase (hAPT1). The structure of FTT258 has been determined in multiple forms, and unexpectedly large conformational changes of a peripheral flexible loop occur in the presence of a mechanistic cyclobutanone ligand. The concomitant changes in this hydrophobic loop and the newly exposed hydrophobic substrate binding pocket suggest that the observed structural changes are essential to the biological function and catalytic activity of FTT258. Using diverse substrate libraries, site-directed mutagenesis, and liposome binding assays, we determined the importance of these structural changes to the catalytic activity and membrane binding activity of FTT258. Residues within the newly exposed hydrophobic binding pocket and within the peripheral flexible loop proved essential to the hydrolytic activity of FTT258, indicating that structural rearrangement is required for catalytic activity. Both FTT258 and hAPT1 also showed significant association with liposomes designed to mimic bacterial or human membranes, respectively, even though similar structural rearrangements for hAPT1 have not been reported. The necessity for acyl protein thioesterases to have maximal catalytic activity near the membrane surface suggests that these conformational changes in the protein may dually regulate catalytic activity and membrane association in bacterial and human homologues.
Collapse
Affiliation(s)
- Ekaterina V Filippova
- Center for Structural Genomics of Infectious Diseases and the Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Jones ML, Tay CL, Rayner JC. Getting stuck in: protein palmitoylation in Plasmodium. Trends Parasitol 2012; 28:496-503. [DOI: 10.1016/j.pt.2012.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/28/2012] [Accepted: 08/28/2012] [Indexed: 11/26/2022]
|
47
|
Yuan Y, Wang X, Li X, Teng M, Niu L, Gao Y. Cloning, purification, crystallization and preliminary X-ray diffraction crystallographic study of acyl-protein thioesterase 1 from Saccharomyces cerevisiae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:775-7. [PMID: 22750862 PMCID: PMC3388919 DOI: 10.1107/s1744309112019276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/29/2012] [Indexed: 11/11/2022]
Abstract
Palmitoylation/depalmitoylation plays an important role in protein modification. yApt1 is the only enzyme in Saccharomyces cerevisiae that catalyses depalmitoylation. In the present study, recombinant full-length yApt1 was cloned, expressed, purified and crystallized. The crystals diffracted to 2.40 Å resolution and belonged to space group P4(2)2(1)2, with unit-cell parameters a = b = 146.43, c = 93.29 Å. A preliminary model of the three-dimensional structure has been built and further refinement is ongoing.
Collapse
Affiliation(s)
- Ye Yuan
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Xiao Wang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Yongxiang Gao
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
48
|
Gonzalez CF, Tchigvintsev A, Brown G, Flick R, Evdokimova E, Xu X, Osipiuk J, Cuff ME, Lynch S, Joachimiak A, Savchenko A, Yakunin AF. Structure and activity of the Pseudomonas aeruginosa hotdog-fold thioesterases PA5202 and PA2801. Biochem J 2012; 444:445-55. [PMID: 22439787 PMCID: PMC3836677 DOI: 10.1042/bj20112032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The hotdog fold is one of the basic protein folds widely present in bacteria, archaea and eukaryotes. Many of these proteins exhibit thioesterase activity against fatty acyl-CoAs and play important roles in lipid metabolism, cellular signalling and degradation of xenobiotics. The genome of the opportunistic pathogen Pseudomonas aeruginosa contains over 20 genes encoding predicted hotdog-fold proteins, none of which have been experimentally characterized. We have found that two P. aeruginosa hotdog proteins display high thioesterase activity against 3-hydroxy-3-methylglutaryl-CoA and glutaryl-CoA (PA5202), and octanoyl-CoA (PA2801). Crystal structures of these proteins were solved (at 1.70 and 1.75 Å for PA5202 and PA2801 respectively) and revealed a hotdog fold with a potential catalytic carboxylate residue located on the long α-helix (Asp(57) in PA5202 and Glu(35) in PA2801). Alanine residue replacement mutagenesis of PA5202 identified four residues (Asn(42), Arg(43), Asp(57) and Thr(76)) that are critical for its activity and are located in the active site. A P. aeruginosa PA5202 deletion strain showed an increased secretion of the antimicrobial pigment pyocyanine and an increased expression of genes involved in pyocyanin biosynthesis, suggesting a functional link between PA5202 activity and pyocyanin production. Thus the P. aeruginosa hotdog thioesterases PA5202 and PA2801 have similar structures, but exhibit different substrate preferences and functions.
Collapse
Affiliation(s)
- Claudio F. Gonzalez
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL32611-0700, USA
| | - Anatoli Tchigvintsev
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | - Elena Evdokimova
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Xiaohui Xu
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Jerzy Osipiuk
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Marianne E. Cuff
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Susan Lynch
- Department of Anesthesia and Preoperative Care, University of California, San Francisco, CA 94143, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexander F. Yakunin
- Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| |
Collapse
|
49
|
Young FB, Butland SL, Sanders SS, Sutton LM, Hayden MR. Putting proteins in their place: Palmitoylation in Huntington disease and other neuropsychiatric diseases. Prog Neurobiol 2012; 97:220-38. [DOI: 10.1016/j.pneurobio.2011.11.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/01/2011] [Accepted: 11/08/2011] [Indexed: 01/02/2023]
|
50
|
Tian L, McClafferty H, Knaus HG, Ruth P, Shipston MJ. Distinct acyl protein transferases and thioesterases control surface expression of calcium-activated potassium channels. J Biol Chem 2012; 287:14718-25. [PMID: 22399288 PMCID: PMC3340283 DOI: 10.1074/jbc.m111.335547] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/27/2012] [Indexed: 11/06/2022] Open
Abstract
Protein palmitoylation is rapidly emerging as an important determinant in the regulation of ion channels, including large conductance calcium-activated potassium (BK) channels. However, the enzymes that control channel palmitoylation are largely unknown. Indeed, although palmitoylation is the only reversible lipid modification of proteins, acyl thioesterases that control ion channel depalmitoylation have not been identified. Here, we demonstrate that palmitoylation of the intracellular S0-S1 loop of BK channels is controlled by two of the 23 mammalian palmitoyl-transferases, zDHHC22 and zDHHC23. Palmitoylation by these acyl transferases is essential for efficient cell surface expression of BK channels. In contrast, depalmitoylation is controlled by the cytosolic thioesterase APT1 (LYPLA1), but not APT2 (LYPLA2). In addition, we identify a splice variant of LYPLAL1, a homolog with ∼30% identity to APT1, that also controls BK channel depalmitoylation. Thus, both palmitoyl acyltransferases and acyl thioesterases display discrete substrate specificity for BK channels. Because depalmitoylated BK channels are retarded in the trans-Golgi network, reversible protein palmitoylation provides a critical checkpoint to regulate exit from the trans-Golgi network and thus control BK channel cell surface expression.
Collapse
Affiliation(s)
- Lijun Tian
- From the Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, EH8 9XD, Scotland
| | - Heather McClafferty
- From the Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, EH8 9XD, Scotland
| | - Hans-Guenther Knaus
- the Division of Molecular and Cellular Pharmacology, Medical University Innsbruck, Innsbruck A-6020, Austria, and
| | - Peter Ruth
- the Pharmacology and Toxicology, Institute of Pharmacy, University of Tuebingen, Tuebingen 72076, Germany
| | - Michael J. Shipston
- From the Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, EH8 9XD, Scotland
| |
Collapse
|