1
|
Gupta P, Kumar R. GTP cyclohydroxylase1 (GCH1): Role in neurodegenerative diseases. Gene 2023; 888:147749. [PMID: 37652170 DOI: 10.1016/j.gene.2023.147749] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
GCH1 gene provides directions for the synthesis of GTP cyclohydrolase 1 which regulates the formation of Tetrahydrobiopterin (BH4). BH4 is a crucial cofactor for essential neurotransmitters synthesis such as dopamine, serotonin and nitric oxide synthases. Deficiency of GCH1 limits the synthesis of BH4 which is responsible for neuropsychiatric diseases such as dopa-responsive dystonia, hyperalaninemia, Parkinson's disease and depression. Few single nucleotide polymorphisms of GCH1 gene are also responsible for pain in sickle cell disease. Furthermore, GCH1 regulates NO activity which controls the blood pressure, vasodilatory functions and oxidative stress. Understanding the therapeutic implications of targeting GCH1 which holds promise for treating various diseases. Novel therapeutic strategies could involve small molecule drugs or gene therapy techniques that enhance GCH1 expression or activity.
Collapse
Affiliation(s)
- Parul Gupta
- ICMR-National Institute of Research in Tribal Health, India
| | - Ravindra Kumar
- ICMR-National Institute of Research in Tribal Health, India.
| |
Collapse
|
2
|
Cronin SJF, Yu W, Hale A, Licht-Mayer S, Crabtree MJ, Korecka JA, Tretiakov EO, Sealey-Cardona M, Somlyay M, Onji M, An M, Fox JD, Turnes BL, Gomez-Diaz C, da Luz Scheffer D, Cikes D, Nagy V, Weidinger A, Wolf A, Reither H, Chabloz A, Kavirayani A, Rao S, Andrews N, Latremoliere A, Costigan M, Douglas G, Freitas FC, Pifl C, Walz R, Konrat R, Mahad DJ, Koslov AV, Latini A, Isacson O, Harkany T, Hallett PJ, Bagby S, Woolf CJ, Channon KM, Je HS, Penninger JM. Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539795. [PMID: 37214873 PMCID: PMC10197517 DOI: 10.1101/2023.05.08.539795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Dopa-responsive dystonia (DRD) and Parkinson's disease (PD) are movement disorders caused by the dysfunction of nigrostriatal dopaminergic neurons. Identifying druggable pathways and biomarkers for guiding therapies is crucial due to the debilitating nature of these disorders. Recent genetic studies have identified variants of GTP cyclohydrolase-1 (GCH1), the rate-limiting enzyme in tetrahydrobiopterin (BH4) synthesis, as causative for these movement disorders. Here, we show that genetic and pharmacological inhibition of BH4 synthesis in mice and human midbrain-like organoids accurately recapitulates motor, behavioral and biochemical characteristics of these human diseases, with severity of the phenotype correlating with extent of BH4 deficiency. We also show that BH4 deficiency increases sensitivities to several PD-related stressors in mice and PD human cells, resulting in worse behavioral and physiological outcomes. Conversely, genetic and pharmacological augmentation of BH4 protects mice from genetically- and chemically induced PD-related stressors. Importantly, increasing BH4 levels also protects primary cells from PD-affected individuals and human midbrain-like organoids (hMLOs) from these stressors. Mechanistically, BH4 not only serves as an essential cofactor for dopamine synthesis, but also independently regulates tyrosine hydroxylase levels, protects against ferroptosis, scavenges mitochondrial ROS, maintains neuronal excitability and promotes mitochondrial ATP production, thereby enhancing mitochondrial fitness and cellular respiration in multiple preclinical PD animal models, human dopaminergic midbrain-like organoids and primary cells from PD-affected individuals. Our findings pinpoint the BH4 pathway as a key metabolic program at the intersection of multiple protective mechanisms for the health and function of midbrain dopaminergic neurons, identifying it as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Weonjin Yu
- Signature Program in Neuroscience and Behavioural Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ashley Hale
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Simon Licht-Mayer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Mark J Crabtree
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Joanna A Korecka
- Neurodegeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, 02478, USA
| | - Evgenii O Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Marco Sealey-Cardona
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Mate Somlyay
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Masahiro Onji
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Meilin An
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Jesse D Fox
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Bruna Lenfers Turnes
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Carlos Gomez-Diaz
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Débora da Luz Scheffer
- LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC 88037-100, Brazil
| | - Domagoj Cikes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD); Department of Neurology, Medical University of Vienna (MUW), 1090 Vienna, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology. The Research Center in Cooperation with AUVA, Donaueschingen Str. 13, 1200 Vienna, Austria
| | - Alexandra Wolf
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Harald Reither
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Antoine Chabloz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Anoop Kavirayani
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nick Andrews
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Latremoliere
- Neurosurgery Department, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Michael Costigan
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Gillian Douglas
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Christian Pifl
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roger Walz
- Center for Applied Neurocience, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Neurology Division, Internal Medicine Department, University Hospital of UFSC, Florianópolis, Brazil
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Don J Mahad
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Andrey V Koslov
- Ludwig Boltzmann Institute for Traumatology. The Research Center in Cooperation with AUVA, Donaueschingen Str. 13, 1200 Vienna, Austria
| | - Alexandra Latini
- LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC 88037-100, Brazil
| | - Ole Isacson
- Neurodegeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, 02478, USA
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Biomedicum 7D, Karolinska Institute, Solna, Sweden
| | - Penelope J Hallett
- Neurodegeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, 02478, USA
| | - Stefan Bagby
- Department of Biology and Biochemistry and the Milner Centre for Evolution, University of Bath, Bath, UK
| | - Clifford J Woolf
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Hyunsoo Shawn Je
- Signature Program in Neuroscience and Behavioural Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Hussein D. In Silico Investigation of the Human GTP Cyclohydrolase 1 Enzyme Reveals the Potential of Drug Repurposing Approaches towards the Discovery of Effective BH 4 Therapeutics. Int J Mol Sci 2023; 24:ijms24021210. [PMID: 36674724 PMCID: PMC9862521 DOI: 10.3390/ijms24021210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The GTP cyclohydrolase 1 enzyme (GTPCH1) is the rate-limiting enzyme of the tetrahydrobiopterin (BH4) biosynthetic pathway. Physiologically, BH4 plays a crucial role as an essential cofactor for the production of catecholamine neurotransmitters, including epinephrine, norepinephrine and dopamine, as well as the gaseous signaling molecule, nitric oxide. Pathological levels of the cofactor have been reported in a number of disease states, such as inflammatory conditions, neuropathic pain and cancer. Targeting the GTPCH1 enzyme has great potential in the management of a number of disease pathologies associated with dysregulated BH4 physiology. This study is an in silico investigation of the human GTPCH1 enzyme using virtual screening and molecular dynamic simulation to identify molecules that can be repurposed to therapeutically target the enzyme. A three-tier molecular docking protocol was employed in the virtual screening of a comprehensive library of over 7000 approved medications and nutraceuticals in order to identify hit compounds capable of binding to the GTPCH1 binding pocket with the highest affinity. Hit compounds were further verified by molecular dynamic simulation studies to provide a detailed insight regarding the stability and nature of the binding interaction. In this study, we identify a number of drugs and natural compounds with recognized anti-inflammatory, analgesic and cytotoxic effects, including the aminosalicylate olsalazine, the antiepileptic phenytoin catechol, and the phlorotannins phlorofucofuroeckol and eckol. Our results suggest that the therapeutic and clinical effects of hit compounds may be partially attributed to the inhibition of the GTPCH1 enzyme. Notably, this study offers an understanding of the off-target effects of a number of compounds and advocates the potential role of aminosalicylates in the regulation of BH4 production in inflammatory disease states. It highlights an in silico drug repurposing approach to identify a potential means of safely targeting the BH4 biosynthetic pathway using established therapeutic agents.
Collapse
Affiliation(s)
- Dania Hussein
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman bin Faisal University, Khobar 31441, Saudi Arabia
| |
Collapse
|
4
|
Khairallah A, Ross CJ, Tastan Bishop Ö. GTP Cyclohydrolase I as a Potential Drug Target: New Insights into Its Allosteric Modulation via Normal Mode Analysis. J Chem Inf Model 2021; 61:4701-4719. [PMID: 34450011 DOI: 10.1021/acs.jcim.1c00898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Guanosine triphosphate (GTP) cyclohydrolase I (GCH1) catalyzes the conversion of GTP into dihydroneopterin triphosphate (DHNP). DHNP is the first intermediate of the folate de novo biosynthesis pathway in prokaryotic and lower eukaryotic microorganisms and the tetrahydrobiopterin (BH4) biosynthesis pathway in higher eukaryotes. The de novo folate biosynthesis provides essential cofactors for DNA replication, cell division, and synthesis of key amino acids in rapidly replicating pathogen cells, such as Plasmodium falciparum (P. falciparum), a causative agent of malaria. In eukaryotes, the product of the BH4 biosynthesis pathway is essential for the production of nitric oxide and several neurotransmitter precursors. An increased copy number of the malaria parasite P. falciparum GCH1 gene has been reported to influence antimalarial antifolate drug resistance evolution, whereas mutations in the human GCH1 are associated with neuropathic and inflammatory pain disorders. Thus, GCH1 stands as an important and attractive drug target for developing therapeutics. The GCH1 intrinsic dynamics that modulate its activity remains unclear, and key sites that exert allosteric effects across the structure are yet to be elucidated. This study employed the anisotropic network model to analyze the intrinsic motions of the GCH1 structure alone and in complex with its regulatory partner protein. We showed that the GCH1 tunnel-gating mechanism is regulated by a global shear motion and an outward expansion of the central five-helix bundle. We further identified hotspot residues within sites of structural significance for the GCH1 intrinsic allosteric modulation. The obtained results can provide a solid starting point to design novel antineuropathic treatments for humans and novel antimalarial drugs against the malaria parasite P. falciparum GCH1 enzyme.
