1
|
Kobayashi R, Ueno H, Okazaki KI, Noji H. Molecular mechanism on forcible ejection of ATPase inhibitory factor 1 from mitochondrial ATP synthase. Nat Commun 2023; 14:1682. [PMID: 37002198 PMCID: PMC10066207 DOI: 10.1038/s41467-023-37182-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/06/2023] [Indexed: 04/03/2023] Open
Abstract
IF1 is a natural inhibitor protein for mitochondrial FoF1 ATP synthase that blocks catalysis and rotation of the F1 by deeply inserting its N-terminal helices into F1. A unique feature of IF1 is condition-dependent inhibition; although IF1 inhibits ATP hydrolysis by F1, IF1 inhibition is relieved under ATP synthesis conditions. To elucidate this condition-dependent inhibition mechanism, we have performed single-molecule manipulation experiments on IF1-inhibited bovine mitochondrial F1 (bMF1). The results show that IF1-inhibited F1 is efficiently activated only when F1 is rotated in the clockwise (ATP synthesis) direction, but not in the counterclockwise direction. The observed rotational-direction-dependent activation explains the condition-dependent mechanism of IF1 inhibition. Investigation of mutant IF1 with N-terminal truncations shows that the interaction with the γ subunit at the N-terminal regions is crucial for rotational-direction-dependent ejection, and the middle long helix is responsible for the inhibition of F1.
Collapse
Affiliation(s)
- Ryohei Kobayashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi, 444-8585, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kei-Ichi Okazaki
- Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi, 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi, 444-8585, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
2
|
Quiroz RCN, Philot EA, General IJ, Perahia D, Scott AL. Effect of phosphorylation on the structural dynamics, thermal stability of human dopamine transporter: A simulation study using normal modes, molecular dynamics and Markov State Model. J Mol Graph Model 2023; 118:108359. [PMID: 36279761 DOI: 10.1016/j.jmgm.2022.108359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
The Human Dopamine Transporter (hDAT) plays an essential role in modulating the Influx/Efflux of dopamine, and it is involved in the mechanism of certain neurodegenerative diseases such as Parkinson's disease. Several studies have reported important states for Dopamine transport: outward-facing open state (OFo), the outward-facing closed state (OFc), the holo-occluded state closed (holo), and the inward-facing open state (IFo). Furthermore, experimental assays have shown that different phosphorylation conditions in hDAT can affect the rate of dopamine absorption. We present a protocol using hybrid simulation methods to study the conformational dynamics and stability of states of hDAT under different phosphorylation sites. With this protocol, we explored the conformational space of hDAT, identified the states, and evaluated the free energy differences and the transition probabilities between them in each of the phosphorylation cases. We also presented the conformational changes and correlated them with those described in the literature. There is a thesis/hypothesis that the phosphorylation condition corresponding to NP-333 system (where all sites Ser/Thr from residue 2 to 62 and 254 to 613 are phosphorylated, except residue 333) would decrease the rate of dopamine transport from the extracellular medium to the intracellular medium by hDAT as previously described in the literature by Lin et al., 2003. Our results corroborated this thesis/hypothesis and the data reported. It is probably due to the affectation/changes/alteration of the conformational dynamics of this system that makes the intermediate states more likely and makes it difficult to initial states associated with the uptake of dopamine in the extracellular medium, corroborating the experimental results. Furthermore, our results showed that just single phosphorylation/dephosphorylation could alter intrinsic protein motions affecting the sampling of one or more states necessary for dopamine transport. In this sense, the modification of phosphorylation influences protein movements and conformational preferences, affecting the stability of states and the transition between them and, therefore, the transport.
Collapse
Affiliation(s)
- R C N Quiroz
- Biossistemas, Universidade Federal do ABC, CCNH, Santo André, Brazil; Centro de Matemática, Computação e Cognição. Laboratório de Biofísica e Biologia Computacional. Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - E A Philot
- Centro de Matemática, Computação e Cognição. Laboratório de Biofísica e Biologia Computacional. Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - I J General
- School of Science and Technology, Universidad Nacional de San Martin, ICIFI and CONICET, 25 de Mayo y Francia, San Martín, 1650, Buenos Aires, Argentina
| | - D Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, UMR 8113, CNRS, 4 avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - A L Scott
- UFABC - Universidade Federal Do ABC, Centro de Matemática, Computação e Cognição, Laboratório de Biofísica e Biologia Computacional, Brazil.
