1
|
Aladdin N, Ghareib SA. Vitamin D3 Exerts a Neuroprotective Effect in Metabolic Syndrome Rats: Role of BDNF/TRKB/Akt/GS3Kβ Pathway. J Biochem Mol Toxicol 2024; 38:e70082. [PMID: 39651608 DOI: 10.1002/jbt.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024]
Abstract
Metabolic syndrome (MetS) is usually associated with cognitive impairment, neuropathic pain, and reduced brain-derived neurotrophic factor (BDNF) levels. BDNF via tropomyosin receptor kinase B (TrkB) exerts neuroprotection by activating protein kinase B (Akt) to inhibit glycogen synthase kinase-3β (GSK3β). Although Vitamin D3 (VitD3) has demonstrated favorable metabolic and neuronal outcomes in MetS, the precise molecular mechanisms underlying its neuroprotective effects remain poorly elucidated. We aimed to test the hypothesis that VitD3 mitigates MetS-induced cognition deficits and neuropathic pain via modulating the BDNF/TRKB/Akt/GS3Kβ signaling pathway. MetS was induced in male rats by 10% fructose-supplemented water and 3% salt-enriched diet. After 6 weeks, normal and MetS rats received either vehicle or VitD3 (10 µg/kg/day) for an additional 6 weeks. Glycemic status, lipid profile, and behavioral changes were assessed. The advanced glycation end products (AGEs), and markers of inflammation (TNF-α and NF-κB), oxidative stress (malondialdehyde), and apoptosis (caspase3), as well as BDNF, TrkB, PI3K, Akt, GSK3β, phosphorylated tau, and amyloid beta (Aβ) were assessed in the cerebral cortex. MetS rats had deteriorated glycemic and lipid profiles, higher AGEs, reduced levels of BDNF, TrkB, PI3K, and active Akt, along with increased GSK3β levels, inflammation, oxidative stress, and apoptosis. These changes were associated with higher levels of cognitive impairment markers phosphorylated tau and Aβ, as well as behavioral changes indicative of cognitive impairment and neuropathic pain. VitD3 improved the cognitive and behavioral alterations, while mitigating the associated molecular derangements. Our results indicate that VitD3 may exert neuroprotective effects by modulating the BDNF/TrkB/PI3K/Akt/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Noha Aladdin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Kot EF, Goncharuk SA, Franco ML, McKenzie DM, Arseniev AS, Benito-Martínez A, Costa M, Cattaneo A, Hristova K, Vilar M, Mineev KS. Structural basis for the transmembrane signaling and antidepressant-induced activation of the receptor tyrosine kinase TrkB. Nat Commun 2024; 15:9316. [PMID: 39472452 PMCID: PMC11522581 DOI: 10.1038/s41467-024-53710-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Neurotrophin receptors of the Trk family are involved in the regulation of brain development and neuroplasticity, and therefore can serve as targets for anti-cancer and stroke-recovery drugs, antidepressants, and many others. The structures of Trk protein domains in various states upon activation need to be elucidated to allow rational drug design. However, little is known about the conformations of the transmembrane and juxtamembrane domains of Trk receptors. In the present study, we employ NMR spectroscopy to solve the structure of the TrkB dimeric transmembrane domain in the lipid environment. We verify the structure using mutagenesis and confirm that the conformation corresponds to the active state of the receptor. Subsequent study of TrkB interaction with the antidepressant drug fluoxetine, and the antipsychotic drug chlorpromazine, provides a clear self-consistent model, describing the mechanism by which fluoxetine activates the receptor by binding to its transmembrane domain.
Collapse
Affiliation(s)
- Erik F Kot
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | | - María Luisa Franco
- Instituto de Biomedicina de Valencia-CSIC, València, Spain
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain
| | - Daniel M McKenzie
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Andrea Benito-Martínez
- Instituto de Biomedicina de Valencia-CSIC, València, Spain
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain
| | - Mario Costa
- Scuola Normale Superiore Laboratory of Biology BIO@SNS, Pisa, Italy
- CNR Neuroscience Institute, Pisa, Italy
| | | | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Marçal Vilar
- Instituto de Biomedicina de Valencia-CSIC, València, Spain.
- Valencia Biomedical Research Foundation, Centro de Investigación Príncipe Felipe (CIPF) - Associated Unit to the IBV-CSIC, 3, Valencia, Spain.
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Goethe University Frankfurt, Frankfurt am Main, Germany, Germany.
| |
Collapse
|
3
|
Nguyen DD, Mansur S, Ciesla L, Gray NE, Zhao S, Bao Y. A Combined Computational and Experimental Approach to Studying Tropomyosin Kinase Receptor B Binders for Potential Treatment of Neurodegenerative Diseases. Molecules 2024; 29:3992. [PMID: 39274839 PMCID: PMC11396239 DOI: 10.3390/molecules29173992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024] Open
Abstract
Tropomyosin kinase receptor B (TrkB) has been explored as a therapeutic target for neurological and psychiatric disorders. However, the development of TrkB agonists was hindered by our poor understanding of the TrkB agonist binding location and affinity (both affect the regulation of disorder types). This motivated us to develop a combined computational and experimental approach to study TrkB binders. First, we developed a docking method to simulate the binding affinity of TrkB and binders identified by our magnetic drug screening platform from Gotu kola extracts. The Fred Docking scores from the docking computation showed strong agreement with the experimental results. Subsequently, using this screening platform, we identified a list of compounds from the NIH clinical collection library and applied the same docking studies. From the Fred Docking scores, we selected two compounds for TrkB activation tests. Interestingly, the ability of the compounds to increase dendritic arborization in hippocampal neurons matched well with the computational results. Finally, we performed a detailed binding analysis of the top candidates and compared them with the best-characterized TrkB agonist, 7,8-dyhydroxyflavon. The screening platform directly identifies TrkB binders, and the computational approach allows for the quick selection of top candidates with potential biological activities based on the docking scores.
Collapse
Affiliation(s)
- Duc D. Nguyen
- Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, USA
| | - Shomit Mansur
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Lukasz Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Nora E. Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Shan Zhao
- Department of Mathematics, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Yuping Bao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| |
Collapse
|
4
|
Antonijevic M, Sopkova-de Oliveira Santos J, Dallemagne P, Rochais C. Discovery of a pocket network on the domain 5 of the TrkB receptor - A potential new target in the quest for the new ligands. Mol Inform 2024; 43:e202400043. [PMID: 38619318 DOI: 10.1002/minf.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
The important role that the neurotrophin tyrosine kinase receptor - TrkB has in the pathogenesis of several neurodegenerative conditions such are Alzheimer's disease, Parkinson's disease, Huntington's disease, has been well described. This shouldn't be a surprise, since in the physiological conditions, once activated by brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5), the TrkB receptor promotes neuronal survival, differentiation and synaptic function. Considering that the natural ligands for TrkB receptor are large proteins, it is a challenge to discover small molecule capable to mimic their effects. Even though, the surface of receptor that is interacting with BDNF or NT-4/5 is known, there was always a question which pocket and interaction is responsible for activation of it. In order to answer this challenging question, we have used molecular dynamic (MD) simulations and Pocketron algorithm which enabled us to detect, for the first time, a pocket network existing in the interacting domain (d5) of the receptor; to describe them and to see how they are communicating with each other. This new discovery gave us potential new areas on receptor that can be targeted and used for structure-based drug design approach in the development of the new ligands.
Collapse
|
5
|
K Soman S, Swain M, Dagda RK. BDNF-TrkB Signaling in Mitochondria: Implications for Neurodegenerative Diseases. Mol Neurobiol 2024:10.1007/s12035-024-04357-4. [PMID: 39030441 DOI: 10.1007/s12035-024-04357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal development, synaptic plasticity, and overall neuronal health by binding to its receptor, tyrosine receptor kinase B (TrkB). This review delves into the intricate mechanisms through which BDNF-TrkB signaling influences mitochondrial function and potentially influences pathology in neurodegenerative diseases. This review highlights the BDNF-TrkB signaling pathway which regulates mitochondrial bioenergetics, biogenesis, and dynamics, mitochondrial processes vital for synaptic transmission and plasticity. Furthermore, we explore how the BDNF-TrkB-PKA signaling in the cytosol and in mitochondria affects mitochondrial transport and distribution and mitochondrial content, which is crucial for supporting the energy demands of synapses. The dysregulation of this signaling pathway is linked to various neurodegenerative diseases, including Alzheimer's and Parkinson's disease, which are characterized by mitochondrial dysfunction and reduced BDNF expression. By examining seminal studies that have characterized this signaling pathway in health and disease, the present review underscores the potential of enhancing BDNF-TrkB signaling to mitigate mitochondrial dysfunction in neurodegenerative diseases, offering insights into therapeutic strategies to enhance neuronal resilience and function.
Collapse
Affiliation(s)
- Smijin K Soman
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Maryann Swain
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA.
| |
Collapse
|
6
|
Nawrocka WI, Cheng S, Hao B, Rosen MC, Cortés E, Baltrusaitis EE, Aziz Z, Kovács IA, Özkan E. Nematode Extracellular Protein Interactome Expands Connections between Signaling Pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602367. [PMID: 39026773 PMCID: PMC11257444 DOI: 10.1101/2024.07.08.602367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Multicellularity was accompanied by the emergence of new classes of cell surface and secreted proteins. The nematode C. elegans is a favorable model to study cell surface interactomes, given its well-defined and stereotyped cell types and intercellular contacts. Here we report our C. elegans extracellular interactome dataset, the largest yet for an invertebrate. Most of these interactions were unknown, despite recent datasets for flies and humans, as our collection contains a larger selection of protein families. We uncover new interactions for all four major axon guidance pathways, including ectodomain interactions between three of the pathways. We demonstrate that a protein family known to maintain axon locations are secreted receptors for insulins. We reveal novel interactions of cystine-knot proteins with putative signaling receptors, which may extend the study of neurotrophins and growth-factor-mediated functions to nematodes. Finally, our dataset provides insights into human disease mechanisms and how extracellular interactions may help establish connectomes.