Collapse
Affiliation(s)
- Afrah Khairallah
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Caroline J Ross
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
5
|
Biophysical and structural investigation of the regulation of human GTP cyclohydrolase I by its regulatory protein GFRP. J Struct Biol 2020; 213:107691. [PMID: 33387654 DOI: 10.1016/j.jsb.2020.107691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 11/23/2022]
Abstract
GTP Cyclohydrolase I (GCH1) catalyses the conversion of guanosine triphosphate (GTP) to dihydroneopterin triphosphate (H2NTP), the initiating step in the biosynthesis of tetrahydrobiopterin (BH4). BH4 functions as co-factor in neurotransmitter biosynthesis. BH4 homeostasis is a promising target to treat pain disorders in patients. The function of mammalian GCH1s is regulated by a metabolic sensing mechanism involving a regulator protein, GCH1 feedback regulatory protein (GFRP). Dependent on the relative cellular concentrations of effector ligands, BH4 and phenylalanine, GFRP binds GCH1 to form inhibited or activated complexes, respectively. We determined high-resolution structures of the ligand-free and -bound human GFRP and GCH1-GFRP complexes by X-ray crystallography. Highly similar binding modes of the substrate analogue 7-deaza-GTP to active and inhibited GCH1-GFRP complexes confirm a novel, dissociation rate-controlled mechanism of non-competitive inhibition to be at work. Further, analysis of all structures shows that upon binding of the effector molecules, the conformations of GCH1 or GFRP are altered and form highly complementary surfaces triggering a picomolar interaction of GFRP and GCH1 with extremely slow koff values, while GCH1-GFRP complexes rapidly disintegrate in absence of BH4 or phenylalanine. Finally, comparing behavior of full-length and N-terminally truncated GCH1 we conclude that the disordered GCH1 N-terminus does not have impact on complex formation and enzymatic activity. In summary, this comprehensive and methodologically diverse study helps to provide a better understanding of the regulation of GCH1 by GFRP and could thus stimulate research on GCH1 modulating drugs.
Collapse
|
6
|
Ebenhoch R, Prinz S, Kaltwasser S, Mills DJ, Meinecke R, Rübbelke M, Reinert D, Bauer M, Weixler L, Zeeb M, Vonck J, Nar H. A hybrid approach reveals the allosteric regulation of GTP cyclohydrolase I. Proc Natl Acad Sci U S A 2020; 117:31838-31849. [PMID: 33229582 PMCID: PMC7750480 DOI: 10.1073/pnas.2013473117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Guanosine triphosphate (GTP) cyclohydrolase I (GCH1) catalyzes the conversion of GTP to dihydroneopterin triphosphate (H2NTP), the initiating step in the biosynthesis of tetrahydrobiopterin (BH4). Besides other roles, BH4 functions as cofactor in neurotransmitter biosynthesis. The BH4 biosynthetic pathway and GCH1 have been identified as promising targets to treat pain disorders in patients. The function of mammalian GCH1s is regulated by a metabolic sensing mechanism involving a regulator protein, GCH1 feedback regulatory protein (GFRP). GFRP binds to GCH1 to form inhibited or activated complexes dependent on availability of cofactor ligands, BH4 and phenylalanine, respectively. We determined high-resolution structures of human GCH1-GFRP complexes by cryoelectron microscopy (cryo-EM). Cryo-EM revealed structural flexibility of specific and relevant surface lining loops, which previously was not detected by X-ray crystallography due to crystal packing effects. Further, we studied allosteric regulation of isolated GCH1 by X-ray crystallography. Using the combined structural information, we are able to obtain a comprehensive picture of the mechanism of allosteric regulation. Local rearrangements in the allosteric pocket upon BH4 binding result in drastic changes in the quaternary structure of the enzyme, leading to a more compact, tense form of the inhibited protein, and translocate to the active site, leading to an open, more flexible structure of its surroundings. Inhibition of the enzymatic activity is not a result of hindrance of substrate binding, but rather a consequence of accelerated substrate binding kinetics as shown by saturation transfer difference NMR (STD-NMR) and site-directed mutagenesis. We propose a dissociation rate controlled mechanism of allosteric, noncompetitive inhibition.
Collapse
Affiliation(s)
- Rebecca Ebenhoch
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Simone Prinz
- Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Susann Kaltwasser
- Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Deryck J Mills
- Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Robert Meinecke
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Martin Rübbelke
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Dirk Reinert
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Margit Bauer
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Lisa Weixler
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Markus Zeeb
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany
| | - Janet Vonck
- Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Herbert Nar
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany;
| |
Collapse
|
7
|
Agarwal P, Meena S, Meena LS. Comprehensive analysis of GTP cyclohydrolase I activity in Mycobacterium tuberculosis H 37 Rv via in silico studies. Biotechnol Appl Biochem 2020; 68:756-768. [PMID: 32691412 DOI: 10.1002/bab.1988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/14/2020] [Indexed: 11/06/2022]
Abstract
GTP cyclohydrolase I enzyme (GTPCH-I) is a rate limiting enzyme in the biosynthesis pathway of tetrahydrobiopterin (BH4) and tetrahydrofolate (THF) compounds; latter being are an essential compounds involved in many biological functions. This enzyme has been evaluated structurally and functionally in many organisms to understand its putative role in cell processes, kinetics, regulations, drug targeting in infectious diseases, pain sensitivity in humans, and so on. In Mycobacterium tuberculosis (a human pathogen causing tuberculosis), this GTPCH-I activity has been predicted to be present in Rv3609c gene (folE) of H37 Rv strain, which till date has not been studied in detail. In order to understand in depth, the structure and function of folE protein in M. tuberculosis H37 Rv, in silico study was designed by using many different bioinformatics tools. Comparative and structural analysis predicts that Rv3609c gene is similar to folE protein ortholog of Listeria monocytogenes (cause food born disease), and uses zinc ion as a cofactor for its catalysis. Result shows that mutation of folE protein at 52th residue from tyrosine to glycine or variation in pH and temperature can lead to high destability in protein structure. Studies here have also predicted about the functional regions and interacting partners involved with folE protein. This study has provided clues to carry out experimentally the analysis of folE protein in mycobacteria and if found suitable will be used for drug targeting.
Collapse
Affiliation(s)
- Preeti Agarwal
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - Swati Meena
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - Laxman S Meena
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| |
Collapse
|
8
|
Khairallah A, Tastan Bishop Ö, Moses V. AMBER force field parameters for the Zn (II) ions of the tunneling-fold enzymes GTP cyclohydrolase I and 6-pyruvoyl tetrahydropterin synthase. J Biomol Struct Dyn 2020; 39:5843-5860. [PMID: 32720563 DOI: 10.1080/07391102.2020.1796800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The folate biosynthesis pathway is an essential pathway for cell growth and survival. Folate derivatives serve as a source of the one-carbon units in several intracellular metabolic reactions. Rapidly dividing cells rely heavily on the availability of folate derivatives for their proliferation. As a result, drugs targeting this pathway have shown to be effective against tumor cells and pathogens, but drug resistance against the available antifolate drugs emerged quickly. Therefore, there is a need to develop new treatment strategies and identify alternative metabolic targets. The two de novo folate biosynthesis pathway enzymes, GTP cyclohydrolase I (GCH1) and 6-pyruvoyl tetrahydropterin synthase (PTPS), can provide an alternative strategy to overcome the drug resistance that emerged in the two primary targeted enzymes dihydrofolate reductase and dihydropteroate synthase. Both GCH1 and PTPS enzymes contain Zn2+ ions in their active sites, and to accurately study their dynamic behaviors using all-atom molecular dynamics (MD) simulations, appropriate parameters that can describe their metal sites should be developed and validated. In this study, force field parameters of the GCH1 and PTPS metal centers were generated using quantum mechanics (QM) calculations and then validated through MD simulations to ensure their accuracy in describing and maintaining the Zn2+ ion coordination environment. The derived force field parameters will provide accurate and reliable MD simulations involving these two enzymes for future in-silico identification of drug candidates against the GCH1 and PTPS enzymes. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Afrah Khairallah
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Vuyani Moses
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
9
|
Schüssler S, Haase I, Perbandt M, Illarionov B, Siemens A, Richter K, Bacher A, Fischer M, Gräwert T. Structure of GTP cyclohydrolase I from Listeria monocytogenes, a potential anti-infective drug target. Acta Crystallogr F Struct Biol Commun 2019; 75:586-592. [PMID: 31475925 PMCID: PMC6718149 DOI: 10.1107/s2053230x19010902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/04/2019] [Indexed: 12/03/2022] Open
Abstract
A putative open reading frame encoding GTP cyclohydrolase I from Listeria monocytogenes was expressed in a recombinant Escherichia coli strain. The recombinant protein was purified and was confirmed to convert GTP to dihydroneopterin triphosphate (Km = 53 µM; vmax = 180 nmol mg-1 min-1). The protein was crystallized from 1.3 M sodium citrate pH 7.3 and the crystal structure was solved at a resolution of 2.4 Å (Rfree = 0.226) by molecular replacement using human GTP cyclohydrolase I as a template. The protein is a D5-symmetric decamer with ten topologically equivalent active sites. Screening a small library of about 9000 compounds afforded several inhibitors with IC50 values in the low-micromolar range. Several inhibitors had significant selectivity with regard to human GTP cyclohydrolase I. Hence, GTP cyclohydrolase I may be a potential target for novel drugs directed at microbial infections, including listeriosis, a rare disease with high mortality.