| |
Collapse
|
3
|
Ebanks B, Katyal G, Lucassen M, Papetti C, Chakrabarti L. Proteomic analysis of the ATP synthase interactome in notothenioids highlights a pathway that inhibits ceruloplasmin production. Am J Physiol Regul Integr Comp Physiol 2022; 323:R181-R192. [PMID: 35639858 PMCID: PMC9291420 DOI: 10.1152/ajpregu.00069.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antarctic notothenioids have unique adaptations that allow them to thrive in sub-zero Antarctic waters. Within the suborder Notothenioidei, species of the family Channichthyidae (icefish) lack haemoglobin and in some instances myoglobin too. In studies of mitochondrial function of notothenioids, few have focussed specifically on ATP synthase. In this study, we find that the icefish Champsocephalus gunnari has a significantly higher level of ATP synthase subunit α expression than in red-blooded Notothenia rossii, but a much smaller interactome than the other species. We characterise the interactome of ATP synthase subunit a in two red-blooded species Trematomus bernacchii, N. rossii, and in the icefish Chionodraco rastrospinosus, and C. gunnari and find that in comparison with the other species, reactome enrichment for C. gunnari lacks chaperonin-mediated protein folding, and fewer oxidative-stress-associated proteins are present in the identified interactome of C. gunnari. Reactome enrichment analysis also identifies a transcript-specific translational silencing pathway for the iron oxidase protein ceruloplasmin, which has previously been reported in studies of icefish as distinct from other red-blooded fish and vertebrates in its activity and RNA transcript expression. Ceruloplasmin protein expression is detected by Western blot in the liver of T. bernacchii, but not in N. rossii, C. rastrospinosus, and C. gunnari. We suggest that the translation of ceruloplasmin transcripts is silenced by the identified pathway in icefish notothenioids, which is indicative of altered iron metabolism and Fe(II) detoxification.
Collapse
Affiliation(s)
- Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Gunjan Katyal
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | | | | | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, United Kingdom
| |
Collapse
|
4
|
Farnsworth KD. How an information perspective helps overcome the challenge of biology to physics. Biosystems 2022; 217:104683. [PMID: 35460797 DOI: 10.1016/j.biosystems.2022.104683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Living systems have long been a puzzle to physics, leading some to claim that new laws of physics are needed to explain them. Separating physical reality into the general (laws) and the particular (location of particles in space and time), it is possible to see that the combination of these amounts to efficient causation, whereby forces are constrained by patterns that constitute embodied information which acts as formal cause. Embodied information can only be produced by correlation with existing patterns, but sets of patterns can be arranged to form reflexive relations in which constraints on force are themselves formed by the pattern that results from action of those same constrained forces. This inevitably produces a higher level of pattern which reflexively reinforces itself. From this, multi-level hierarchies and downward causation by information are seen to be patterns of patterns that constrain forces. Such patterns, when causally cyclical, are closed to efficient causation. But to be autonomous, a system must also have its formative information accumulated by repeated cycles of selection until sufficient is obtained to represent the information content of the whole (which is the essential purpose of information oligomers such as DNA). Living systems are the result of that process and therefore cannot exist unless they are both closed to efficient causation and capable of embodying an independent supply of information sufficient to constitute their causal structure. Understanding this is not beyond the scope of standard physics, but it does recognise the far greater importance of information accumulation in living than in non-living systems and, as a corollary, emphasises the dependence of biological systems on the whole history of life, leading up to the present state of any and all organisms.
Collapse
Affiliation(s)
- Keith D Farnsworth
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT95DL, UK.