Collapse
Affiliation(s)
- Wioletta I. Nawrocka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Shouqiang Cheng
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Bingjie Hao
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Matthew C. Rosen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Elena Cortés
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Elana E. Baltrusaitis
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Zainab Aziz
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - István A. Kovács
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Hemasree GNS, Satish KS, Rajalekshmi SG, Burri RR, Murthy TPK. Exploration of interaction interface of TRKβ/BDNF through fingerprint analysis to disinter potential agonists. Mol Divers 2024; 28:1531-1549. [PMID: 37389778 DOI: 10.1007/s11030-023-10673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Tyrosine Kinase beta (TRKβ), is a type I membrane receptor which plays a major role in various signalling pathways. TRKβ was found to be upregulated in various cancers and contrastingly downregulated in various neurodegenerative disorders. Hitherto, contemporary drug research is oriented towards discovery of TRKβ inhibitors, thus neglecting the development of TRKβ agonists. This research is aimed at identifying FDA approved drugs exhibiting repurposable potential as TRKβ agonists by mapping them with fingerprints of the BDNF/TRKβ interaction interface. Initially, crucial interacting residues were retrieved and a receptor grid was generated around it. TRKβ agonists were retrieved from literature search and a drug library was created for each agonist based on its structural and side effect similarities. Subsequently, molecular docking and dynamics were performed for each library to identify the drugs possessing affinity towards the binding pocket of TRKβ. The study revealed molecular interactions of Perospirone, Droperidol, Urapidil, and Clobenzorex with the crucial amino acids lining the active binding pocket of TRKβ. Subsequent network pharmacological analysis of the above drugs revealed their interactions with key proteins involved in neurotransmitter signalling pathways. Clobenzorex displayed high stability in dynamics simulation and therefore this drug is recommended for further experimental evaluations to attain better mechanistic insights and predict its implications in correcting neuropathological aberrations. This study's focus on the interaction interface between TRKβ and BDNF, combined with the utilization of fingerprint analysis for drug repurposing, contributes to our understanding of neurotrophic signalling and holds potential for identifying new therapeutic options for neurological disorders.
Collapse
Affiliation(s)
- G N S Hemasree
- Faculty of Pharmacy, M.S.Ramaiah University of Applied Sciences, Bangalore, Karnataka, 560054, India
| | - Kshreeraja S Satish
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S.Ramaiah University of Applied Sciences, Bangalore, Karnataka, 560054, India
| | - Saraswathy Ganesan Rajalekshmi
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S.Ramaiah University of Applied Sciences, Bangalore, Karnataka, 560054, India.
- Pharmacological Modelling and Simulation Centre, Faculty of Pharmacy, M.S.Ramaiah University of Applied Sciences, Bangalore, Karnataka, 560054, India.
| | | | - T P Krishna Murthy
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, Karnataka, 560054, India
| |
Collapse
|
8
|
Enkavi G, Girych M, Moliner R, Vattulainen I, Castrén E. TrkB transmembrane domain: bridging structural understanding with therapeutic strategy. Trends Biochem Sci 2024; 49:445-456. [PMID: 38433044 DOI: 10.1016/j.tibs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
TrkB (neuronal receptor tyrosine kinase-2, NTRK2) is the receptor for brain-derived neurotrophic factor (BDNF) and is a critical regulator of activity-dependent neuronal plasticity. The past few years have witnessed an increasing understanding of the structure and function of TrkB, including its transmembrane domain (TMD). TrkB interacts with membrane cholesterol, which bidirectionally regulates TrkB signaling. Additionally, TrkB has recently been recognized as a binding target of antidepressant drugs. A variety of different antidepressants, including typical and rapid-acting antidepressants, as well as psychedelic compounds, act as allosteric potentiators of BDNF signaling through TrkB. This suggests that TrkB is the common target of different antidepressant compounds. Although more research is needed, current knowledge suggests that TrkB is a promising target for further drug development.
Collapse
Affiliation(s)
- Giray Enkavi
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Rafael Moliner
- Neuroscience Center/HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Eero Castrén
- Neuroscience Center/HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Preet G, Haj Hasan A, Ramlagan P, Fawdar S, Boulle F, Jaspars M. Anti-Neurodegenerating Activity: Structure-Activity Relationship Analysis of Flavonoids. Molecules 2023; 28:7188. [PMID: 37894669 PMCID: PMC10609304 DOI: 10.3390/molecules28207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
An anti-neurodegeneration activity study was carried out for 80 flavonoid compounds. The structure-activity analysis of the structures was carried out by performing three different anti-neurodegeneration screening tests, showing that in these structures, the presence of a hydroxy substituent group at position C3' as well as C5' of ring B and a methoxy substituent group at the C7 position of ring A play a vital role in neuroprotective and antioxidant as well as anti-inflammatory activity. Further, we found structure (5) was the top-performing active structure out of 80 structures. Subsequently, a molecular docking study was carried out for the 3 lead flavonoid compounds (4), (5), and (23) and 21 similar hypothetical proposed structures to estimate the binding strength between the tested compounds and proteins potentially involved in disease causation. Ligand-based pharmacophores were generated to guide future drug design studies.
Collapse
Affiliation(s)
- Gagan Preet
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (G.P.); (A.H.H.)
| | - Ahlam Haj Hasan
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (G.P.); (A.H.H.)
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | | | - Shameem Fawdar
- Axonova Ltd., Grand Port 51405, Mauritius; (P.R.); (S.F.); (F.B.)
| | - Fabien Boulle
- Axonova Ltd., Grand Port 51405, Mauritius; (P.R.); (S.F.); (F.B.)
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK; (G.P.); (A.H.H.)
| |
Collapse
|
10
|
Moliner R, Girych M, Brunello CA, Kovaleva V, Biojone C, Enkavi G, Antenucci L, Kot EF, Goncharuk SA, Kaurinkoski K, Kuutti M, Fred SM, Elsilä LV, Sakson S, Cannarozzo C, Diniz CRAF, Seiffert N, Rubiolo A, Haapaniemi H, Meshi E, Nagaeva E, Öhman T, Róg T, Kankuri E, Vilar M, Varjosalo M, Korpi ER, Permi P, Mineev KS, Saarma M, Vattulainen I, Casarotto PC, Castrén E. Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat Neurosci 2023; 26:1032-1041. [PMID: 37280397 PMCID: PMC10244169 DOI: 10.1038/s41593-023-01316-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/21/2023] [Indexed: 06/08/2023]
Abstract
Psychedelics produce fast and persistent antidepressant effects and induce neuroplasticity resembling the effects of clinically approved antidepressants. We recently reported that pharmacologically diverse antidepressants, including fluoxetine and ketamine, act by binding to TrkB, the receptor for BDNF. Here we show that lysergic acid diethylamide (LSD) and psilocin directly bind to TrkB with affinities 1,000-fold higher than those for other antidepressants, and that psychedelics and antidepressants bind to distinct but partially overlapping sites within the transmembrane domain of TrkB dimers. The effects of psychedelics on neurotrophic signaling, plasticity and antidepressant-like behavior in mice depend on TrkB binding and promotion of endogenous BDNF signaling but are independent of serotonin 2A receptor (5-HT2A) activation, whereas LSD-induced head twitching is dependent on 5-HT2A and independent of TrkB binding. Our data confirm TrkB as a common primary target for antidepressants and suggest that high-affinity TrkB positive allosteric modulators lacking 5-HT2A activity may retain the antidepressant potential of psychedelics without hallucinogenic effects.
Collapse
Affiliation(s)
- Rafael Moliner
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mykhailo Girych
- Department of Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | | | - Vera Kovaleva
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Caroline Biojone
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Giray Enkavi
- Department of Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Lina Antenucci
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Erik F Kot
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Katja Kaurinkoski
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mirjami Kuutti
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Senem M Fred
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lauri V Elsilä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sven Sakson
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | | | - Cassiano R A F Diniz
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Nina Seiffert
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anna Rubiolo
- Neuroscience, University of Trieste, Trieste, Italy
| | - Hele Haapaniemi
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Elsa Meshi
- Biomedical Sciences, Hellenic University of Thessaloniki, Thessaloniki, Greece
| | - Elina Nagaeva
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Öhman
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Perttu Permi
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
- Structural and Quantitative Biology Research Program, Institute of Biotechnology, Instruct-HiLIFE, University of Helsinki, Helsinki, Finland
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Mart Saarma
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, Faculty of Science, University of Helsinki, Helsinki, Finland.
| | | | - Eero Castrén
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Liu B, Liu Y, Li S, Chen P, Zhang J, Feng L. BDNF promotes mouse follicular development and reverses ovarian aging by promoting cell proliferation. J Ovarian Res 2023; 16:83. [PMID: 37106468 PMCID: PMC10134588 DOI: 10.1186/s13048-023-01163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) plays an important role in ovarian function including follicle development and oocyte maturation, and embryonic development. However, whether BDNF treatment can reimpose ovarian aging and impaired fertility remains elusive. In this study, we investigated the reproductive outcomes of BDNF treatment and potential mechanisms in aged mice. METHOD "Aged" mice (35-37 weeks old, n = 68) were treated with recombinant human BDNF protein (rhBDNF, 1 µg/200 µL) through daily intraperitoneal (IP) injection for 10 days with/without ovulation induction. Reproductive age mice (8-10 weeks old, n = 28) were treated with ANA 12 (a selective BDNF receptor, TrkB antagonist) through daily IP injection for 5 days with/without ovulation induction. Ovarian function was assessed by ovarian weight, number of follicles, and sex hormone productions. Following induction of ovulation, the number of total oocytes or abnormal oocytes, and blastocyst formation were assessed. Reproductive functions of the mice were evaluated, including pregnancy rate, mating duration for conception, implantation sites, litter size, and weight of offspring. Finally, the molecular mechanism of the effects of BDNF on ovarian cell functions in mice were examined by Western blot and immunofluorescence. RESULTS rhBDNF treatment increased the ovarian weight, number of follicles, number and quality of oocytes including increased blastocysts formation, blood estrogen levels, and pregnancy rate in 35-37-week-old mice. Conversely, BDNF receptor antagonist, ANA 12, treatment decreased the ovarian volume and number of antral follicles and increased the proportion of abnormal oocytes in 8-10-week-old mice. We further demonstrated that BDNF treatment promoted ovarian cell proliferation as well as activation of TrkB and cyclinD1-creb signalling. CONCLUSION We demonstrated that ten consecutive days of daily IP injection of rhBDNF rescued ovarian function in aged mice. Our results further indicate that TrkB and cyclin D1-creb signaling may underlie the BDNF function in ovaries. Targeting BDNF-TrkB signaling is a potential novel therapeutic strategy to reverse ovarian aging.