Collapse
Affiliation(s)
- Sonja Schüssler
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Ilka Haase
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Markus Perbandt
- Institute for Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, Universität Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Boris Illarionov
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Alexandra Siemens
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Klaus Richter
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Adelbert Bacher
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Tobias Gräwert
- Hamburg School of Food Science, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Hamburg Outstation, European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
10
|
Cronin SJF, Seehus C, Weidinger A, Talbot S, Reissig S, Seifert M, Pierson Y, McNeill E, Longhi MS, Turnes BL, Kreslavsky T, Kogler M, Hoffmann D, Ticevic M, da Luz Scheffer D, Tortola L, Cikes D, Jais A, Rangachari M, Rao S, Paolino M, Novatchkova M, Aichinger M, Barrett L, Latremoliere A, Wirnsberger G, Lametschwandtner G, Busslinger M, Zicha S, Latini A, Robson SC, Waisman A, Andrews N, Costigan M, Channon KM, Weiss G, Kozlov AV, Tebbe M, Johnsson K, Woolf CJ, Penninger JM. The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature 2018; 563:564-568. [PMID: 30405245 PMCID: PMC6438708 DOI: 10.1038/s41586-018-0701-2] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 09/20/2018] [Indexed: 12/17/2022]
Abstract
Genetic regulators and environmental stimuli modulate T cell activation in autoimmunity and cancer. The enzyme co-factor tetrahydrobiopterin (BH4) is involved in the production of monoamine neurotransmitters, the generation of nitric oxide, and pain1,2. Here we uncover a link between these processes, identifying a fundamental role for BH4 in T cell biology. We find that genetic inactivation of GTP cyclohydrolase 1 (GCH1, the rate-limiting enzyme in the synthesis of BH4) and inhibition of sepiapterin reductase (the terminal enzyme in the synthetic pathway for BH4) severely impair the proliferation of mature mouse and human T cells. BH4 production in activated T cells is linked to alterations in iron metabolism and mitochondrial bioenergetics. In vivo blockade of BH4 synthesis abrogates T-cell-mediated autoimmunity and allergic inflammation, and enhancing BH4 levels through GCH1 overexpression augments responses by CD4- and CD8-expressing T cells, increasing their antitumour activity in vivo. Administration of BH4 to mice markedly reduces tumour growth and expands the population of intratumoral effector T cells. Kynurenine-a tryptophan metabolite that blocks antitumour immunity-inhibits T cell proliferation in a manner that can be rescued by BH4. Finally, we report the development of a potent SPR antagonist for possible clinical use. Our data uncover GCH1, SPR and their downstream metabolite BH4 as critical regulators of T cell biology that can be readily manipulated to either block autoimmunity or enhance anticancer immunity.
Collapse
Affiliation(s)
- Shane J F Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Corey Seehus
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Sebastien Talbot
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, Canada
| | - Sonja Reissig
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Markus Seifert
- Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology and Pneumology), Medical University of Innsbruck, Innsbruck, Austria
| | - Yann Pierson
- Institute of Chemical Sciences and Engineering, Institute of Bioengineering, National Centre of Competence in Research (NCCR) in Chemical Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eileen McNeill
- Division of Cardiovascular Medicine, British Heart Foundation Centre for Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Maria Serena Longhi
- Division of Gastroenterology and Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School (HMS), Harvard University, Boston, MA, USA
| | - Bruna Lenfers Turnes
- LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Taras Kreslavsky
- Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, Vienna, Austria
- Karolinska Institute, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Melanie Kogler
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - David Hoffmann
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Melita Ticevic
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Débora da Luz Scheffer
- LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Luigi Tortola
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Domagoj Cikes
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexander Jais
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Manu Rangachari
- Department of Neurosciences, Centre de Recherche de CHU de Québec-Université Laval, Québec, Québec, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Quebec, Canada
| | - Shuan Rao
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Magdalena Paolino
- Karolinska Institute, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Maria Novatchkova
- Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Martin Aichinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Lee Barrett
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Alban Latremoliere
- Neurosurgery Department, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Stephen Zicha
- Quartet Medicine, 400 Technology Square, Cambridge, MA, USA
| | - Alexandra Latini
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Simon C Robson
- Division of Cardiovascular Medicine, British Heart Foundation Centre for Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nick Andrews
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Michael Costigan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre for Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK
| | - Guenter Weiss
- Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology and Pneumology), Medical University of Innsbruck, Innsbruck, Austria
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Mark Tebbe
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Quebec, Canada
| | - Kai Johnsson
- Institute of Chemical Sciences and Engineering, Institute of Bioengineering, National Centre of Competence in Research (NCCR) in Chemical Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Chemical Biology, Max-Planck Institute for Medical Research, Heidelberg, Germany
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
11
|
Folate biosynthesis pathway: mechanisms and insights into drug design for infectious diseases. Future Med Chem 2018; 10:935-959. [PMID: 29629843 DOI: 10.4155/fmc-2017-0168] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Folate pathway is a key target for the development of new drugs against infectious diseases since the discovery of sulfa drugs and trimethoprim. The knowledge about this pathway has increased in the last years and the catalytic mechanism and structures of all enzymes of the pathway are fairly understood. In addition, differences among enzymes from prokaryotes and eukaryotes could be used for the design of specific inhibitors. In this review, we show a panorama of progress that has been achieved within the folate pathway obtained in the last years. We explored the structure and mechanism of enzymes, several genetic features, strategies, and approaches used in the design of new inhibitors that have been used as targets in pathogen chemotherapy.
Collapse
|
12
|
Huang SH, Cozart MR, Hart MA, Kobryn K. The Borrelia burgdorferi telomere resolvase, ResT, possesses ATP-dependent DNA unwinding activity. Nucleic Acids Res 2017; 45:1319-1329. [PMID: 28180323 PMCID: PMC5388405 DOI: 10.1093/nar/gkw1243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 11/14/2022] Open
Abstract
Spirochetes of the genus Borrelia possess unusual genomes harboring multiple linear and circular replicons. The linear replicons are terminated by covalently closed hairpin (hp) telomeres. Hairpin telomeres are formed from replicated intermediates by the telomere resolvase, ResT, in a phosphoryl transfer reaction with mechanistic similarities to those promoted by type 1B topoisomerases and tyrosine recombinases. There is growing evidence that ResT is multifunctional. Upon ResT depletion DNA replication unexpectedly ceases. Additionally, ResT possesses RecO-like biochemical activities being able to promote single-strand annealing on both free ssDNA and ssDNA complexed with cognate single-stranded DNA binding protein. We report here that ResT possesses DNA-dependent ATPase activity that promotes DNA unwinding with a 3΄-5΄ polarity. ResT can unwind a variety of substrates including synthetic replication forks and D-loops. We demonstrate that ResT's twin activities of DNA unwinding and annealing can drive regression of a model replication fork. These properties are similar to those of the RecQ helicase of the RecF pathway involved in DNA gap repair. We propose that ResT's combination of activities implicates it in replication and recombination processes operating on the linear chromosome and plasmids of Borrelia burgdorferi.
Collapse
Affiliation(s)
- Shu Hui Huang
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, Canada
| | - McKayla R Cozart
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, Canada
| | - Madison A Hart
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, Canada
| | - Kerri Kobryn
- Department of Microbiology & Immunology, College of Medicine, University of Saskatchewan Academic Health Sciences Building, 107 Wiggins Rd, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Mechanism and catalytic strategy of the prokaryotic-specific GTP cyclohydrolase-IB. Biochem J 2017; 474:1017-1039. [PMID: 28126741 DOI: 10.1042/bcj20161025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/22/2017] [Accepted: 01/25/2017] [Indexed: 12/30/2022]
Abstract
Guanosine 5'-triphosphate (GTP) cyclohydrolase-I (GCYH-I) catalyzes the first step in folic acid biosynthesis in bacteria and plants, biopterin biosynthesis in mammals, and the biosynthesis of 7-deazaguanosine-modified tRNA nucleosides in bacteria and archaea. The type IB GCYH (GCYH-IB) is a prokaryotic-specific enzyme found in many pathogens. GCYH-IB is structurally distinct from the canonical type IA GCYH involved in biopterin biosynthesis in humans and animals, and thus is of interest as a potential antibacterial drug target. We report kinetic and inhibition data of Neisseria gonorrhoeae GCYH-IB and two high-resolution crystal structures of the enzyme; one in complex with the reaction intermediate analog and competitive inhibitor 8-oxoguanosine 5'-triphosphate (8-oxo-GTP), and one with a tris(hydroxymethyl)aminomethane molecule bound in the active site and mimicking another reaction intermediate. Comparison with the type IA enzyme bound to 8-oxo-GTP (guanosine 5'-triphosphate) reveals an inverted mode of binding of the inhibitor ribosyl moiety and, together with site-directed mutagenesis data, shows that the two enzymes utilize different strategies for catalysis. Notably, the inhibitor interacts with a conserved active-site Cys149, and this residue is S-nitrosylated in the structures. This is the first structural characterization of a biologically S-nitrosylated bacterial protein. Mutagenesis and biochemical analyses demonstrate that Cys149 is essential for the cyclohydrolase reaction, and S-nitrosylation maintains enzyme activity, suggesting a potential role of the S-nitrosothiol in catalysis.