| |
Collapse
|
5
|
Deng J, Cui Q. Electronic Polarization Is Essential for the Stabilization and Dynamics of Buried Ion Pairs in Staphylococcal Nuclease Mutants. J Am Chem Soc 2022; 144:4594-4610. [PMID: 35239338 PMCID: PMC9616648 DOI: 10.1021/jacs.2c00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Buried charged residues play important roles in the modulation of protein stabilities and conformational dynamics and make crucial contributions to protein functions. Considering the generally nonpolar nature of protein interior, a key question concerns the contribution of electronic polarization to the stabilization and properties of buried charges. We answer this question by conducting free energy simulations using the latest polarizable CHARMM force field based on Drude oscillators for a series of Staphylococcal nuclease mutants that involve a buried Glu-Lys pair in different titration states and orientations. While a nonpolarizable model suggests that the ionized form of the buried Glu-Lys pair is more than 40 kcal/mol less stable than the charge-neutral form, the two titration states are comparable in stability when electronic polarization is included explicitly, a result better reconcilable with available experimental data. Analysis of free energy components suggests that additional stabilization of the ionized Glu-Lys pair has contributions from both the enhanced salt-bridge strength and stronger interaction between the ion-pair and surrounding protein residues and penetrated water. Despite the stronger direct interaction between Glu and Lys, the ion-pair exhibits considerably larger and faster structural fluctuations when polarization is included, due to compensation of interactions in the cavity. Collectively, observations from this work provide compelling evidence that electronic polarization is essential to the stability, hydration, dynamics, and therefore function of buried charges in proteins. Therefore, our study advocates for the explicit consideration of electronic polarization for mechanistic and engineering studies that implicate buried charged residues, such as enzymes and ion transporters.
Collapse
Affiliation(s)
- Jiahua Deng
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.,Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.,Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
6
|
Katyal G, Ebanks B, Lucassen M, Papetti C, Chakrabarti L. Sequence and structure comparison of ATP synthase F0 subunits 6 and 8 in notothenioid fish. PLoS One 2021; 16:e0245822. [PMID: 34613983 PMCID: PMC8494342 DOI: 10.1371/journal.pone.0245822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial changes such as tight coupling of the mitochondria have facilitated sustained oxygen and respiratory activity in haemoglobin-less icefish of the Channichthyidae family. We aimed to characterise features in the sequence and structure of the proteins directly involved in proton transport, which have potential physiological implications. ATP synthase subunit a (ATP6) and subunit 8 (ATP8) are proteins that function as part of the F0 component (proton pump) of the F0F1complex. Both proteins are encoded by the mitochondrial genome and involved in oxidative phosphorylation. To explore mitochondrial sequence variation for ATP6 and ATP8 we analysed sequences from C. gunnari and C. rastrospinosus and compared them with their closely related red-blooded species and eight other vertebrate species. Our comparison of the amino acid sequence of these proteins reveals important differences that could underlie aspects of the unique physiology of the icefish. In this study we find that changes in the sequence of subunit a of the icefish C. gunnari at position 35 where there is a hydrophobic alanine which is not seen in the other notothenioids we analysed. An amino acid change of this type is significant since it may have a structural impact. The biology of the haemoglobin-less icefish is necessarily unique and any insights about these animals will help to generate a better overall understanding of important physiological pathways.
Collapse
Affiliation(s)
- Gunjan Katyal
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | | | | | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham, United Kingdom
| |
Collapse
|
7
|
Subramanian S, Gorday K, Marcus K, Orellana MR, Ren P, Luo XR, O'Donnell ME, Kuriyan J. Allosteric communication in DNA polymerase clamp loaders relies on a critical hydrogen-bonded junction. eLife 2021; 10:e66181. [PMID: 33847559 PMCID: PMC8121543 DOI: 10.7554/elife.66181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023] Open
Abstract
Clamp loaders are AAA+ ATPases that load sliding clamps onto DNA. We mapped the mutational sensitivity of the T4 bacteriophage sliding clamp and clamp loader by deep mutagenesis, and found that residues not involved in catalysis or binding display remarkable tolerance to mutation. An exception is a glutamine residue in the AAA+ module (Gln 118) that is not located at a catalytic or interfacial site. Gln 118 forms a hydrogen-bonded junction in a helical unit that we term the central coupler, because it connects the catalytic centers to DNA and the sliding clamp. A suppressor mutation indicates that hydrogen bonding in the junction is important, and molecular dynamics simulations reveal that it maintains rigidity in the central coupler. The glutamine-mediated junction is preserved in diverse AAA+ ATPases, suggesting that a connected network of hydrogen bonds that links ATP molecules is an essential aspect of allosteric communication in these proteins.