Collapse
Affiliation(s)
- Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pingping Chen
- Department of Reproduction, Xinhua Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Liping Feng
- Department of Obstetrics and Gynaecology, Duke University, Durham, NC, USA.
| |
Collapse
|
12
|
Holzner C, Böttinger K, Blöchl C, Huber CG, Dahms SO, Dall E, Brandstetter H. Legumain Functions as a Transient TrkB Sheddase. Int J Mol Sci 2023; 24:ijms24065394. [PMID: 36982466 PMCID: PMC10049731 DOI: 10.3390/ijms24065394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
While primarily found in endo-lysosomal compartments, the cysteine protease legumain can also translocate to the cell surface if stabilized by the interaction with the RGD-dependent integrin receptor αVβ3. Previously, it has been shown that legumain expression is inversely related to BDNF-TrkB activity. Here we show that legumain can conversely act on TrkB-BDNF by processing the C-terminal linker region of the TrkB ectodomain in vitro. Importantly, when in complex with BDNF, TrkB was not cleaved by legumain. Legumain-processed TrkB was still able to bind BDNF, suggesting a potential scavenger function of soluble TrkB towards BDNF. The work thus presents another mechanistic link explaining the reciprocal TrkB signaling and δ-secretase activity of legumain, with relevance for neurodegeneration.
Collapse
|
13
|
Russo L, Giacomelli C, Fortino M, Marzo T, Ferri G, Calvello M, Viegi A, Magrì A, Pratesi A, Pietropaolo A, Cardarelli F, Martini C, Rizzarelli E, Marchetti L, La Mendola D, Trincavelli ML. Neurotrophic Activity and Its Modulation by Zinc Ion of a Dimeric Peptide Mimicking the Brain-Derived Neurotrophic Factor N-Terminal Region. ACS Chem Neurosci 2022; 13:3453-3463. [PMID: 36346920 PMCID: PMC9732821 DOI: 10.1021/acschemneuro.2c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin (NT) essential for neuronal development and synaptic plasticity. Dysregulation of BDNF signaling is implicated in different neurological disorders. The direct NT administration as therapeutics has revealed to be challenging. This has prompted the design of peptides mimicking different regions of the BDNF structure. Although loops 2 and 4 have been thoroughly investigated, less is known regarding the BDNF N-terminal region, which is involved in the selective recognition of the TrkB receptor. Herein, a dimeric form of the linear peptide encompassing the 1-12 residues of the BDNF N-terminal (d-bdnf) was synthesized. It demonstrated to act as an agonist promoting specific phosphorylation of TrkB and downstream ERK and AKT effectors. The ability to promote TrkB dimerization was investigated by advanced fluorescence microscopy and molecular dynamics (MD) simulations, finding activation modes shared with BDNF. Furthermore, d-bdnf was able to sustain neurite outgrowth and increase the expression of differentiation (NEFM, LAMC1) and polarization markers (MAP2, MAPT) demonstrating its neurotrophic activity. As TrkB activity is affected by zinc ions in the synaptic cleft, we first verified the ability of d-bdnf to coordinate zinc and then the effect of such complexation on its activity. The d-bdnf neurotrophic activity was reduced by zinc complexation, demonstrating the role of the latter in tuning the activity of the new peptido-mimetic. Taken together our data uncover the neurotrophic properties of a novel BDNF mimetic peptide and pave the way for future studies to understand the pharmacological basis of d-bdnf action and develop novel BDNF-based therapeutic strategies.
Collapse
Affiliation(s)
- Lara Russo
- Dipartimento
di Farmacia, Università di Pisa, Pisa 56127, Italy
| | | | | | - Tiziano Marzo
- Dipartimento
di Farmacia, Università di Pisa, Pisa 56127, Italy
| | - Gianmarco Ferri
- Laboratorio
NEST, Scuola Normale Superiore, Pisa 56127, Italy
| | | | | | - Antonio Magrì
- Istituto
di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Catania 95126, Italy
| | - Alessandro Pratesi
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Pisa 56124, Italy
| | | | | | - Claudia Martini
- Dipartimento
di Farmacia, Università di Pisa, Pisa 56127, Italy
| | - Enrico Rizzarelli
- Istituto
di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Catania 95126, Italy,Università
degli Studi di Catania, Catania 95124, Italy
| | - Laura Marchetti
- Dipartimento
di Farmacia, Università di Pisa, Pisa 56127, Italy,
| | - Diego La Mendola
- Dipartimento
di Farmacia, Università di Pisa, Pisa 56127, Italy,
| | | |
Collapse
|
14
|
Chiu YJ, Lin TH, Chang KH, Lin W, Hsieh-Li HM, Su MT, Chen CM, Sun YC, Lee-Chen GJ. Novel TRKB agonists activate TRKB and downstream ERK and AKT signaling to protect Aβ-GFP SH-SY5Y cells against Aβ toxicity. Aging (Albany NY) 2022; 14:7568-7586. [PMID: 36170028 PMCID: PMC9550238 DOI: 10.18632/aging.204306] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/17/2022] [Indexed: 11/28/2022]
Abstract
Decreased BDNF and impaired TRKB signaling contribute to neurodegeneration in Alzheimer’s disease (AD). We have shown previously that coumarin derivative LM-031 enhanced CREB/BDNF/BCL2 pathway. In this study we explored if LM-031 analogs LMDS-1 to -4 may act as TRKB agonists to protect SH-SY5Y cells against Aβ toxicity. By docking computation for binding with TRKB using 7,8-DHF as a control, all four LMDS compounds displayed potential of binding to domain d5 of TRKB. In addition, all four LMDS compounds exhibited anti-aggregation and neuroprotective efficacy on SH-SY5Y cells with induced Aβ-GFP expression. Knock-down of TRKB significantly attenuated TRKB downstream signaling and the neurite outgrowth-promoting effects of these LMDS compounds. Among them, LMDS-1 and -2 were further examined for TRKB signaling. Treatment of ERK inhibitor U0126 or PI3K inhibitor wortmannin decreased p-CREB, BDNF and BCL2 in Aβ-GFP cells, implicating the neuroprotective effects are via activating TRKB downstream ERK, PI3K-AKT and CREB signaling. LMDS-1 and -2 are blood–brain barrier permeable as shown by parallel artificial membrane permeability assay. Our results demonstrate how LMDS-1 and -2 are likely to work as TRKB agonists to exert neuroprotection in Aβ cells, which may shed light on the potential application in therapeutics of AD.
Collapse
Affiliation(s)
- Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
15
|
Sathyanesan M, Newton SS. Antidepressant-like effects of trophic factor receptor signaling. Front Mol Neurosci 2022; 15:958797. [PMID: 36081576 PMCID: PMC9445421 DOI: 10.3389/fnmol.2022.958797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
A significant body of research has demonstrated that antidepressants regulate neurotrophic factors and that neurotrophins themselves are capable of independently producing antidepressant-like effects. While brain derived neurotrophic factor (BDNF) remains the best studied molecule in this context, there are several structurally diverse trophic factors that have shown comparable behavioral effects, including basic fibroblast growth factor (FGF-2), insulin-like growth factor 1 (IGF-1) and vascular endothelial growth factor (VEGF). In this review we discuss the structural and biochemical signaling aspects of these neurotrophic factors with antidepressant activity. We also include a discussion on a cytokine molecule erythropoietin (EPO), widely known and prescribed as a hormone to treat anemia but has recently been shown to function as a neurotrophic factor in the central nervous system (CNS).
Collapse
|
16
|
Kot EF, Franco ML, Vasilieva EV, Shabalkina AV, Arseniev AS, Goncharuk SA, Mineev KS, Vilar M. Intrinsically disordered regions couple the ligand binding and kinase activation of Trk neurotrophin receptors. iScience 2022; 25:104348. [PMID: 35601915 PMCID: PMC9117555 DOI: 10.1016/j.isci.2022.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/22/2022] [Accepted: 04/27/2022] [Indexed: 11/19/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are key players in development and several diseases. Understanding the molecular mechanism of RTK activation by its ligand could lead to the design of new RTK inhibitors. How the extracellular domain is coupled to the intracellular kinase domain is a matter of debate. Ligand-induced dimerization and ligand-induced conformational change of pre-formed dimers are two of the most proposed models. Recently we proposed that TrkA, the RTK for nerve growth factor (NGF), is activated by rotation of the transmembrane domain (TMD) pre-formed dimers upon NGF binding. However, one of the unsolved issues is how the ligand binding is conformationally coupled to the TMD rotation if unstructured extracellular juxtamembrane (eJTM) regions separate them. Here we use nuclear magnetic resonance in bicelles and functional studies to demonstrate that eJTM regions from the Trk family are intrinsically disordered and couple the ligand-binding domains and TMDs possibly via the interaction with NGF. Extracellular juxtamembrane region is required for NGF binding and TrkA activation TrkA extracellular juxtamembrane region is unstructured and flexible This region couples neurotrophin-binding and transmembrane domain rotation The extracellular juxtamembrane region might play a role in neurotrophin recognition
Collapse
Affiliation(s)
- Erik F. Kot
- Moscow Institute of Physics and Technology, 141707 Dolgoprudnyi, Russian Federation
| | - María L. Franco
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), C/ Jaume Roig 11, 46010 València, Spain
| | - Ekaterina V. Vasilieva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russian Federation
| | - Alexandra V. Shabalkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russian Federation
- Moscow Institute of Physics and Technology, 141707 Dolgoprudnyi, Russian Federation
| | - Alexander S. Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russian Federation
- Moscow Institute of Physics and Technology, 141707 Dolgoprudnyi, Russian Federation
- Corresponding author
| | - Sergey A. Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russian Federation
- Moscow Institute of Physics and Technology, 141707 Dolgoprudnyi, Russian Federation
- Corresponding author
| | - Konstantin S. Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russian Federation
- Moscow Institute of Physics and Technology, 141707 Dolgoprudnyi, Russian Federation
- Corresponding author
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit, Institute of Biomedicine of València (IBV-CSIC), C/ Jaume Roig 11, 46010 València, Spain
- Corresponding author
| |
Collapse
|
17
|
Chiang NN, Lin TH, Teng YS, Sun YC, Chang KH, Lin CY, Hsieh-Li HM, Su MT, Chen CM, Lee-Chen GJ. Flavones 7,8-DHF, Quercetin, and Apigenin Against Tau Toxicity via Activation of TRKB Signaling in ΔK280 Tau RD-DsRed SH-SY5Y Cells. Front Aging Neurosci 2022; 13:758895. [PMID: 34975454 PMCID: PMC8714935 DOI: 10.3389/fnagi.2021.758895] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with memory loss and cognitive decline. Neurofibrillary tangles (NFTs) formed by hyperphosphorylated Tau protein are one of the pathological hallmarks of several neurodegenerative diseases including AD. Heat shock protein family B (small) member 1 (HSPB1) is a molecular chaperone that promotes the correct folding of other proteins in response to environmental stress. Nuclear factor erythroid 2-like 2 (NRF2), a redox-regulated transcription factor, is the master regulator of the cellular response to excess reactive oxygen species. Tropomyosin-related kinase B (TRKB) is a membrane-bound receptor that, upon binding brain-derived neurotrophic factor (BDNF), phosphorylates itself to initiate downstream signaling for neuronal survival and axonal growth. In this study, four natural flavones such as 7,8-dihydroxyflavone (7,8-DHF), wogonin, quercetin, and apigenin were evaluated for Tau aggregation inhibitory activity and neuroprotection in SH-SY5Y neuroblastoma. Among the tested flavones, 7,8-DHF, quercetin, and apigenin reduced Tau aggregation, oxidative stress, and caspase-1 activity as well as improved neurite outgrowth in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. Treatments with 7,8-DHF, quercetin, and apigenin rescued the reduced HSPB1 and NRF2 and activated TRKB-mediated extracellular signal-regulated kinase (ERK) signaling to upregulate cAMP-response element binding protein (CREB) and its downstream antiapoptotic BCL2 apoptosis regulator (BCL2). Knockdown of TRKB attenuated the neuroprotective effects of these three flavones. Our results suggest 7,8-DHF, quercetin, and apigenin targeting HSPB1, NRF2, and TRKB to reduce Tau aggregation and protect cells against Tau neurotoxicity and may provide new treatment strategies for AD.