Collapse
|
14
|
Mei X, Alvarez J, Bon Ramos A, Samanta U, Iwata-Reuyl D, Swairjo MA. Crystal structure of the archaeosine synthase QueF-like-Insights into amidino transfer and tRNA recognition by the tunnel fold. Proteins 2016; 85:103-116. [PMID: 27802572 DOI: 10.1002/prot.25202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 11/10/2022]
Abstract
The tunneling-fold (T-fold) structural superfamily has emerged as a versatile protein scaffold of diverse catalytic activities. This is especially evident in the pathways to the 7-deazaguanosine modified nucleosides of tRNA queuosine and archaeosine. Four members of the T-fold superfamily have been confirmed in these pathways and here we report the crystal structure of a fifth enzyme; the recently discovered amidinotransferase QueF-Like (QueF-L), responsible for the final step in the biosynthesis of archaeosine in the D-loop of tRNA in a subset of Crenarchaeota. QueF-L catalyzes the conversion of the nitrile group of the 7-cyano-7-deazaguanine (preQ0 ) base of preQ0 -modified tRNA to a formamidino group. The structure, determined in the presence of preQ0 , reveals a symmetric T-fold homodecamer of two head-to-head facing pentameric subunits, with 10 active sites at the inter-monomer interfaces. Bound preQ0 forms a stable covalent thioimide bond with a conserved active site cysteine similar to the intermediate previously observed in the nitrile reductase QueF. Despite distinct catalytic functions, phylogenetic distributions, and only 19% sequence identity, the two enzymes share a common preQ0 binding pocket, and likely a common mechanism of thioimide formation. However, due to tight twisting of its decamer, QueF-L lacks the NADPH binding site present in QueF. A large positively charged molecular surface and a docking model suggest simultaneous binding of multiple tRNA molecules and structure-specific recognition of the D-loop by a surface groove. The structure sheds light on the mechanism of nitrile amidation, and the evolution of diverse chemistries in a common fold. Proteins 2016; 85:103-116. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xianghan Mei
- Department of Chemistry and Biochemistry, San Diego State University- 5500 Campanile Drive, San Diego, California, 92182
| | - Jonathan Alvarez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, 91766-1854
| | - Adriana Bon Ramos
- Department of Chemistry, Portland State University, Portland, Oregon, 97207
| | - Uttamkumar Samanta
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California, 91766-1854
| | - Dirk Iwata-Reuyl
- Department of Chemistry, Portland State University, Portland, Oregon, 97207
| | - Manal A Swairjo
- Department of Chemistry and Biochemistry, San Diego State University- 5500 Campanile Drive, San Diego, California, 92182
| |
Collapse
|
15
|
Folate Biosynthesis, Reduction, and Polyglutamylation and the Interconversion of Folate Derivatives. EcoSal Plus 2015; 2. [PMID: 26443588 DOI: 10.1128/ecosalplus.3.6.3.6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many microorganisms and plants possess the ability to synthesize folic acid derivatives de novo, initially forming dihydrofolate. All the folic acid derivatives that serve as recipients and donors of one-carbon units are derivatives of tetrahydrofolate, which is formed from dihydrofolate by an NADPH-dependent reduction catalyzed by dihydrofolate reductase (FolA). This review discusses the biosynthesis of dihydrofolate monoglutamate, its reduction to tetrahydrofolate monoglutamate, and the addition of glutamyl residues to form folylpolyglutamates. Escherichia coli and Salmonella, like many microorganisms that can synthesize folate de novo, appear to lack the ability to transport folate into the cell and are thus highly susceptible to inhibitors of folate biosynthesis. The review includes a brief discussion of the inhibition of folate biosynthesis by sulfa drugs. The folate biosynthetic pathway can be divided into two sections. First, the aromatic precursor chorismate is converted to paminobenzoic acid (PABA) by the action of three proteins. Second, the pteridine portion of folate is made from GTP and coupled to PABA to generate dihydropteroate, and the bifunctional protein specified by folC, dihydrofolate synthetase, or folylpolyglutamate synthetase, adds the initial glutamate molecule to form dihydrofolate (H2PteGlu1, or dihydropteroylmonoglutamate). Bacteriophage T4 infection of E. coli has been shown to cause alterations in the metabolism of folate derivatives. Infection is associated with an increase in the chain lengths in folylpolyglutamates and particularly the accumulation of hexaglutamate derivatives.
Collapse
|
16
|
Latremoliere A, Latini A, Andrews N, Cronin SJ, Fujita M, Gorska K, Hovius R, Romero C, Chuaiphichai S, Painter M, Miracca G, Babaniyi O, Remor AP, Duong K, Riva P, Barrett LB, Ferreirós N, Naylor A, Penninger JM, Tegeder I, Zhong J, Blagg J, Channon KM, Johnsson K, Costigan M, Woolf CJ. Reduction of Neuropathic and Inflammatory Pain through Inhibition of the Tetrahydrobiopterin Pathway. Neuron 2015; 86:1393-406. [PMID: 26087165 PMCID: PMC4485422 DOI: 10.1016/j.neuron.2015.05.033] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/22/2015] [Accepted: 05/13/2015] [Indexed: 12/18/2022]
Abstract
Human genetic studies have revealed an association between GTP cyclohydrolase 1 polymorphisms, which decrease tetrahydrobiopterin (BH4) levels, and reduced pain in patients. We now show that excessive BH4 is produced in mice by both axotomized sensory neurons and macrophages infiltrating damaged nerves and inflamed tissue. Constitutive BH4 overproduction in sensory neurons increases pain sensitivity, whereas blocking BH4 production only in these cells reduces nerve injury-induced hypersensitivity without affecting nociceptive pain. To minimize risk of side effects, we targeted sepiapterin reductase (SPR), whose blockade allows minimal BH4 production through the BH4 salvage pathways. Using a structure-based design, we developed a potent SPR inhibitor and show that it reduces pain hypersensitivity effectively with a concomitant decrease in BH4 levels in target tissues, acting both on sensory neurons and macrophages, with no development of tolerance or adverse effects. Finally, we demonstrate that sepiapterin accumulation is a sensitive biomarker for SPR inhibition in vivo.
Collapse
Affiliation(s)
- Alban Latremoliere
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Latini
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; LABOX, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Nick Andrews
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Shane J Cronin
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Masahide Fujita
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Katarzyna Gorska
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ruud Hovius
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Carla Romero
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Surawee Chuaiphichai
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Michio Painter
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Giulia Miracca
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Olusegun Babaniyi
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Aline Pertile Remor
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; LABOX, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Kelly Duong
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Priscilla Riva
- Department of Anesthesia, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lee B Barrett
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Nerea Ferreirós
- Pharmazentrum Frankfurt, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Alasdair Naylor
- The Canterbury Consulting Group, Unit 43 Canterbury Innovation Centre, University Road, Canterbury, Kent CT2 7FG, UK
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Irmgard Tegeder
- Pharmazentrum Frankfurt, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Jian Zhong
- Burke Medical Research Institute and Brain and Mind Research Institute, Weill Medical College of Cornell University, White Plains, NY 10605, USA
| | - Julian Blagg
- The Institute of Cancer Research, London SW7 3RP, UK
| | - Keith M Channon
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kai Johnsson
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michael Costigan
- Department of Anesthesia, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Clifford J Woolf
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Lin Y, Wang DN, Chen WJ, Lin X, Lin MT, Wang N. Growth hormone deficiency in a dopa-responsive dystonia patient with a novel mutation of guanosine triphosphate cyclohydrolase 1 gene. J Child Neurol 2015; 30:796-9. [PMID: 24939974 DOI: 10.1177/0883073814538498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/07/2014] [Indexed: 11/17/2022]
Abstract
Dopa-responsive dystonia is a rare hereditary movement disorder caused by mutations in the guanosine triphosphate cyclohydrolase 1 (GCH1) gene. This disease typically manifests in dystonia, with marked diurnal fluctuation and a dramatic response to levodopa. However, growth retardation in dopa-responsive dystonia has rarely been reported, and the etiology of short stature is not clarified. Here, we report a 14-year-old patient with extremities dystonia and short stature. Treatment with levodopa relieved his symptoms and resulted in a height increase. We also investigated the mutation in GCH1 and the etiology of short stature in this case. Sequence analysis of GCH1 revealed a novel mutation (c.695G>T). Laboratory examinations and imaging confirmed the diagnosis of growth hormone deficiency. We conclude that our case reveals a rare feature for dopa-responsive dystonia and suggests a possible pathogenic link between growth hormone deficiency and dopa-responsive dystonia. We recommend levodopa as the first choice for treating dopa-responsive dystonia in children with growth hormone deficiency.
Collapse
Affiliation(s)
- Yu Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dan-Ni Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China Center of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Min-Ting Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China Center of Neuroscience, Fujian Medical University, Fuzhou, China
| |
Collapse
|
18
|
Utility of the Biosynthetic Folate Pathway for Targets in Antimicrobial Discovery. Antibiotics (Basel) 2014; 3:1-28. [PMID: 27025730 PMCID: PMC4790348 DOI: 10.3390/antibiotics3010001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 01/07/2023] Open
Abstract
The need for new antimicrobials is great in face of a growing pool of resistant pathogenic organisms. This review will address the potential for antimicrobial therapy based on polypharmacological activities within the currently utilized bacterial biosynthetic folate pathway. The folate metabolic pathway leads to synthesis of required precursors for cellular function and contains a critical node, dihydrofolate reductase (DHFR), which is shared between prokaryotes and eukaryotes. The DHFR enzyme is currently targeted by methotrexate in anti-cancer therapies, by trimethoprim for antibacterial uses, and by pyrimethamine for anti-protozoal applications. An additional anti-folate target is dihyropteroate synthase (DHPS), which is unique to prokaryotes as they cannot acquire folate through dietary means. It has been demonstrated as a primary target for the longest standing antibiotic class, the sulfonamides, which act synergistically with DHFR inhibitors. Investigations have revealed most DHPS enzymes possess the ability to utilize sulfa drugs metabolically, producing alternate products that presumably inhibit downstream enzymes requiring the produced dihydropteroate. Recent work has established an off-target effect of sulfonamide antibiotics on a eukaryotic enzyme, sepiapterin reductase, causing alterations in neurotransmitter synthesis. Given that inhibitors of both DHFR and DHPS are designed to mimic their cognate substrate, which contain shared substructures, it is reasonable to expect such “off-target” effects. These inhibitors are also likely to interact with the enzymatic neighbors in the folate pathway that bind products of the DHFR or DHPS enzymes and/or substrates of similar substructure. Computational studies designed to assess polypharmacology reiterate these conclusions. This leads to hypotheses exploring the vast utility of multiple members of the folate pathway for modulating cellular metabolism, and includes an appealing capacity for prokaryotic-specific polypharmacology for antimicrobial applications.