Collapse
Affiliation(s)
- Subu Subramanian
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Kent Gorday
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
| | - Kendra Marcus
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Matthew R Orellana
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Peter Ren
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Xiao Ran Luo
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
8
|
Woo J, Cho H, Seol Y, Kim SH, Park C, Yousefian-Jazi A, Hyeon SJ, Lee J, Ryu H. Power Failure of Mitochondria and Oxidative Stress in Neurodegeneration and Its Computational Models. Antioxidants (Basel) 2021; 10:229. [PMID: 33546471 PMCID: PMC7913624 DOI: 10.3390/antiox10020229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
The brain needs more energy than other organs in the body. Mitochondria are the generator of vital power in the living organism. Not only do mitochondria sense signals from the outside of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5'-triphosphate (ATP), the biochemical energy. It is known that impaired mitochondrial function and oxidative stress contribute or lead to neuronal damage and degeneration of the brain. This mini-review focuses on addressing how mitochondrial dysfunction and oxidative stress are associated with the pathogenesis of neurodegenerative disorders including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease. In addition, we discuss state-of-the-art computational models of mitochondrial functions in relation to oxidative stress and neurodegeneration. Together, a better understanding of brain disease-specific mitochondrial dysfunction and oxidative stress can pave the way to developing antioxidant therapeutic strategies to ameliorate neuronal activity and prevent neurodegeneration.
Collapse
Affiliation(s)
- JunHyuk Woo
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
- Department of Physics and Astronomy and Center for Theoretical Physics, Seoul National University, Seoul 08826, Korea
| | - Hyesun Cho
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - YunHee Seol
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Soon Ho Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Chanhyeok Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Ali Yousefian-Jazi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA 02118, USA;
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.W.); (H.C.); (Y.S.); (S.H.K.); (C.P.); (A.Y.-J.); (S.J.H.)
- Department of Neurology, Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA 02118, USA;
| |
Collapse
|
9
|
|
10
|
Ebanks B, Ingram TL, Chakrabarti L. ATP synthase and Alzheimer's disease: putting a spin on the mitochondrial hypothesis. Aging (Albany NY) 2020; 12:16647-16662. [PMID: 32853175 PMCID: PMC7485717 DOI: 10.18632/aging.103867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
It is estimated that over 44 million people across the globe have dementia, and half of these cases are believed to be Alzheimer’s disease (AD). As the proportion of the global population which is over the age 60 increases so will the number of individuals living with AD. This will result in ever-increasing demands on healthcare systems and the economy. AD can be either sporadic or familial, but both present with similar pathobiology and symptoms. Three prominent theories about the cause of AD are the amyloid, tau and mitochondrial hypotheses. The mitochondrial hypothesis focuses on mitochondrial dysfunction in AD, however little attention has been given to the potential dysfunction of the mitochondrial ATP synthase in AD. ATP synthase is a proton pump which harnesses the chemical potential energy of the proton gradient across the inner mitochondrial membrane (IMM), generated by the electron transport chain (ETC), in order to produce the cellular energy currency ATP. This review presents the evidence accumulated so far that demonstrates dysfunction of ATP synthase in AD, before highlighting two potential pharmacological interventions which may modulate ATP synthase.