Collapse
Affiliation(s)
- Ni-Ni Chiang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yu-Shan Teng
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
18
|
Karl K, Hristova K. Pondering the mechanism of receptor tyrosine kinase activation: The case for ligand-specific dimer microstate ensembles. Curr Opin Struct Biol 2021; 71:193-199. [PMID: 34399300 DOI: 10.1016/j.sbi.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that regulate cell growth, differentiation, motility, and metabolism. Here, we review recent advancements in RTK structure determination and in the understanding of RTK activation. We argue that further progress in the field will necessitate new ways of thinking, and we introduce the concept that RTK dimers explore ensembles of microstates, each characterized by different kinase domain dimer conformations, but the same extracellular domain dimer structure. Many microstates are phosphorylation-competent and ensure the phosphorylation of one specific tyrosine. The prevalence of each microstate correlates with its stability. A switch in ligand will lead to a switch in the extracellular domain configuration and to a subsequent switch in the ensemble of microstates. This model can explain how different ligands produce specific phosphorylation patterns, how receptor overexpression leads to enhanced signaling even in the absence of activating ligands, and why RTK kinase domain structures have remained unresolved in cryogenic electron microscopy studies.
Collapse
Affiliation(s)
- Kelly Karl
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218 USA.
| |
Collapse
|
19
|
Candalija A, Scior T, Rackwitz HR, Ruiz-Castelan JE, Martinez-Laguna Y, Aguilera J. Interaction between a Novel Oligopeptide Fragment of the Human Neurotrophin Receptor TrkB Ectodomain D5 and the C-Terminal Fragment of Tetanus Neurotoxin. Molecules 2021; 26:molecules26133988. [PMID: 34208805 PMCID: PMC8272241 DOI: 10.3390/molecules26133988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
This article presents experimental evidence and computed molecular models of a potential interaction between receptor domain D5 of TrkB with the carboxyl-terminal domain of tetanus neurotoxin (Hc-TeNT). Computational simulations of a novel small cyclic oligopeptide are designed, synthesized, and tested for possible tetanus neurotoxin-D5 interaction. A hot spot of this protein-protein interaction is identified in analogy to the hitherto known crystal structures of the complex between neurotrophin and D5. Hc-TeNT activates the neurotrophin receptors, as well as its downstream signaling pathways, inducing neuroprotection in different stress cellular models. Based on these premises, we propose the Trk receptor family as potential proteic affinity receptors for TeNT. In vitro, Hc-TeNT binds to a synthetic TrkB-derived peptide and acts similar to an agonist ligand for TrkB, resulting in phosphorylation of the receptor. These properties are weakened by the mutagenesis of three residues of the predicted interaction region in Hc-TeNT. It also competes with Brain-derived neurotrophic factor, a native binder to human TrkB, for the binding to neural membranes, and for uptake in TrkB-positive vesicles. In addition, both molecules are located together in vivo at neuromuscular junctions and in motor neurons.
Collapse
Affiliation(s)
- Ana Candalija
- Molecular Biology Department, Institut de Neruociènces and Biochemistry, Medicine Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (A.C.); (J.A.)
| | - Thomas Scior
- Faculty of Chemical Sciences, BUAP, Puebla 72000, Mexico; (J.E.R.-C.); (Y.M.-L.)
- Correspondence: or ; Tel.: +52-222-229-5500 (ext. 7529)
| | - Hans-Richard Rackwitz
- Peptide Specialities Laboratory, Im Neuenheimer Feld, Univerisity Campus, 69120 Heidelberg, Germany;
| | | | | | - José Aguilera
- Molecular Biology Department, Institut de Neruociènces and Biochemistry, Medicine Faculty, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (A.C.); (J.A.)
- Center for Biomedical Research Network on Neurodegenerative Diseases (CIBERNED), 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
20
|
Tawarayama H, Inoue-Yanagimachi M, Himori N, Nakazawa T. Glial cells modulate retinal cell survival in rotenone-induced neural degeneration. Sci Rep 2021; 11:11159. [PMID: 34045544 PMCID: PMC8159960 DOI: 10.1038/s41598-021-90604-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Administration of the mitochondrial complex I inhibitor rotenone provides an excellent model to study the pathomechanism of oxidative stress-related neural degeneration diseases. In this study, we examined the glial roles in retinal cell survival and degeneration under the rotenone-induced oxidative stress condition. Mouse-derived Müller, microglial (BV-2), and dissociated retinal cells were used for in vitro experiments. Gene expression levels and cell viability were determined using quantitative reverse transcription-polymerase chain reaction and the alamarBlue assay, respectively. Conditioned media were prepared by stimulating glial cells with rotenone. Retinal ganglion cells (RGCs) and inner nuclear layer (INL) were visualized on rat retinal sections by immunohistochemistry and eosin/hematoxylin, respectively. Rotenone dose-dependently induced glial cell death. Treatment with rotenone or rotenone-stimulated glial cell-conditioned media altered gene expression of growth factors and inflammatory cytokines in glial cells. The viability of dissociated retinal cells significantly increased upon culturing in media conditioned with rotenone-stimulated or Müller cell-conditioned media-stimulated BV-2 cells. Furthermore, intravitreal neurotrophin-5 administration prevented the rotenone-induced reduction of RGC number and INL thickness in rats. Thus, glial cells exerted both positive and negative effects on retinal cell survival in rotenone-induced neural degeneration via altered expression of growth factors, especially upregulation of microglia-derived Ntf5, and proinflammatory cytokines.
Collapse
Affiliation(s)
- Hiroshi Tawarayama
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Maki Inoue-Yanagimachi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Noriko Himori
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan. .,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan. .,Collaborative Program of Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan. .,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan. .,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan.
| |
Collapse
|
21
|
Covaceuszach S, Peche L, Konarev P, Lamba D. A combined evolutionary and structural approach to disclose the primary structural determinants essential for proneurotrophins biological functions. Comput Struct Biotechnol J 2021; 19:2891-2904. [PMID: 34094000 PMCID: PMC8144349 DOI: 10.1016/j.csbj.2021.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022] Open
Abstract
The neurotrophins, i.e., Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin 3 (NT3) and Neurotrophin 4 (NT4), are known to play a range of crucial functions in the developing and adult peripheral and central nervous systems. Initially synthesized as precursors, i.e., proneurotrophins (proNTs), that are cleaved to release C-terminal mature forms, they act through two types of receptors, the specific Trk receptors (Tropomyosin-related kinases) and the pan-neurotrophin receptor p75NTR, to initiate survival and differentiative responses. Recently, all the proNTs but proNT4 have been demonstrated to be not just inactive precursors, but signaling ligands that mediate opposing actions in fundamental aspects of the nervous system with respect to the mature counterparts through dual-receptor complexes formation with a member of the VPS10 family and p75NTR. Despite the functional relevance, the molecular determinants underpinning the interactions between the pro-domains and their receptors are still elusive probably due to their intrinsically disordered nature. Here we present an evolutionary approach coupled to an experimental study aiming to uncover the structural and dynamical basis of the biological function displayed by proNGF, proBDNF and proNT3 but missing in proNT4. A bioinformatic analysis allowed to elucidate the functional adaptability of the proNTs family in vertebrates, identifying conserved key structural features. The combined biochemical and SAXS experiments shed lights on the structure and dynamic behavior of the human proNTs in solution, giving insights on the evolutionary conserved structural motifs, essential for the multifaceted roles of proNTs in physiological as well as in pathological contexts.
Collapse
Affiliation(s)
- S. Covaceuszach
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - L.Y. Peche
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - P.V. Konarev
- A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russia
| | - D. Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Trieste, Italy
- Interuniversity Consortium “Biostructures and Biosystems National Institute”, Roma, Italy
| |
Collapse
|
22
|
La Mendola D, Arena G, Pietropaolo A, Satriano C, Rizzarelli E. Metal ion coordination in peptide fragments of neurotrophins: A crucial step for understanding the role and signaling of these proteins in the brain. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
The biophysical basis of receptor tyrosine kinase ligand functional selectivity: Trk-B case study. Biochem J 2021; 477:4515-4526. [PMID: 33094812 DOI: 10.1042/bcj20200671] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/08/2023]
Abstract
Tropomyosin receptor kinase B (Trk-B) belongs to the second largest family of membrane receptors, Receptor Tyrosine Kinases (RTKs). Trk-B is known to interact with three different neurotrophins: Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-4 (NT-4), and Neurotrophin-3 (NT-3). All three neurotrophins are involved in survival and proliferation of neuronal cells, but each induces distinct signaling through Trk-B. We hypothesize that the different biological effects correlate with differences in the interactions between the Trk-B receptors, when bound to different ligands, in the plasma membrane. To test this hypothesis, we use quantitative FRET to characterize Trk-B dimerization in response to NT-3 and NT-4 in live cells, and compare it to the previously published data for Trk-B in the absence and presence of BDNF. Our study reveals that the distinct Trk-B signaling outcomes are underpinned by both different configurations and different stabilities of the three ligand-bound Trk-B dimers in the plasma membrane.