Collapse
|
19
|
Yang L, Koh SL, Sutton PW, Liang ZX. Nitrile reductase as a biocatalyst: opportunities and challenges. Catal Sci Technol 2014. [DOI: 10.1039/c4cy00646a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The review highlights the recent progress and challenges in developing a family of nitrile reductases as biocatalysts for nitrile-to-amine transformation.
Collapse
Affiliation(s)
- Lifeng Yang
- Division of Structural Biology & Biochemistry
- School of Biological Sciences
- Nanyang Technological University
- , Singapore 637551
| | - Siew Lee Koh
- Division of Structural Biology & Biochemistry
- School of Biological Sciences
- Nanyang Technological University
- , Singapore 637551
| | | | - Zhao-Xun Liang
- Division of Structural Biology & Biochemistry
- School of Biological Sciences
- Nanyang Technological University
- , Singapore 637551
| |
Collapse
|
20
|
Turk D. MAIN software for density averaging, model building, structure refinement and validation. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1342-57. [PMID: 23897458 PMCID: PMC3727325 DOI: 10.1107/s0907444913008408] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/26/2013] [Indexed: 11/11/2022]
Abstract
MAIN is software that has been designed to interactively perform the complex tasks of macromolecular crystal structure determination and validation. Using MAIN, it is possible to perform density modification, manual and semi-automated or automated model building and rebuilding, real- and reciprocal-space structure optimization and refinement, map calculations and various types of molecular structure validation. The prompt availability of various analytical tools and the immediate visualization of molecular and map objects allow a user to efficiently progress towards the completed refined structure. The extraordinary depth perception of molecular objects in three dimensions that is provided by MAIN is achieved by the clarity and contrast of colours and the smooth rotation of the displayed objects. MAIN allows simultaneous work on several molecular models and various crystal forms. The strength of MAIN lies in its manipulation of averaged density maps and molecular models when noncrystallographic symmetry (NCS) is present. Using MAIN, it is possible to optimize NCS parameters and envelopes and to refine the structure in single or multiple crystal forms.
Collapse
Affiliation(s)
- Dušan Turk
- Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, Ljubljana, Slovenia.
| |
Collapse
|
21
|
GTP cyclohydrolase I and tyrosine hydroxylase gene mutations in familial and sporadic dopa-responsive dystonia patients. PLoS One 2013; 8:e65215. [PMID: 23762320 PMCID: PMC3675154 DOI: 10.1371/journal.pone.0065215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/23/2013] [Indexed: 11/19/2022] Open
Abstract
Dopa-responsive dystonia (DRD) is a rare inherited dystonia that responds very well to levodopa treatment. Genetic mutations of GTP cyclohydrolase I (GCH1) or tyrosine hydroxylase (TH) are disease-causing mutations in DRD. To evaluate the genotype-phenotype correlations and diagnostic values of GCH1 and TH mutation screening in DRD patients, we carried out a combined study of familial and sporadic cases in Chinese Han subjects. We collected 23 subjects, 8 patients with DRD, 5 unaffected family members, and 10 sporadic cases. We used PCR to sequence all exons and splicing sites of the GCH1 and TH genes. Three novel heterozygous GCH1 mutations (Tyr75Cys, Ala98Val, and Ile135Thr) were identified in three DRD pedigrees. We failed to identify any GCH1 or TH mutation in two affected sisters. Three symptom-free male GCH1 mutation carriers were found in two DRD pedigrees. For those DRD siblings that shared the same GCH1 mutation, symptoms and age of onset varied. In 10 sporadic cases, only two heterozygous TH mutations (Ser19Cys and Gly397Arg) were found in two subjects with unknown pathogenicity. No GCH1 and TH mutation was found in 40 unrelated normal Han Chinese controls. GCH1 mutation is the main etiology of familial DRD. Three novel GCH1 mutations were identified in this study. Genetic heterogeneity and incomplete penetrance were quite common in DRD patients, especially in sporadic cases. Genetic screening may help establish the diagnosis of DRD; however, a negative GCH1 and TH mutation test would not exclude the diagnosis.
Collapse
|
22
|
Hover BM, Loksztejn A, Ribeiro AA, Yokoyama K. Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis. J Am Chem Soc 2013; 135:7019-32. [PMID: 23627491 PMCID: PMC3777439 DOI: 10.1021/ja401781t] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molybdenum cofactor (Moco) is a redox cofactor found in all kingdoms of life, and its biosynthesis is essential for survival of many organisms, including humans. The first step of Moco biosynthesis is a unique transformation of guanosine 5'-triphosphate (GTP) into cyclic pyranopterin monophosphate (cPMP). In bacteria, MoaA and MoaC catalyze this transformation, although the specific functions of these enzymes were not fully understood. Here, we report the first isolation and structural characterization of a product of MoaA. This molecule was isolated under anaerobic conditions from a solution of MoaA incubated with GTP, S-adenosyl-L-methionine, and sodium dithionite in the absence of MoaC. Structural characterization by chemical derivatization, MS, and NMR spectroscopy suggested the structure of this molecule to be (8S)-3',8-cyclo-7,8-dihydroguanosine 5'-triphosphate (3',8-cH2GTP). The isolated 3',8-cH2GTP was converted to cPMP by MoaC or its human homologue, MOCS1B, with high specificities (Km < 0.060 μM and 0.79 ± 0.24 μM for MoaC and MOCS1B, respectively), suggesting the physiological relevance of 3',8-cH2GTP. These observations, in combination with some mechanistic studies of MoaA, unambiguously demonstrate that MoaA catalyzes a unique radical C-C bond formation reaction and that, in contrast to previous proposals, MoaC plays a major role in the complex rearrangement to generate the pyranopterin ring.
Collapse
Affiliation(s)
- Bradley M. Hover
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710
| | - Anna Loksztejn
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710
| | - Anthony A. Ribeiro
- Duke NMR Spectroscopy Center and Department of Radiology, Duke University Medical Center, Durham, NC, 27710
| | - Kenichi Yokoyama
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710
| |
Collapse
|
23
|
Kim H, Kim K, Yim J. Biosynthesis of drosopterins, the red eye pigments ofDrosophila melanogaster. IUBMB Life 2013; 65:334-40. [DOI: 10.1002/iub.1145] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/07/2013] [Indexed: 11/10/2022]
|
24
|
Abstract
Understanding and consequently treating neuropathic pain effectively is a challenge for modern medicine, as unlike inflammation, which can be controlled relatively well, chronic pain due to nerve injury is refractory to most current therapeutics. Here we define a target pathway for a new class of analgesics, tetrahydrobiopterin (BH4) synthesis and metabolism. BH4 is an essential co-factor in the synthesis of serotonin, dopamine, epinephrine, norepinephrine and nitric oxide and as a result, its availability influences many systems, including neurons. Following peripheral nerve damage, levels of BH4 are dramatically increased in sensory neurons, consequently this has a profound effect on the physiology of these cells, causing increased activity and pain hypersensitivity. These changes are principally due to the upregulation of the rate limiting enzyme for BH4 synthesis GTP Cyclohydrolase 1 (GCH1). A GCH1 pain-protective haplotype which decreases pain levels in a variety of settings, by reducing the levels of endogenous activation of this enzyme, has been characterized in humans. Here we define the control of BH4 homeostasis and discuss the consequences of large perturbations within this system, both negatively via genetic mutations and after pathological increases in the production of this cofactor that result in chronic pain. We explain the nature of the GCH1 reduced-function haplotype and set out the potential for a ' BH4 blocking' drug as a novel analgesic.
Collapse
Affiliation(s)
- Alban Latremoliere
- F.M. Kirby Neurobiology Center, Children’s Hospital Boston, Harvard Medical School, 3 Blackfan Circle, CLS 12260, Boston, MA 02115, USA
| | - Michael Costigan
- F.M. Kirby Neurobiology Center, Children’s Hospital Boston, Harvard Medical School, 3 Blackfan Circle, CLS 12260, Boston, MA 02115, USA
| |
Collapse
|
25
|
Abstract
BH4 (6R-L-erythro-5,6,7,8-tetrahydrobiopterin) is an essential cofactor of a set of enzymes that are of central metabolic importance, including four aromatic amino acid hydroxylases, alkylglycerol mono-oxygenase and three NOS (NO synthase) isoenzymes. Consequently, BH4 is present in probably every cell or tissue of higher organisms and plays a key role in a number of biological processes and pathological states associated with monoamine neurotransmitter formation, cardiovascular and endothelial dysfunction, the immune response and pain sensitivity. BH4 is formed de novo from GTP via a sequence of three enzymatic steps carried out by GTP cyclohydrolase I, 6-pyruvoyltetrahydropterin synthase and sepiapterin reductase. An alternative or salvage pathway involves dihydrofolate reductase and may play an essential role in peripheral tissues. Cofactor regeneration requires pterin-4a-carbinolamine dehydratase and dihydropteridine reductase, except for NOSs, in which the BH4 cofactor undergoes a one-electron redox cycle without the need for additional regeneration enzymes. With regard to the regulation of cofactor biosynthesis, the major controlling point is GTP cyclohydrolase I. BH4 biosynthesis is controlled in mammals by hormones and cytokines. BH4 deficiency due to autosomal recessive mutations in all enzymes, except for sepiapterin reductase, has been described as a cause of hyperphenylalaninaemia. A major contributor to vascular dysfunction associated with hypertension, ischaemic reperfusion injury, diabetes and others, appears to be an effect of oxidized BH4, which leads to an increased formation of oxygen-derived radicals instead of NO by decoupled NOS. Furthermore, several neurological diseases have been suggested to be a consequence of restricted cofactor availability, and oral cofactor replacement therapy to stabilize mutant phenylalanine hydroxylase in the BH4-responsive type of hyperphenylalaninaemia has an advantageous effect on pathological phenylalanine levels in patients.
Collapse
Affiliation(s)
- Ernst R Werner
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck A-6020, Austria
| | | | | |
Collapse
|
26
|
Stephens LL, Shonhai A, Blatch GL. Co-expression of the Plasmodium falciparum molecular chaperone, PfHsp70, improves the heterologous production of the antimalarial drug target GTP cyclohydrolase I, PfGCHI. Protein Expr Purif 2011; 77:159-65. [PMID: 21262365 DOI: 10.1016/j.pep.2011.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 11/19/2022]
Abstract
Molecular chaperones have been used for the improved expression of target proteins within heterologous systems; however, the chaperone and target protein have seldom been matched in terms of origin. We have developed a heterologous co-expression system that allows independent expression of the plasmodial chaperone, PfHsp70, and a plasmodial target protein. In this study, the target was Plasmodium falciparum GTP cyclohydrolase I (PfGCHI), the first enzyme in the plasmodial folate pathway. The sequential expression of the molecular chaperone followed by the target protein increased the expression of soluble functional PfGCHI. His-tagged PfGCHI was successfully purified using nickel affinity chromatography, and the specific activity was determined by high performance liquid chromatography with spectrofluorometeric detection to be 5.93nmol/h/mg. This is the first report of a heterologous co-expression system in which a plasmodial chaperone is harnessed for the improved production and purification of a plasmodial target protein.
Collapse
Affiliation(s)
- Linda L Stephens
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, South Africa
| | | | | |
Collapse
|
27
|
Cao L, Zheng L, Tang WG, Xiao Q, Zhang T, Tang HD, He SB, Wang XJ, Ding JQ, Chen SD. Four novel mutations in the GCH1 gene of Chinese patients with dopa-responsive dystonia. Mov Disord 2010; 25:755-60. [DOI: 10.1002/mds.22646] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Spoonamore JE, Roberts SA, Heroux A, Bandarian V. Structure of a 6-pyruvoyltetrahydropterin synthase homolog from Streptomyces coelicolor. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:875-9. [PMID: 18931427 PMCID: PMC2564891 DOI: 10.1107/s1744309108027048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 08/21/2008] [Indexed: 11/11/2022]
Abstract
The X-ray crystal structure of the 6-pyruvoyltetrahydropterin synthase (PTPS) homolog from Streptomyces coelicolor, SCO 6650, was solved at 1.5 A resolution. SCO 6650 forms a hexameric T-fold that closely resembles other PTPS proteins. The biological activity of SCO 6650 is unknown, but it lacks both a required active-site zinc metal ion and the essential catalytic triad and does not catalyze the PTPS reaction. However, SCO 6650 maintains active-site residues consistent with binding a pterin-like substrate.
Collapse
Affiliation(s)
- James E. Spoonamore
- Departments of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | - Sue A. Roberts
- Departments of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | - Annie Heroux
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Vahe Bandarian
- Departments of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
29
|
|
30
|
Iwata-Reuyl D. An embarrassment of riches: the enzymology of RNA modification. Curr Opin Chem Biol 2008; 12:126-33. [PMID: 18294973 DOI: 10.1016/j.cbpa.2008.01.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/11/2008] [Accepted: 01/24/2008] [Indexed: 11/19/2022]
Abstract
The maturation of transfer RNA (tRNA) involves extensive chemical modification of the constituent nucleosides and results in the introduction of significant chemical diversity to tRNA. Many of the pathways to these modified nucleosides are characterized by chemically complex transformations, some of which are unprecedented in other areas of biology. To illustrate the scope of the field, recent progress in understanding the enzymology leading to the formation of two distinct classes of modified nucleosides, the thiouridines and queuosine, a 7-deazaguanosine, is reviewed. In particular, recent data validating the involvement of several proposed intermediates in the formation of thiouridines are discussed, including two key enzyme intermediates and the activated tRNA intermediate. The discovery and mechanistic characterization of a new enzyme activity in the queuosine pathway is discussed.
Collapse
Affiliation(s)
- Dirk Iwata-Reuyl
- Department of Chemistry, Portland State University, Portland, OR 97201, USA.
| |
Collapse
|
31
|
Chiou YW, Hwu WL, Lee YM. Hsp27 decreases inclusion body formation from mutated GTP-cyclohydrolase I protein. Biochim Biophys Acta Mol Basis Dis 2008; 1782:169-79. [PMID: 18241680 DOI: 10.1016/j.bbadis.2007.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 11/30/2022]
Abstract
GTP cyclohydrolase I (GCH), an oligomeric protein composed of 10 identical subunits, is required for the synthesis of neurotransmitters; mutations in GCH are associated with dopa-responsive dystonia (DRD) and hyperphenylalaninemia. Mutated GCH proteins are unstable and prone to dominant-negative effect. We show herein that expression of the GCH mutant GCH-201E or the splicing variant GCH-II caused intracellular inclusion bodies. When Hsp27 was expressed together with the GCH mutants, Hsp27 expression decreased the formation of inclusion bodies by GCH (as assessed by immunofluorescence) and decreased the amount of insoluble GCH mutant proteins (as assessed by Western blot). Transfection of pcDNA-Hsp27-S3D, a phosphorylation-mimicry Hsp27 mutant, was more effective at the mutated GCH proteins than transfection with pcDNA-Hsp27, but okadaic acid, a phosphatase inhibitor, enhanced the effect of pcDNA-Hsp27. Hsp27-S3D also abolished the dominant-negative action of GCH-II. The mutated GCH proteins interacted with the wild-type GCH protein; the inclusion bodies were positive for lysosomal marker LAMP1, soluble in 2% SDS, and were not ubiquitinated. Phophorlyated Hsp27 also decreased the inclusion body formation by the huntingtin polyglutamines. Therefore, diseases involving mutated oligomeric proteins would be manageable by chaperone therapies.
Collapse
Affiliation(s)
- Yu-Wei Chiou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
32
|
Abstract
The yeast 2-hybrid system was used to identify protein domains involved in the oligomerization of human guanosine 5'-triphosphate (GTP) Cyclohydrolase I (GCH1) and the interaction of GCH1 with its regulatory partner, GCH1 feedback regulatory protein (GFRP). When interpreted within the structural framework derived from crystallography, our results indicate that the GCH1 N-terminal alpha-helices are not the only domains involved in the formation of dimers from monomers and also suggest an important role for the C-terminal alpha-helix in the assembly of dimers to form decamers. Moreover, a previously unknown role of the extended N-terminal alpha-helix in the interaction of GCH1 and GFRP was revealed. To discover novel GCH1 protein binding partners, we used the yeast 2-hybrid system to screen a human brain library with GCH1 N-terminal amino acids 1-96 as prey. This protruding extension of GCH1 contains two canonical Type-I Src homology-3 (SH3) ligand domains located within amino acids 1-42. Our screen yielded seven unique clones that were subsequently shown to require amino acids 1-42 for binding to GCH1. The interaction of one of these clones, Activator of Heat Shock 90 kDa Protein (Aha1), with GCH1 was validated by glutathione-s-transferase (GST) pull-down assay. Although the physiological relevance of the Aha1-GCH1 interaction requires further study, Aha1 may recruit GCH1 into the endothelial nitric oxide synthase/heat shock protein (eNOS/Hsp90) complex to support changes in endothelial nitric oxide production through the local synthesis of BH4.
Collapse
Affiliation(s)
- Lance Swick
- Cellular and Clinical Neurobiology Program, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Gregory Kapatos
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Cellular and Clinical Neurobiology Program, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
33
|
|
34
|
Swairjo MA, Reddy RR, Lee B, Van Lanen SG, Brown S, de Crécy-Lagard V, Iwata-Reuyl D, Schimmel P. Crystallization and preliminary X-ray characterization of the nitrile reductase QueF: a queuosine-biosynthesis enzyme. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:945-8. [PMID: 16511203 PMCID: PMC1991305 DOI: 10.1107/s1744309105029246] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 09/22/2005] [Indexed: 11/10/2022]
Abstract
QueF (MW = 19.4 kDa) is a recently characterized nitrile oxidoreductase which catalyzes the NADPH-dependent reduction of 7-cyano-7-deazaguanine (preQ0) to 7-aminomethyl-7-deazaguanine, a late step in the biosynthesis of the modified tRNA nucleoside queuosine. Initial crystals of homododecameric Bacillus subtilis QueF diffracted poorly to 8.0 A. A three-dimensional model based on homology with the tunnel-fold enzyme GTP cyclohydrolase I suggested catalysis at intersubunit interfaces and a potential role for substrate binding in quaternary structure stabilization. Guided by this insight, a second crystal form was grown that was strictly dependent on the presence of preQ0. This crystal form diffracted to 2.25 A resolution.