Collapse
|
24
|
Ceci FM, Ferraguti G, Petrella C, Greco A, Ralli M, Iannitelli A, Carito V, Tirassa P, Chaldakov GN, Messina MP, Ceccanti M, Fiore M. Nerve Growth Factor in Alcohol Use Disorders. Curr Neuropharmacol 2020; 19:45-60. [PMID: 32348226 PMCID: PMC7903493 DOI: 10.2174/1570159x18666200429003239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/19/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
The nerve growth factor (NGF) belongs to the family of neurotrophic factors. Initially discovered as a signaling molecule involved in the survival, protection, differentiation, and proliferation of sympathetic and peripheral sensory neurons, it also participates in the regulation of the immune system and endocrine system. NGF biological activity is due to the binding of two classes of receptors: the tropomyosin-related kinase A (TrkA) and the low-affinity NGF pan-neurotrophin receptor p75. Alcohol Use Disorders (AUD) are one of the most frequent mental disorders in developed countries, characterized by heavy drinking, despite the negative effects of alcohol on brain development and cognitive functions that cause individual’s work, medical, legal, educational, and social life problems. In addition, alcohol consumption during pregnancy disrupts the development of the fetal brain causing a wide range of neurobehavioral outcomes collectively known as fetal alcohol spectrum disorders (FASD). The rationale of this review is to describe crucial findings on the role of NGF in humans and animals, when exposed to prenatal, chronic alcohol consumption, and on binge drinking.
Collapse
Affiliation(s)
- Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University Hospital of Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University Hospital of Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University Hospital of Rome, Italy
| | - Angela Iannitelli
- Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, Italy
| | - Valentina Carito
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| | - George N Chaldakov
- Department of Anatomy and Cell Biology, Medical University, Varna, Bulgaria
| | | | - Mauro Ceccanti
- Centro Riferimento Alcologico Regione Lazio, Sapienza University of Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, Section of Neurobiology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
25
|
Fan CH, Lin CW, Huang HJ, Lee-Chen GJ, Sun YC, Lin W, Chen CM, Chang KH, Su MT, Hsieh-Li HM. LMDS-1, a potential TrkB receptor agonist provides a safe and neurotrophic effect for early-phase Alzheimer's disease. Psychopharmacology (Berl) 2020; 237:3173-3190. [PMID: 32748031 DOI: 10.1007/s00213-020-05602-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE The signaling pathways of tropomyosin-related kinase B (TrkB) receptor play a pivotal role in axonal sprouting, proliferation of dendritic arbor, synaptic plasticity, and neuronal differentiation. The levels of BDNF and TrkB receptor were reduced in patients with Alzheimer's disease (AD). OBJECTIVES The activation of TrkB signaling pathways is a potential strategy for AD therapies. We intended to identify potential TrkB agonists to activate the neuroprotective signaling to alleviate the pathological features of AD mice. RESULTS Both of the Aβ-deteriorated hippocampal primary neurons and mouse models were generated and showed AD characteristics. We first investigated 12 potential TrkB agonists with primary hippocampal neurons of mice. Both 7,8-DHF and LMDS-1 were identified to have better effect than the other compounds on dendritic arborization of the neurons and were further applied to the Aβ-injected mouse model. The short-term cognitive behavior and pathology in the mice were improved by LMDS-1. Further investigation indicated that LMDS-1 activated the TrkB through phosphorylation at Y516 rather than Y816. In addition, the ERK but not CaMKII or Akt was activated in the mouse hippocampus with LMDS-1 administration. LMDS-1 treatment also upregulated CREB and BDNF while downregulated the GSK3β active form and tau phosphorylation. CONCLUSIONS This study suggests that LMDS-1 upregulates the expression of BDNF and ameliorates the early-phase phenotypes of the AD-like mice through the pTrkB (Y516)-ERK-CREB pathway. In addition, LMDS-1 has better effect than 7,8-DHF in ameliorating the behavioral and pathological features of AD-like mice.
Collapse
Affiliation(s)
- Chia-Hao Fan
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Chia-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, 11260, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33305, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33305, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| |
Collapse
|
26
|
Wang S, Yao H, Xu Y, Hao R, Zhang W, Liu H, Huang Y, Guo W, Lu B. Therapeutic potential of a TrkB agonistic antibody for Alzheimer's disease. Theranostics 2020; 10:6854-6874. [PMID: 32550908 PMCID: PMC7295064 DOI: 10.7150/thno.44165] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
Repeated failures of "Aβ-lowering" therapies call for new targets and therapeutic approaches for Alzheimer's disease (AD). We propose to treat AD by halting neuronal death and repairing synapses using a BDNF-based therapy. To overcome the poor druggability of BDNF, we have developed an agonistic antibody AS86 to mimic the function of BDNF, and evaluate its therapeutic potential for AD. Method: Biochemical, electrophysiological and behavioral techniques were used to investigate the effects of AS86 in vitro and in vivo. Results: AS86 specifically activated the BDNF receptor TrkB and its downstream signaling, without affecting its other receptor p75NTR. It promoted neurite outgrowth, enhanced spine growth and prevented Aβ-induced cell death in cultured neurons, and facilitated Long-Term Potentiation (LTP) in hippocampal slices. A single-dose tail-vein injection of AS86 activated TrkB signaling in the brain, with a half-life of 6 days in the blood and brain. Bi-weekly peripheral administration of AS86 rescued the deficits in object-recognition memory in the APP/PS1 mouse model. AS86 also reversed spatial memory deficits in the 11-month, but not 14-month old AD mouse model. Conclusion: These results demonstrate the potential of AS86 in AD therapy, suggesting that neuronal and/or synaptic repair as an alternative therapeutic strategy for AD.
Collapse
Affiliation(s)
- Shudan Wang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, 100070
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Hongyang Yao
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
| | - Yihua Xu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Rui Hao
- Center of Translational Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China, 200065
| | - Wen Zhang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
| | - Hang Liu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Ying Huang
- Center of Translational Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China, 200065
| | - Wei Guo
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, 100070
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, 100070
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| |
Collapse
|
27
|
Triaca V, Fico E, Sposato V, Caioli S, Ciotti MT, Zona C, Mercanti D, La Mendola D, Satriano C, Rizzarelli E, Tirassa P, Calissano P. hNGF Peptides Elicit the NGF-TrkA Signalling Pathway in Cholinergic Neurons and Retain Full Neurotrophic Activity in the DRG Assay. Biomolecules 2020; 10:biom10020216. [PMID: 32024191 PMCID: PMC7072391 DOI: 10.3390/biom10020216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/18/2022] Open
Abstract
In the last decade, Nerve Growth Factor (NGF)-based clinical approaches have lacked specific and efficient Tyrosine Kinase A (TrkA) agonists for brain delivery. Nowadays, the characterization of novel small peptidomimetic is taking centre stage in preclinical studies, in order to overcome the main size-related limitation in brain delivery of NGF holoprotein for Central Nervous System (CNS) pathologies. Here we investigated the NGF mimetic properties of the human NGF 1–14 sequence (hNGF1–14) and its derivatives, by resorting to primary cholinergic and dorsal root ganglia (DRG) neurons. Briefly, we observed that: 1) hNGF1–14 peptides engage the NGF pathway through TrkA phosphorylation at tyrosine 490 (Y490), and activation of ShcC/PI3K and Plc-γ/MAPK signalling, promoting AKT-dependent survival and CREB-driven neuronal activity, as seen by levels of the immediate early gene c-Fos, of the cholinergic marker Choline Acetyltransferase (ChAT), and of Brain Derived Neurotrophic Factor (BDNF); 2) their NGF mimetic activity is lost upon selective TrkA inhibition by means of GW441756; 3) hNGF1–14 peptides are able to sustain DRG survival and differentiation in absence of NGF. Furthermore, the acetylated derivative Ac-hNGF1–14 demonstrated an optimal NGF mimetic activity in both neuronal paradigms and an electrophysiological profile similar to NGF in cholinergic neurons. Cumulatively, the findings here reported pinpoint the hNGF1–14 peptide, and in particular its acetylated derivative, as novel, specific and low molecular weight TrkA specific agonists in both CNS and PNS primary neurons.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), International Campus A. Buzzati Traverso, Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
- Correspondence: ; Tel.: +39-06-90091357
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Valentina Sposato
- European Brain Research Institute (EBRI Foundation), Viale Regina Elena 295, 00161 Rome, Italy; (V.S.); (P.C.)
| | - Silvia Caioli
- IRCCS S. Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (S.C.); (C.Z.)
| | - Maria Teresa Ciotti
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Cristina Zona
- IRCCS S. Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (S.C.); (C.Z.)
- Department of Systems Medicine, University of Rome “TorVergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Delio Mercanti
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.S.); (E.R.)
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.S.); (E.R.)
- Institute of Crystallography, National Research Council (CNR-IC), Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Pietro Calissano
- European Brain Research Institute (EBRI Foundation), Viale Regina Elena 295, 00161 Rome, Italy; (V.S.); (P.C.)
| |
Collapse
|
28
|
Nafian F, Rasaee MJ, Yazdani S, Daftarian N, Soheili ZS, Kamali Doust Azad B. Peptide selected by phage display increases survival of SH-SY5Y neurons comparable to brain-derived neurotrophic factor. J Cell Biochem 2019; 120:7612-7622. [PMID: 30387183 DOI: 10.1002/jcb.28036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a well-known neuroprotectant and a potent therapeutic candidate for neurodegenerative diseases. However, there are several clinical concerns about its therapeutic applications. In the current study, we designed and developed BDNF-mimicking small peptides as an alternative to circumvent these problems. A phage-displayed peptide library was screened using BDNF receptor (neurotrophic tyrosine kinase receptor type2 [NTRK2]) and evaluated by ELISA. The peptide sequences showed similarity to loop2 of BDNF, they were recognized as discontinuous epitopes though. Interestingly, in silico molecular docking showed strong interactions between the peptide three-dimensional models and the surface residues of the NTRK2 protein at the IgC2 domain. A consensus peptide sequence was then synthesized to generate a mimetic construct (named as RNYK). The affinity binding and function of this construct was confirmed by testing against the native structure of NTRK2 in SH-SY5Y cells in vitro using flow-cytometry and MTT assays, respectively. RNYK at 5 ng/mL prevented neuronal degeneration of all- trans-retinoic acid-treated SH-SY5Y with equal efficacy to or even better than BDNF at 50 ng/mL.
Collapse
Affiliation(s)
- Fatemeh Nafian
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahin Yazdani
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narsis Daftarian
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Babak Kamali Doust Azad
- Department of Electronics, School of Electrical and Computer Engineering, Tehran University, Tehran, Iran
| |
Collapse
|
29
|
Silva AR, Grosso C, Delerue-Matos C, Rocha JM. Comprehensive review on the interaction between natural compounds and brain receptors: Benefits and toxicity. Eur J Med Chem 2019; 174:87-115. [PMID: 31029947 DOI: 10.1016/j.ejmech.2019.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Given their therapeutic activity, natural products have been used in traditional medicines throughout the centuries. The growing interest of the scientific community in phytopharmaceuticals, and more recently in marine products, has resulted in a significant number of research efforts towards understanding their effect in the treatment of neurodegenerative diseases, such as Alzheimer's (AD), Parkinson (PD) and Huntington (HD). Several studies have shown that many of the primary and secondary metabolites of plants, marine organisms and others, have high affinities for various brain receptors and may play a crucial role in the treatment of diseases affecting the central nervous system (CNS) in mammalians. Actually, such compounds may act on the brain receptors either by agonism, antagonism, allosteric modulation or other type of activity aimed at enhancing a certain effect. The current manuscript comprehensively reviews the state of the art on the interactions between natural compounds and brain receptors. This information is of foremost importance when it is intended to investigate and develop cutting-edge drugs, more effective and with alternative mechanisms of action to the conventional drugs presently used for the treatment of neurodegenerative diseases. Thus, we reviewed the effect of 173 natural products on neurotransmitter receptors, diabetes related receptors, neurotrophic factor related receptors, immune system related receptors, oxidative stress related receptors, transcription factors regulating gene expression related receptors and blood-brain barrier receptors.
Collapse
Affiliation(s)
- Ana R Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology (DB), University of Minho (UM), Campus Gualtar, P-4710-057, Braga, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, P-4249-015, Porto, Portugal.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, P-4249-015, Porto, Portugal
| | - João M Rocha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology (DB), University of Minho (UM), Campus Gualtar, P-4710-057, Braga, Portugal; REQUIMTE/LAQV, Grupo de investigação de Química Orgânica Aplicada (QUINOA), Laboratório de polifenóis alimentares, Departamento de Química e Bioquímica (DQB), Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, s/n, P-4169-007, Porto, Portugal
| |
Collapse
|
30
|
Abdanipour A, Moradi F, Fakheri F, Ghorbanlou M, Nejatbakhsh R. The effect of lithium chloride on BDNF, NT3, and their receptor mRNA levels in the spinal contusion rat models. Neurol Res 2019; 41:577-583. [DOI: 10.1080/01616412.2019.1588507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alireza Abdanipour
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Fatemeh Moradi
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Farzaneh Fakheri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Young Researchers and Elite Club, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mehrdad Ghorbanlou
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Reza Nejatbakhsh
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| |
Collapse
|
31
|
Mishchenko TA, Mitroshina EV, Usenko AV, Voronova NV, Astrakhanova TA, Shirokova OM, Kastalskiy IA, Vedunova MV. Features of Neural Network Formation and Their Functions in Primary Hippocampal Cultures in the Context of Chronic TrkB Receptor System Influence. Front Physiol 2019; 9:1925. [PMID: 30687128 PMCID: PMC6335358 DOI: 10.3389/fphys.2018.01925] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
Discovering the mechanisms underlying homeostatic regulation in brain neural network formation and stability processes is one of the most urgent tasks in modern neuroscience. Brain-derived neurotrophic factor (BDNF) and the tropomyosin-related kinase B (TrkB) receptor system have long been considered the main regulators of neuronal survival and differentiation. The elucidation of methods for studying neural network activity makes investigating the complex mechanisms underlying neural network structure reorganization during development and detecting new mechanisms for neuronal activity remodeling possible. In this in vitro study, we investigated the effects of chronic BDNF (the main TrkB stimulator) and ANA-12 (a TrkB receptor system blocker) administration on the formation of neural-glial networks. The formation of spontaneous bioelectrical activity and functional neural structure depend on TrkB receptors, and blocking TrkB receptors inhibits full bioelectrical activity development. Cross-correlation analysis demonstrated the decisive role of TrkB in the formation and “strengths” of activity centers. Even though an appropriate ANA-12 concentration is non-toxic to nerve cells, numerous cells in culture medium containing this reagent do not exhibit metabolic activity and are not functionally involved in signal transmission processes. Electron microscopy studies revealed that chronically influencing the TrkB receptor system significantly alters synaptic and mitochondrial apparatus capture in cells, and functional analysis of mitochondrial activity confirmed these findings. Because knowledge of interactions between TrkB-mediated regulation and the mitochondrial state under normal conditions is rather limited, data on these relationships are particularly interesting and require further investigation. Thus, we assume that the molecular cascades mediated by TrkB actively participate in the formation of functionally complete brain neural networks.
Collapse
Affiliation(s)
- Tatiana A Mishchenko
- Department of Neurotechnology, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia.,Molecular and Cell Technologies Group, Central Scientific Research Laboratory, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Elena V Mitroshina
- Department of Neurotechnology, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia.,Molecular and Cell Technologies Group, Central Scientific Research Laboratory, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexandra V Usenko
- Department of Neurotechnology, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Natalia V Voronova
- Department of Neurotechnology, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Tatiana A Astrakhanova
- Department of Neurotechnology, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Olesya M Shirokova
- Molecular and Cell Technologies Group, Central Scientific Research Laboratory, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Innokentiy A Kastalskiy
- Department of Neurotechnology, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Maria V Vedunova
- Department of Neurotechnology, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
32
|
Won SY, Kim HM. Structural Basis for LAR-RPTP-Mediated Synaptogenesis. Mol Cells 2018; 41:622-630. [PMID: 30008201 PMCID: PMC6078854 DOI: 10.14348/molcells.2018.0202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/10/2018] [Accepted: 06/25/2018] [Indexed: 12/28/2022] Open
Abstract
Leukocyte common antigen-related protein tyrosine phosphatases (LAR-RPTPs) are cellular receptors of heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans that regulate neurite outgrowth and neuronal regeneration. LAR-RPTPs have also received particular attention as the major presynaptic hubs for synapse organization through selective binding to numerous postsynaptic adhesion partners. Recent structural studies on LAR-RPTP-mediated trans-synaptic adhesion complexes have provided significant insight into the molecular basis of their specific interactions, the key codes for their selective binding, as well as the higher-order clustering of LAR-RPTPs necessary for synaptogenic activity. In this review, we summarize the structures of LAR-RPTPs in complex with various postsynaptic adhesion partners and discuss the molecular mechanisms underlying LAR-RPTP-mediated synaptogenesis.
Collapse
Affiliation(s)
- Seoung Youn Won
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Ho Min Kim
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon 34141,
Korea
| |
Collapse
|
33
|
Haddad Y, Adam V, Heger Z. Trk Receptors and Neurotrophin Cross-Interactions: New Perspectives Toward Manipulating Therapeutic Side-Effects. Front Mol Neurosci 2017; 10:130. [PMID: 28515680 PMCID: PMC5414483 DOI: 10.3389/fnmol.2017.00130] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/18/2017] [Indexed: 12/02/2022] Open
Abstract
Some therapeutic side-effects result from simultaneous activation of homolog receptors by the same ligand. Tropomyosin receptor kinases (TrkA, TrkB and TrkC) play a major role in the development and biology of neurons through neurotrophin signaling. The wide range of cross-interactions between Trk receptors and neurotrophins vary in selectivity, affinity and function. In this study, we discuss new perspectives to the manipulation of side-effects via a better understanding of the cross-interactions at the molecular level, derived by computational methods. Available crystal structures of Trk receptors and neurotrophins are a valuable resource for exploitation via molecular mechanics (MM) and dynamics (MD). The study of the energetics and dynamics of neurotrophins or neurotrophic peptides interacting with Trk receptors will provide insight to structural regions that may be candidates for drug targeting and signaling pathway selection.
Collapse
Affiliation(s)
- Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia.,Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| | - Vojtěch Adam
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia.,Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia.,Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| |
Collapse
|
34
|
Foldi I, Anthoney N, Harrison N, Gangloff M, Verstak B, Nallasivan MP, AlAhmed S, Zhu B, Phizacklea M, Losada-Perez M, Moreira M, Gay NJ, Hidalgo A. Three-tier regulation of cell number plasticity by neurotrophins and Tolls in Drosophila. J Cell Biol 2017; 216:1421-1438. [PMID: 28373203 PMCID: PMC5412559 DOI: 10.1083/jcb.201607098] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/20/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
A three-tier mechanism involving distinct neurotrophin family ligand forms, different Toll receptors, and different adaptors regulates both cell survival and death. This rich mechanism confers cell number plasticity and could underlie structural plasticity in the nervous system and structural integrity, homeostasis, and regeneration in wider contexts. Cell number plasticity is coupled to circuitry in the nervous system, adjusting cell mass to functional requirements. In mammals, this is achieved by neurotrophin (NT) ligands, which promote cell survival via their Trk and p75NTR receptors and cell death via p75NTR and Sortilin. Drosophila NTs (DNTs) bind Toll receptors instead to promote neuronal survival, but whether they can also regulate cell death is unknown. In this study, we show that DNTs and Tolls can switch from promoting cell survival to death in the central nervous system (CNS) via a three-tier mechanism. First, DNT cleavage patterns result in alternative signaling outcomes. Second, different Tolls can preferentially promote cell survival or death. Third, distinct adaptors downstream of Tolls can drive either apoptosis or cell survival. Toll-6 promotes cell survival via MyD88–NF-κB and cell death via Wek-Sarm-JNK. The distribution of adaptors changes in space and time and may segregate to distinct neural circuits. This novel mechanism for CNS cell plasticity may operate in wider contexts.
Collapse
Affiliation(s)
- Istvan Foldi
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Niki Anthoney
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Neale Harrison
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK
| | - Brett Verstak
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK
| | | | - Samaher AlAhmed
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Bangfu Zhu
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Mark Phizacklea
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Maria Losada-Perez
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Marta Moreira
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Nicholas J Gay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK
| | - Alicia Hidalgo
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| |
Collapse
|
35
|
Traub S, Stahl H, Rosenbrock H, Simon E, Florin L, Hospach L, Hörer S, Heilker R. Pharmaceutical Characterization of Tropomyosin Receptor Kinase B-Agonistic Antibodies on Human Induced Pluripotent Stem (hiPS) Cell–Derived Neurons. J Pharmacol Exp Ther 2017; 361:355-365. [DOI: 10.1124/jpet.117.240184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/23/2017] [Indexed: 01/28/2023] Open
|
36
|
Haddad Y, Heger Z, Adam V. Targeting Neuroblastoma Cell Surface Proteins: Recommendations for Homology Modeling of hNET, ALK, and TrkB. Front Mol Neurosci 2017; 10:7. [PMID: 28163672 PMCID: PMC5247432 DOI: 10.3389/fnmol.2017.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/06/2017] [Indexed: 11/13/2022] Open
Abstract
Targeted therapy is a promising approach for treatment of neuroblastoma as evident from the large number of targeting agents employed in clinical practice today. In the absence of known crystal structures, researchers rely on homology modeling to construct template-based theoretical structures for drug design and testing. Here, we discuss three candidate cell surface proteins that are suitable for homology modeling: human norepinephrine transporter (hNET), anaplastic lymphoma kinase (ALK), and neurotrophic tyrosine kinase receptor 2 (NTRK2 or TrkB). When choosing templates, both sequence identity and structure quality are important for homology modeling and pose the first of many challenges in the modeling process. Homology modeling of hNET can be improved using template models of dopamine and serotonin transporters instead of the leucine transporter (LeuT). The extracellular domains of ALK and TrkB are yet to be exploited by homology modeling. There are several idiosyncrasies that require direct attention throughout the process of model construction, evaluation and refinement. Shifts/gaps in the alignment between the template and target, backbone outliers and side-chain rotamer outliers are among the main sources of physical errors in the structures. Low-conserved regions can be refined with loop modeling method. Residue hydrophobicity, accessibility to bound metals or glycosylation can aid in model refinement. We recommend resolving these idiosyncrasies as part of "good modeling practice" to obtain highest quality model. Decreasing physical errors in protein structures plays major role in the development of targeting agents and understanding of chemical interactions at the molecular level.