Collapse
Affiliation(s)
- Manal A Swairjo
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, BCC-379, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ren J, Kotaka M, Lockyer M, Lamb HK, Hawkins AR, Stammers DK. GTP cyclohydrolase II structure and mechanism. J Biol Chem 2005; 280:36912-9. [PMID: 16115872 DOI: 10.1074/jbc.m507725200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GTP cyclohydrolase II converts GTP to 2,5-diamino-6-beta-ribosyl-4(3H)-pyrimidinone 5'-phosphate, formate and pyrophosphate, the first step in riboflavin biosynthesis. The essential role of riboflavin in metabolism and the absence of GTP cyclohydrolase II in higher eukaryotes makes it a potential novel selective antimicrobial drug target. GTP cyclohydrolase II catalyzes a distinctive overall reaction from GTP cyclohydrolase I; the latter converts GTP to dihydroneopterin triphosphate, utilized in folate and tetrahydrobiopterin biosynthesis. The structure of GTP cyclohydrolase II determined at 1.54-A resolution reveals both a different protein fold to GTP cyclohydrolase I and distinctive molecular recognition determinants for GTP; although in both enzymes there is a bound catalytic zinc. The GTP cyclohydrolase II.GMPCPP complex structure shows Arg(128) interacting with the alpha-phosphonate, and thus in the case of GTP, Arg(128) is positioned to act as the nucleophile for pyrophosphate release and formation of the proposed covalent guanylyl-GTP cyclohydrolase II intermediate. Tyr(105) is identified as playing a key role in GTP ring opening; it is hydrogen-bonded to the zinc-activated water molecule, the latter being positioned for nucleophilic attack on the guanine C-8 atom. Although GTP cyclohydrolase I and GTP cyclohydrolase II both use a zinc ion for the GTP ring opening and formate release, different residues are utilized in each case to catalyze this reaction step.
Collapse
Affiliation(s)
- Jingshan Ren
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Ivan M Kompis
- ARPIDA Ltd, Dammstrasse 36, 4142 Münchenstein, Switzerland
| | | | | |
Collapse
|
37
|
He A, Simpson DR, Daniels L, Rosazza JPN. Cloning, expression, purification, and characterization of Nocardia sp. GTP cyclohydrolase I. Protein Expr Purif 2005; 35:171-80. [PMID: 15135390 DOI: 10.1016/j.pep.2004.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Revised: 02/05/2004] [Indexed: 11/27/2022]
Abstract
The sequence of the gene from Nocardia sp. NRRL 5646 encoding GTP cyclohydrolase I (GCH), gch, and its adjacent regions was determined. The open reading frame of Nocardia gch contains 684 nucleotides, and the deduced amino acid sequence represents a protein of 227 amino acid residues with a calculated molecular mass of 24,563Da. The uncommon start codon TTG was identified by matching the N-terminal amino acid sequence of purified Nocardia GCH with the deduced amino acid sequence. A likely ribosomal binding site was identified 9bp upstream of the translational start site. The 3' end flank region encodes a peptide that shares high homology with dihydropteroate synthases. Nocardia GCH has 73 and 60% identity to the proteins encoded by the putative gch of Mycobacterium tuberculosis and Streptomyces coelicolor, respectively. Nocardia GCH was highly expressed in Escherichia coli cells carrying a pHAT10 based expression vector, and moderately expressed in Mycobacterium smegmatis cells carrying a pSMT3 based expression vector. Enterokinase digestion of recombinant Nocardia GCH, and in-gel digestion of Nocardia GCH and recombinant GCH followed by MALDI-TOF-MS analysis, confirmed that the actual subunit size of the enzyme was 24.5kDa. Thus, we conclude that the active form of native Nocardia GCH is a decamer. Our earlier incorrect conclusion was that the native enzyme was an octamer derived from the anomalous SDS-PAGE migration of the subunit.
Collapse
Affiliation(s)
- Aimin He
- Division of Medicinal and Natural Products Chemistry and Center for Biocatalysis and Bioprocessing, College of Pharmacy, University of Iowa, Iowa City, IA 42242, USA
| | | | | | | |
Collapse
|
38
|
Van Lanen SG, Reader JS, Swairjo MA, de Crécy-Lagard V, Lee B, Iwata-Reuyl D. From cyclohydrolase to oxidoreductase: discovery of nitrile reductase activity in a common fold. Proc Natl Acad Sci U S A 2005; 102:4264-9. [PMID: 15767583 PMCID: PMC555470 DOI: 10.1073/pnas.0408056102] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Indexed: 11/18/2022] Open
Abstract
The enzyme YkvM from Bacillus subtilis was identified previously along with three other enzymes (YkvJKL) in a bioinformatics search for enzymes involved in the biosynthesis of queuosine, a 7-deazaguanine modified nucleoside found in tRNA(GUN) of Bacteria and Eukarya. Genetic analysis of ykvJKLM mutants in Acinetobacter confirmed that each was essential for queuosine biosynthesis, and the genes were renamed queCDEF. QueF exhibits significant homology to the type I GTP cyclohydrolases characterized by FolE. Given that GTP is the precursor to queuosine and that a cyclohydrolase-like reaction was postulated as the initial step in queuosine biosynthesis, QueF was proposed to be the putative cyclohydrolase-like enzyme responsible for this reaction. We have cloned the queF genes from B. subtilis and Escherichia coli and characterized the recombinant enzymes. Contrary to the predictions based on sequence analysis, we discovered that the enzymes, in fact, catalyze a mechanistically unrelated reaction, the NADPH-dependent reduction of 7-cyano-7-deazaguanineto7-aminomethyl-7-deazaguanine, a late step in the biosynthesis of queuosine. We report here in vitro and in vivo studies that demonstrate this catalytic activity, as well as preliminary biochemical and bioinformatics analysis that provide insight into the structure of this family of enzymes.
Collapse
Affiliation(s)
- Steven G Van Lanen
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207, USA
| | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- R G Burns
- Biophysics Section, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, UK SW7 2BZ
| | | |
Collapse
|
40
|
Ohta E, Toyoshima I, Funayama M, Ichinose H, Hasegawa K, Obata F. A new mutation (Thr106Ile) of theGTP cyclohydrolase 1 gene associated with DYT5 dystonia (Segawa disease). Mov Disord 2005; 20:1083-4. [PMID: 15852365 DOI: 10.1002/mds.20490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
41
|
Abstract
The biosynthesis of one riboflavin molecule requires one molecule of GTP and two molecules of ribulose 5-phosphate. The imidazole ring of GTP is hydrolytically opened, yielding a 2,5-diaminopyrimidine that is converted to 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione by a sequence of deamination, side chain reduction, and dephosphorylation. Condensation of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione with 3,4-dihydroxy-2-butanone 4-phosphate obtained from ribulose 5-phosphate affords 6,7-dimethyl-8-ribityllumazine. Dismutation of the lumazine derivative yields riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, which is recycled in the biosynthetic pathway. The enzymes of the riboflavin pathway are potential targets for antibacterial agents.
Collapse
Affiliation(s)
- Markus Fischer
- Lehrstuhl für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstr. 4, D-85747, Garching, Germany.
| | | |
Collapse
|
42
|
Maita N, Hatakeyama K, Okada K, Hakoshima T. Structural basis of biopterin-induced inhibition of GTP cyclohydrolase I by GFRP, its feedback regulatory protein. J Biol Chem 2004; 279:51534-40. [PMID: 15448133 DOI: 10.1074/jbc.m409440200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GTP cyclohydrolase I (GTPCHI) is the rate-limiting enzyme involved in the biosynthesis of tetrahydrobiopterin, a key cofactor necessary for nitric oxide synthase and for the hydroxylases that are involved in the production of catecholamines and serotonin. In animals, the GTPCHI feedback regulatory protein (GFRP) binds GTPCHI to mediate feed-forward activation of GTPCHI activity in the presence of phenylalanine, whereas it induces feedback inhibition of enzyme activity in the presence of biopterin. Here, we have reported the crystal structure of the biopterin-induced inhibitory complex of GTPCHI and GFRP and compared it with the previously reported phenylalanine-induced stimulatory complex. The structure reveals five biopterin molecules located at each interface between GTPCHI and GFRP. Induced fitting structural changes by the biopterin binding expand large conformational changes in GTPCHI peptide segments forming the active site, resulting in inhibition of the activity. By locating 3,4-dihydroxy-phenylalanine-responsive dystonia mutations in the complex structure, we found mutations that may possibly disturb the GFRP-mediated regulation of GTPCHI.
Collapse
Affiliation(s)
- Nobuo Maita
- Structural Biology Laboratory, Nara Institute of Science and Technology, CREST, Japan Science and Technology Agency, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | |
Collapse
|
43
|
Bauer S, Schott AK, Illarionova V, Bacher A, Huber R, Fischer M. Biosynthesis of Tetrahydrofolate in Plants: Crystal Structure of 7,8-Dihydroneopterin Aldolase from Arabidopsis thaliana Reveals a Novel Adolase Class. J Mol Biol 2004; 339:967-79. [PMID: 15165863 DOI: 10.1016/j.jmb.2004.04.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 04/07/2004] [Accepted: 04/10/2004] [Indexed: 11/22/2022]
Abstract
Dihydroneopterin aldolase (DHNA) catalyses a retroaldol reaction yielding 6-hydroxymethyl-7,8-dihydropterin, a biosynthetic precursor of the vitamin, tetrahydrofolate. The enzyme is a potential target for antimicrobial and anti-parasite chemotherapy. A gene specifying a dihydroneopterin aldolase from Arabidopsis thaliana was expressed in a recombinant Escherichia coli strain. The recombinant protein was purified to apparent homogeneity and crystallised using polyethylenglycol as the precipitating agent. The crystal structure was solved by X-ray diffraction analysis at 2.2A resolution. The enzyme forms a D(4)-symmetric homooctamer. Each polypeptide chain is folded into a single domain comprising an antiparallel four-stranded beta-sheet and two long alpha-helices. Four monomers are arranged in a tetrameric ring, and two of these rings form a hollow cylinder. Well defined purine derivatives are found at all eight topologically equivalent active sites. The subunit fold of the enzyme is related to substructures of dihydroneopterin triphosphate epimerase, GTP cyclohydrolase I, and pyruvoyltetrahydropterin synthase, which are all involved in the biosynthesis of pteridine type cofactors, and to urate oxidase, although some members of that superfamily have no detectable sequence similarity. Due to structural and mechanistical differences of DHNA in comparison with class I and class II aldolases, a new aldolase class is proposed.