Collapse
Affiliation(s)
- Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia; Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| | - Zbyněk Heger
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia; Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czechia; Central European Institute of Technology, Brno University of TechnologyBrno, Czechia
| |
Collapse
|
37
|
Zinc Interactions With Brain-Derived Neurotrophic Factor and Related Peptide Fragments. VITAMINS AND HORMONES 2017; 104:29-56. [DOI: 10.1016/bs.vh.2016.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Abstract
Neurotrophins, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), bind to their high-affinity receptors to promote neuronal survival during brain development. One of the key downstream pathways is the phospholipase C (PLC) pathway, which not only plays a central role in calcium release from internal store but also in activation of TRPC channels coupled with neurotrophin receptors. TRPC channels are required for the neurotrophin-mediated neuronal protective effects. In addition, activation of TRPC channels is able to protect neurons in the absence of neurotrophin. In some circumstances, TRPC channels coupled with metabotropic glutamate receptor may mediate the excitotoxicity by calcium overload. One of the key questions in the field is the channel gating mechanisms; understanding of which would help design compounds to modulate the channel properties. The development and identification of TRPC channel agonists or blockers are promising and may unveil new therapeutic drugs for the treatment of neurodegenerative diseases and epilepsy.
Collapse
|
39
|
Releasing Mechanism of Neurotrophic Factors via Polysialic Acid. VITAMINS AND HORMONES 2017; 104:89-112. [DOI: 10.1016/bs.vh.2016.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Paoletti F, de Chiara C, Kelly G, Covaceuszach S, Malerba F, Yan R, Lamba D, Cattaneo A, Pastore A. Conformational Rigidity within Plasticity Promotes Differential Target Recognition of Nerve Growth Factor. Front Mol Biosci 2016; 3:83. [PMID: 28083536 PMCID: PMC5183593 DOI: 10.3389/fmolb.2016.00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/02/2016] [Indexed: 12/23/2022] Open
Abstract
Nerve Growth Factor (NGF), the prototype of the neurotrophin family, is essential for maintenance and growth of different neuronal populations. The X-ray crystal structure of NGF has been known since the early '90s and shows a β-sandwich fold with extensive loops that are involved in the interaction with its binding partners. Understanding the dynamical properties of these loops is thus important for molecular recognition. We present here a combined solution NMR/molecular dynamics study which addresses the question of whether and how much the long loops of NGF are flexible and describes the N-terminal intrinsic conformational tendency of the unbound NGF molecule. NMR titration experiments allowed identification of a previously undetected epitope of the anti-NGF antagonist antibody αD11 which will be of crucial importance for future drug lead discovery. The present study thus recapitulates all the available structural information and unveils the conformational versatility of the relatively rigid NGF loops upon functional ligand binding.
Collapse
Affiliation(s)
- Francesca Paoletti
- Neurotrophic Factors and Neurodegenerative Diseases Unit, European Brain Research, Rita Levi-Montalcini FoundationRome, Italy; Scuola Normale SuperiorePisa, Italy
| | | | - Geoff Kelly
- Medical Research Council (MRC) Biomedical NMR Centre, The Francis Crick Institute London, UK
| | - Sonia Covaceuszach
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Sede Secondaria di Basovizza Trieste, Italy
| | - Francesca Malerba
- Neurotrophic Factors and Neurodegenerative Diseases Unit, European Brain Research, Rita Levi-Montalcini FoundationRome, Italy; Scuola Normale SuperiorePisa, Italy
| | - Robert Yan
- Maurice Wohl Institute, Department of Basic and Clinical Neuroscience, King's College London London, UK
| | - Doriano Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Sede Secondaria di Basovizza Trieste, Italy
| | - Antonino Cattaneo
- Neurotrophic Factors and Neurodegenerative Diseases Unit, European Brain Research, Rita Levi-Montalcini FoundationRome, Italy; Scuola Normale SuperiorePisa, Italy
| | - Annalisa Pastore
- Maurice Wohl Institute, Department of Basic and Clinical Neuroscience, King's College LondonLondon, UK; Molecular Medicine Department, University of PaviaPavia, Italy
| |
Collapse
|
41
|
Crystal Structures of Neurotrophin Receptors Kinase Domain. VITAMINS AND HORMONES 2016; 104:1-18. [PMID: 28215291 DOI: 10.1016/bs.vh.2016.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurotrophins and their receptors (Trk) play key roles in the development of the nervous system and in cell survival. Trk receptors are therefore attractive pharmacological targets for brain disorders as well as for cancers. While the druggability of the extracellular domain of the receptors, that specifically binds neurotrophins, is yet to be proven, the intracellular kinase domains are attractive targets for small-molecule binding. The recent crystal structures of the three isoforms of the Trk family, TrkA, TrkB, and TrkC have been described in their apo forms and in complex with potent and selective pan-Trk inhibitors. The description of the kinase domain of each of the isoforms will be discussed in their apo forms or bound to potent inhibitors of interest in cancer therapy. Nononcology indications and selectivity issues will also be discussed.
Collapse
|
42
|
Proenca CC, Song M, Lee FS. Differential effects of BDNF and neurotrophin 4 (NT4) on endocytic sorting of TrkB receptors. J Neurochem 2016; 138:397-406. [PMID: 27216821 DOI: 10.1111/jnc.13676] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 05/03/2016] [Accepted: 05/19/2016] [Indexed: 01/31/2023]
Abstract
Neurotrophins are a family of growth factors playing key roles in the survival, development, and function of neurons. The neurotrophins brain-derived neurotrophic factor (BDNF) and NT4 both bind to and activate TrkB receptors, however, they mediate distinct neuronal functions. The molecular mechanism of how TrkB activation by BDNF and NT4 leads to diverse outcomes is unknown. Here, we report that BDNF and NT4 lead to differential endocytic sorting of TrkB receptors resulting in diverse biological functions in cultured cortical neurons. Fluorescent microscopy and surface biotinylation experiments showed that both neurotrophins stimulate internalization of TrkB with similar kinetics. Exposure to BDNF for 2-3 h reduced the surface pool of TrkB receptors to half, whereas a longer treatment (4-5 h) with NT4 was necessary to achieve a similar level of down-regulation. Although BDNF and NT4 induced TrkB phosphorylation with similar intensities, BDNF induced more rapid ubiquitination and degradation of TrkB than NT4. Interestingly, TrkB receptor ubiquitination by these ligands have substantially different pH sensitivities, resulting in varying degrees of receptor ubiquitination at lower pH levels. Consequently, NT4 was capable of maintaining longer sustained downstream signaling activation that correlated with reduced TrkB ubiquitination at endosomal pH. Thus, by leading to altered endocytic trafficking itineraries for TrkB receptors, BDNF and NT4 elicit differential TrkB signaling in terms of duration, intensity, and specificity, which may contribute to their functional differences in vivo. The neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4), both bind to and activate TrkB receptors, however, they mediate distinct neuronal functions. Here, we propose that BDNF and NT4 lead to differential endocytic sorting of TrkB receptors resulting in diverse biological functions. BDNF induces more rapid ubiquitination and degradation of TrkB than NT4. Consequently, NT4 is capable of maintaining more sustained signaling downstream of TrkB receptors.
Collapse
Affiliation(s)
- Catia C Proenca
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Minseok Song
- Synaptic Circuit Plasticity Laboratory, Department of Structure & Function of Neural Network, Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, Korea
| | - Francis S Lee
- Department of Psychiatry, Weill Medical College of Cornell University, New York City, New York, USA.,Department of Pharmacology, Weill Medical College of Cornell University, New York City, New York, USA
| |
Collapse
|
43
|
Burns ML, Malott TM, Metcalf KJ, Puguh A, Chan JR, Shusta EV. Pro-region engineering for improved yeast display and secretion of brain derived neurotrophic factor. Biotechnol J 2015; 11:425-36. [PMID: 26580314 DOI: 10.1002/biot.201500360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/21/2015] [Accepted: 10/19/2015] [Indexed: 11/11/2022]
Abstract
Brain derived neurotrophic factor (BDNF) is a promising therapeutic candidate for a variety of neurological diseases. However, it is difficult to produce as a recombinant protein. In its native mammalian context, BDNF is first produced as a pro-protein with subsequent proteolytic removal of the pro-region to yield mature BDNF protein. Therefore, in an attempt to improve yeast as a host for heterologous BDNF production, the BDNF pro-region was first evaluated for its effects on BDNF surface display and secretion. Addition of the wild-type pro-region to yeast BDNF production constructs improved BDNF folding both as a surface-displayed and secreted protein in terms of binding its natural receptors TrkB and p75, but titers remained low. Looking to further enhance the chaperone-like functions provided by the pro-region, two rounds of directed evolution were performed, yielding mutated pro-regions that further improved the display and secretion properties of BDNF. Subsequent optimization of the protease recognition site was used to control whether the produced protein was in pro- or mature BDNF forms. Taken together, we have demonstrated an effective strategy for improving BDNF compatibility with yeast protein engineering and secretion platforms.