Collapse
Affiliation(s)
- Stefanie Bauer
- Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Alp NJ, Channon KM. Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler Thromb Vasc Biol 2004; 24:413-20. [PMID: 14656731 DOI: 10.1161/01.atv.0000110785.96039.f6] [Citation(s) in RCA: 394] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is a key signaling molecule in vascular homeostasis. Loss of NO bioavailability due to reduced synthesis and increased scavenging by reactive oxygen species is a cardinal feature of endothelial dysfunction in vascular disease states. The pteridine cofactor tetrahydrobiopterin (BH4) has emerged as a critical determinant of eNOS activity: when BH4 availability is limiting, eNOS no longer produces NO but instead generates superoxide. In vascular disease states, there is oxidative degradation of BH4 by reactive oxygen species. However, augmentation of BH4 concentrations in vascular disease by pharmacological supplementation, by enhancement of its rate of de novo biosynthesis or by measures to reduce its oxidation, has been shown in experimental studies to enhance NO bioavailability. Thus, BH4 represents a potential therapeutic target in the regulation of eNOS function in vascular disease.
Collapse
Affiliation(s)
- Nicholas J Alp
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | |
Collapse
|
45
|
Gibson CL, La Rosa S, Ohta K, Boyle PH, Leurquin F, Lemaçon A, Suckling CJ. The synthesis of 7-deazaguanines as potential inhibitors of guanosine triphosphate cyclohydrolase I. Tetrahedron 2004. [DOI: 10.1016/j.tet.2003.11.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
He A, Rosazza JPN. GTP cyclohydrolase I: purification, characterization, and effects of inhibition on nitric oxide synthase in nocardia species. Appl Environ Microbiol 2003; 69:7507-13. [PMID: 14660404 PMCID: PMC309945 DOI: 10.1128/aem.69.12.7507-7513.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Accepted: 09/04/2003] [Indexed: 11/20/2022] Open
Abstract
GTP cyclohydrolase I (GTPCH) catalyzes the first step in pteridine biosynthesis in Nocardia sp. strain NRRL 5646. This enzyme is important in the biosynthesis of tetrahydrobiopterin (BH4), a reducing cofactor required for nitric oxide synthase (NOS) and other enzyme systems in this organism. GTPCH was purified more than 5,000-fold to apparent homogeneity by a combination of ammonium sulfate fractionation, GTP-agarose, DEAE Sepharose, and Ultragel AcA 34 chromatography. The purified enzyme gave a single band for a protein estimated to be 32 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular mass of the native enzyme was estimated to be 253 kDa by gel filtration, indicating that the active enzyme is a homo-octamer. The enzyme follows Michaelis-Menten kinetics, with a Km for GTP of 6.5 micromoles. Nocardia GTPCH possessed a unique N-terminal amino acid sequence. The pH and temperature optima for the enzyme were 7.8 and 56 degrees C, respectively. The enzyme was heat stable and slightly activated by potassium ion but was inhibited by calcium, copper, zinc, and mercury, but not magnesium. BH4 inhibited enzyme activity by 25% at a concentration of 100 micromoles. 2,4-Diamino-6-hydroxypyrimidine (DAHP) appeared to competitively inhibit the enzyme, with a Ki of 0.23 mM. With Nocardia cultures, DAHP decreased medium levels of NO2- plus NO3-. Results suggest that in Nocardia cells, NOS synthesis of nitric oxide is indirectly decreased by reducing the biosynthesis of an essential reducing cofactor, BH4.
Collapse
Affiliation(s)
- Aimin He
- Division of Medicinal and Natural Products Chemistry and Center for Biocatalysis and Bioprocessing, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
47
|
Hwu WL, Yeh HY, Fang SW, Chiang HS, Chiou YW, Lee YM. Regulation of GTP cyclohydrolase I by alternative splicing in mononuclear cells. Biochem Biophys Res Commun 2003; 306:937-42. [PMID: 12821132 DOI: 10.1016/s0006-291x(03)01091-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
GTP cyclohydrolase I (GCH, EC 3.5.4.16) regulates the level of tetrahydrobiopterin and in turn the activities of nitric oxide synthase and aromatic amino acid hydroxylases. Type II GCH mRNA, an alternatively spliced species abundant in blood cells, encodes a truncated and nonfunctional protein. When we stimulate peripheral blood mononuclear cells by PHA, the transcription of full-length GCH mRNA increased, but that of type II mRNA decreased transiently. We further demonstrated that the type II cDNA exerted a dominant-negative effect on the wild-type cDNA, similar to the effect of some GCH mutants. Therefore, type II mRNA may regulate GCH and then contribute to the regulation of NO production by BH4-dependent iNOS in mononuclear cells. Selection of the splicing sites may be coupled with transcriptional activation of the GCH gene.
Collapse
Affiliation(s)
- Wuh-Liang Hwu
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan ROC
| | | | | | | | | | | |
Collapse
|
48
|
Rebelo J, Auerbach G, Bader G, Bracher A, Nar H, Hösl C, Schramek N, Kaiser J, Bacher A, Huber R, Fischer M. Biosynthesis of pteridines. Reaction mechanism of GTP cyclohydrolase I. J Mol Biol 2003; 326:503-16. [PMID: 12559918 DOI: 10.1016/s0022-2836(02)01303-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
GTP cyclohydrolase I catalyses the hydrolytic release of formate from GTP followed by cyclization to dihydroneopterin triphosphate. The enzymes from bacteria and animals are homodecamers containing one zinc ion per subunit. Replacement of Cys110, Cys181, His112 or His113 of the enzyme from Escherichia coli by serine affords catalytically inactive mutant proteins with reduced capacity to bind zinc. These mutant proteins are unable to convert GTP or the committed reaction intermediate, 2-amino-5-formylamino-6-(beta-ribosylamino)-4(3H)-pyrimidinone 5'-triphosphate, to dihydroneopterin triphosphate. The crystal structures of GTP complexes of the His113Ser, His112Ser and Cys181Ser mutant proteins determined at resolutions of 2.5A, 2.8A and 3.2A, respectively, revealed the conformation of substrate GTP in the active site cavity. The carboxylic group of the highly conserved residue Glu152 anchors the substrate GTP, by hydrogen bonding to N-3 and to the position 2 amino group. Several basic amino acid residues interact with the triphosphate moiety of the substrate. The structure of the His112Ser mutant in complex with an undefined mixture of nucleotides determined at a resolution of 2.1A afforded additional details of the peptide folding. Comparison between the wild-type and mutant enzyme structures indicates that the catalytically active zinc ion is directly coordinated to Cys110, Cys181 and His113. Moreover, the zinc ion is complexed to a water molecule, which is in close hydrogen bond contact to His112. In close analogy to zinc proteases, the zinc-coordinated water molecule is suggested to attack C-8 of the substrate affording a zinc-bound 8R hydrate of GTP. Opening of the hydrated imidazole ring affords a formamide derivative, which remains coordinated to zinc. The subsequent hydrolysis of the formamide motif has an absolute requirement for zinc ion catalysis. The hydrolysis of the formamide bond shows close mechanistic similarity with peptide hydrolysis by zinc proteases.
Collapse
Affiliation(s)
- Jorge Rebelo
- Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lee S, Ahn C, Park E, Hwang DS, Yim J. Biochemical characterization of oligomerization of Escherichia coli GTP cyclohydrolase I. BMB Rep 2002; 35:255-61. [PMID: 12297008 DOI: 10.5483/bmbrep.2002.35.3.255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GTP cyclohydrolase I (E.C. 3.5.4.16) is a homodecameric protein that catalyzes the conversion of GTP to 7,8- dihydroneopterin triphosphate (H(2)NTP), the initial step in the biosynthesis of pteridines. It was proposed that the enzyme complex could be composed of a dimer of two pentamers, or a pentamer of tightly associated dimers; then the active site of the enzyme was located at the interface of three monomers (Nar et al. 1995a, b). Using mutant enzymes that were made by site-directed mutagenesis, we showed that a decamer of GTP cyclohydrolase I should be composed of a pentamer of five dimers, and that the active site is located between dimers, as analyzed by a series of size exclusion chromatography and the reconstitution experiment. We also show that the residues Lys 136, Arg139, and Glu152 are of particular importance for the oligomerization of the enzyme complex from five dimers to a decamer.
Collapse
Affiliation(s)
- Soojin Lee
- The National Creative Research Initiative Center for Genetic Reprogramming, Institute for Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
50
|
Hay DNT, Messerle L. Low-temperature, high yield synthesis, and convenient isolation of the high-electron-density cluster compound Ta6Br14.8H2O for use in biomacromolecular crystallographic phase determination. J Struct Biol 2002; 139:147-51. [PMID: 12457844 DOI: 10.1016/s1047-8477(02)00501-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reduction of TaBr(5) with Ga in the presence of KBr in a sealed borosilicate ampule at 400 degrees, followed by aqueous Soxhlet extraction and addition of stannous bromide and hydrobromic acid to the extract, yielded Ta(6)Br(14).8H(2)O in 80-84% yield. The new procedure provides a convenient, low temperature, high yield route to the synthesis of the title compound from inexpensive precursors.
Collapse
Affiliation(s)
- Daniel N T Hay
- Department of Chemistry, The University of Iowa, 461 Chemistry Building, Iowa City, IA 52242, USA
| | | |
Collapse
|