Collapse
Affiliation(s)
- Michael L Burns
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thomas M Malott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin J Metcalf
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Arthya Puguh
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jonah R Chan
- Department of Neurology, Program in Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
44
|
Chakravarty D, Janin J, Robert CH, Chakrabarti P. Changes in protein structure at the interface accompanying complex formation. IUCRJ 2015; 2:643-52. [PMID: 26594372 PMCID: PMC4645109 DOI: 10.1107/s2052252515015250] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/16/2015] [Indexed: 06/05/2023]
Abstract
Protein interactions are essential in all biological processes. The changes brought about in the structure when a free component forms a complex with another molecule need to be characterized for a proper understanding of molecular recognition as well as for the successful implementation of docking algorithms. Here, unbound (U) and bound (B) forms of protein structures from the Protein-Protein Interaction Affinity Database are compared in order to enumerate the changes that occur at the interface atoms/residues in terms of the solvent-accessible surface area (ASA), secondary structure, temperature factors (B factors) and disorder-to-order transitions. It is found that the interface atoms optimize contacts with the atoms in the partner protein, which leads to an increase in their ASA in the bound interface in the majority (69%) of the proteins when compared with the unbound interface, and this is independent of the root-mean-square deviation between the U and B forms. Changes in secondary structure during the transition indicate a likely extension of helices and strands at the expense of turns and coils. A reduction in flexibility during complex formation is reflected in the decrease in B factors of the interface residues on going from the U form to the B form. There is, however, no distinction in flexibility between the interface and the surface in the monomeric structure, thereby highlighting the potential problem of using B factors for the prediction of binding sites in the unbound form for docking another protein. 16% of the proteins have missing (disordered) residues in the U form which are observed (ordered) in the B form, mostly with an irregular conformation; the data set also shows differences in the composition of interface and non-interface residues in the disordered polypeptide segments as well as differences in their surface burial.
Collapse
Affiliation(s)
- Devlina Chakravarty
- Department of Biochemistry, Bose Institute , P-1/12 CIT Scheme VIIM, Kolkata 700 054, India
| | - Joël Janin
- IBBMC, CNRS UMR 8619, Universite Paris-Sud 11 , Orsay, France
| | - Charles H Robert
- CNRS Laboratoire de Biochimie Theorique, Institut de Biologie Physico-Chimique (IBPC), Universite Paris Diderot, Sorbonne Paris Cité , 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute , P-1/12 CIT Scheme VIIM, Kolkata 700 054, India
| |
Collapse
|
45
|
Exploring the Molecular Interactions of 7,8-Dihydroxyflavone and Its Derivatives with TrkB and VEGFR2 Proteins. Int J Mol Sci 2015; 16:21087-108. [PMID: 26404256 PMCID: PMC4613243 DOI: 10.3390/ijms160921087] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/21/2015] [Accepted: 08/26/2015] [Indexed: 11/16/2022] Open
Abstract
7,8-dihydroxyflavone (7,8-DHF) is a TrkB receptor agonist, and treatment with this flavonoid derivative brings about an enhanced TrkB phosphorylation and promotes downstream cellular signalling. Flavonoids are also known to exert an inhibitory effect on the vascular endothelial growth factor receptor (VEGFR) family of tyrosine kinase receptors. VEGFR2 is one of the important receptors involved in the regulation of vasculogenesis and angiogenesis and has also been implicated to exhibit various neuroprotective roles. Its upregulation and uncontrolled activity is associated with a range of pathological conditions such as age-related macular degeneration and various proliferative disorders. In this study, we investigated molecular interactions of 7,8-DHF and its derivatives with both the TrkB receptor as well as VEGFR2. Using a combination of molecular docking and computational mapping tools involving molecular dynamics approaches we have elucidated additional residues and binding energies involved in 7,8-DHF interactions with the TrkB Ig2 domain and VEGFR2. Our investigations have revealed for the first time that 7,8-DHF has dual biochemical action and its treatment may have divergent effects on the TrkB via its extracellular Ig2 domain and on the VEGFR2 receptor through the intracellular kinase domain. Contrary to its agonistic effects on the TrkB receptor, 7,8-DHF was found to downregulate VEGFR2 phosphorylation both in 661W photoreceptor cells and in retinal tissue.
Collapse
|
46
|
Travaglia A, Pietropaolo A, Di Martino R, Nicoletti VG, La Mendola D, Calissano P, Rizzarelli E. A small linear peptide encompassing the NGF N-terminus partly mimics the biological activities of the entire neurotrophin in PC12 cells. ACS Chem Neurosci 2015; 6:1379-92. [PMID: 25939060 DOI: 10.1021/acschemneuro.5b00069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ever since the discovery of its neurite growth promoting activity in sympathetic and sensory ganglia, nerve growth factor (NGF) became the prototype of the large family of neurotrophins. The use of primary cultures and clonal cell lines has revealed several distinct actions of NGF and other neurotrophins. Among several models of NGF activity, the clonal cell line PC12 is the most widely employed. Thus, in the presence of NGF, through the activation of the transmembrane protein TrkA, these cells undergo a progressive mitotic arrest and start to grow electrically excitable neuritis. A vast number of studies opened intriguing aspects of NGF mechanisms of action, its biological properties, and potential use as therapeutic agents. In this context, identifying and utilizing small portions of NGF is of great interest and involves several human diseases including Alzheimer's disease. Here we report the specific action of the peptide encompassing the 1-14 sequence of the human NGF (NGF(1-14)), identified on the basis of scattered indications present in literature. The biological activity of NGF(1-14) was tested on PC12 cells, and its binding with TrkA was predicted by means of a computational approach. NGF(1-14) does not elicit the neurite outgrowth promoting activity, typical of the whole protein, and it only has a moderate action on PC12 proliferation. However, this peptide exerts, in a dose and time dependent fashion, an effective and specific NGF-like action on some highly conserved and biologically crucial intermediates of its intracellular targets such as Akt and CREB. These findings indicate that not all TrkA pathways must be at all times operative, and open the possibility of testing each of them in relation with specific NGF needs, biological actions, and potential therapeutic use.
Collapse
Affiliation(s)
- Alessio Travaglia
- Center for Neural Science, New York University, 4 Washington Place, New York, New York 10003, United States
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rossana Di Martino
- Istituto di Bioimmagini e Fisiologia Molecolare (IBFM)-CNR, C.da Pietrapollastra-Pisciotto, Cefalù, Palermo 90015, Italy
| | - Vincenzo G. Nicoletti
- Dipartimento di Scienze Biomediche e Biotecnologiche - Sezione di Biochimica Medica, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB) − Sezione Biomolecole, Consorzio Interuniversitario, Viale Medaglie d’Oro 305, 00136 Roma, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano, 64-65, 00143 Rome, Italy
| | | |
Collapse
|
47
|
Scior T, Paiz-Candia B, Islas ÁA, Sánchez-Solano A, Millan-Perez Peña L, Mancilla-Simbro C, Salinas-Stefanon EM. Predicting a double mutant in the twilight zone of low homology modeling for the skeletal muscle voltage-gated sodium channel subunit beta-1 (Nav1.4 β1). Comput Struct Biotechnol J 2015; 13:229-40. [PMID: 25904995 PMCID: PMC4402383 DOI: 10.1016/j.csbj.2015.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/18/2015] [Accepted: 03/21/2015] [Indexed: 12/18/2022] Open
Abstract
The molecular structure modeling of the β1 subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4) was carried out in the twilight zone of very low homology. Structural significance can per se be confounded with random sequence similarities. Hence, we combined (i) not automated computational modeling of weakly homologous 3D templates, some with interfaces to analogous structures to the pore-bearing Nav1.4 α subunit with (ii) site-directed mutagenesis (SDM), as well as (iii) electrophysiological experiments to study the structure and function of the β1 subunit. Despite the distant phylogenic relationships, we found a 3D-template to identify two adjacent amino acids leading to the long-awaited loss of function (inactivation) of Nav1.4 channels. This mutant type (T109A, N110A, herein called TANA) was expressed and tested on cells of hamster ovary (CHO). The present electrophysiological results showed that the double alanine substitution TANA disrupted channel inactivation as if the β1 subunit would not be in complex with the α subunit. Exhaustive and unbiased sampling of “all β proteins” (Ig-like, Ig) resulted in a plethora of 3D templates which were compared to the target secondary structure prediction. The location of TANA was made possible thanks to another “all β protein” structure in complex with an irreversible bound protein as well as a reversible protein–protein interface (our “Rosetta Stone” effect). This finding coincides with our electrophysiological data (disrupted β1-like voltage dependence) and it is safe to utter that the Nav1.4 α/β1 interface is likely to be of reversible nature.
Collapse
Affiliation(s)
- Thomas Scior
- Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, Puebla, Mexico
| | - Bertin Paiz-Candia
- Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ángel A Islas
- Laboratorio de Biofísica, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alfredo Sánchez-Solano
- Laboratorio de Biofísica, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Claudia Mancilla-Simbro
- Laboratorio de Biofísica, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, Mexico
| | | |
Collapse
|
48
|
Frias B, Santos J, Morgado M, Sousa MM, Gray SMY, McCloskey KD, Allen S, Cruz F, Cruz CD. The role of brain-derived neurotrophic factor (BDNF) in the development of neurogenic detrusor overactivity (NDO). J Neurosci 2015; 35:2146-60. [PMID: 25653370 PMCID: PMC4315839 DOI: 10.1523/jneurosci.0373-14.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 11/21/2014] [Accepted: 11/27/2014] [Indexed: 12/24/2022] Open
Abstract
Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that, acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also important for NDO. This study aimed to clarify this issue. Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indicating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn. Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and may provide a significant contribution to create more efficient therapies to manage SCI patients.
Collapse
Affiliation(s)
- Bárbara Frias
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal, Translational NeuroUrology and
| | - João Santos
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| | - Marlene Morgado
- Nerve Regeneration Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Mónica Mendes Sousa
- Nerve Regeneration Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Susannah M Y Gray
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT7 1 NN Belfast, United Kingdom
| | - Karen D McCloskey
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT7 1 NN Belfast, United Kingdom
| | - Shelley Allen
- Molecular Neurobiology Unit, University of Bristol, School of Clinical Sciences, BS10 5NB Bristol, United Kingdom
| | - Francisco Cruz
- Translational NeuroUrology and Department of Urology, Hospital de S. João, 4200-319 Porto, Portugal, and
| | - Célia Duarte Cruz
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal, Translational NeuroUrology and
| |
Collapse
|
49
|
Pernigo S, Fukuzawa A, Pandini A, Holt M, Kleinjung J, Gautel M, Steiner RA. The Crystal Structure of the Human Titin:Obscurin Complex Reveals a Conserved yet Specific Muscle M-Band Zipper Module. J Mol Biol 2015; 427:718-736. [DOI: 10.1016/j.jmb.2014.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/15/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
|
50
|
Smith PA. BDNF: No gain without pain? Neuroscience 2014; 283:107-23. [DOI: 10.1016/j.neuroscience.2014.05.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 12/22/2022]
|