Collapse
Affiliation(s)
- Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Thomas L Ingram
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Chesterfield, UK
| |
Collapse
|
11
|
Okazaki KI, Nakamura A, Iino R. Chemical-State-Dependent Free Energy Profile from Single-Molecule Trajectories of Biomolecular Motors: Application to Processive Chitinase. J Phys Chem B 2020; 124:6475-6487. [DOI: 10.1021/acs.jpcb.0c02698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kei-ichi Okazaki
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan
| | - Akihiko Nakamura
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Ryota Iino
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8787, Japan
| |
Collapse
|
12
|
Emmanuel IA, Olotu FA, Agoni C, Soliman MES. Deciphering the 'Elixir of Life': Dynamic Perspectives into the Allosteric Modulation of Mitochondrial ATP Synthase by J147, a Novel Drug in the Treatment of Alzheimer's Disease. Chem Biodivers 2019; 16:e1900085. [PMID: 30990952 DOI: 10.1002/cbdv.201900085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022]
Abstract
The discovery of J147 represented a significant milestone in the treatment of age-related disorders, which was further augmented by the recent identification of mitochondrial ATP synthase as the therapeutic target. However, the underlying molecular events associated with the modulatory activity of J147 have remained unresolved till date. Herein, we present, for the first time, a dynamical approach to investigate the allosteric regulation of mATP synthase by J147, using a reliable human αγβ protein model. The highlight of our findings is the existence of the J147-bound protein in distinct structural associations at different MD simulation periods coupled with concurrent open↔close transitions of the β catalytic and α allosteric (ATP5A) sites as defined by Cα distances (d), TriCα (Θ) and dihedral (φ) angular parameters. Firstly, there was an initial pairing of the αγ subunits away from the β subunit followed by the formation of the 'non-catalytic' αβ pair at a distance from the γ subunit. Interestingly, J147-induced structural arrangements were accompanied by the systematic transition of the β catalytic site from a closed to an open state, while there was a concurrent transition of the allosteric site from an open αE conformation to a closed state. Consequentially, J147 reduced the structural activity of the whole αγβ complex, while the unbound system exhibited high atomistic deviations and structural flexibility. Furthermore, J147 exhibited favorable binding at the allosteric site of mATP synthase with considerable electrostatic energy contributions from Gln215, Gly217, Thr219, Asp312, Asp313, Glu371 and Arg406. These findings provide details on the possible effects of J147 on mitochondrial bioenergetics, which could facilitate the structure-based design of novel small-molecule modulators of mATP synthase in the management of Alzheimer's disease and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Iwuchukwu A Emmanuel
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
13
|
Thirumalai D, Hyeon C, Zhuravlev PI, Lorimer GH. Symmetry, Rigidity, and Allosteric Signaling: From Monomeric Proteins to Molecular Machines. Chem Rev 2019; 119:6788-6821. [DOI: 10.1021/acs.chemrev.8b00760] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Thirumalai
- Department of Chemistry, The University of Texas, Austin, Texas 78712, United States
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Pavel I. Zhuravlev
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - George H. Lorimer
- Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
14
|
Rouhani M, Khodabakhsh F, Norouzian D, Cohan RA, Valizadeh V. Molecular dynamics simulation for rational protein engineering: Present and future prospectus. J Mol Graph Model 2018; 84:43-53. [DOI: 10.1016/j.jmgm.2018.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022]
|
15
|
Sielaff H, Duncan TM, Börsch M. The regulatory subunit ε in Escherichia coli F OF 1-ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:775-788. [PMID: 29932911 DOI: 10.1016/j.bbabio.2018.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
Abstract
F-type ATP synthases are extraordinary multisubunit proteins that operate as nanomotors. The Escherichia coli (E. coli) enzyme uses the proton motive force (pmf) across the bacterial plasma membrane to drive rotation of the central rotor subunits within a stator subunit complex. Through this mechanical rotation, the rotor coordinates three nucleotide binding sites that sequentially catalyze the synthesis of ATP. Moreover, the enzyme can hydrolyze ATP to turn the rotor in the opposite direction and generate pmf. The direction of net catalysis, i.e. synthesis or hydrolysis of ATP, depends on the cell's bioenergetic conditions. Different control mechanisms have been found for ATP synthases in mitochondria, chloroplasts and bacteria. This review discusses the auto-inhibitory behavior of subunit ε found in FOF1-ATP synthases of many bacteria. We focus on E. coli FOF1-ATP synthase, with insights into the regulatory mechanism of subunit ε arising from structural and biochemical studies complemented by single-molecule microscopy experiments.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
16
|
A γ-subunit point mutation in Chlamydomonas reinhardtii chloroplast F1Fo-ATP synthase confers tolerance to reactive oxygen species. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:966-974. [DOI: 10.1016/j.bbabio.2017.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/11/2017] [Accepted: 09/05/2017] [Indexed: 11/23/2022]
|
17
|
Electric-Field-Induced Protein Translocation via a Conformational Transition in SecDF: An MD Study. Biophys J 2017. [PMID: 28636909 DOI: 10.1016/j.bpj.2017.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SecDF is an important component of the Sec protein translocation machinery embedded in the bacterial membrane, which is associated with many functions, such as stabilizing other Sec translocon components within the membrane, maintaining the transmembrane (TM) potential, and facilitating the ATP-independent stage of the translocation mechanism. Related studies suggest that SecDF undergoes functionally important conformational changes that involve mainly its P1-head domain and that these changes are coupled with the proton motive force (Δp). However, there still is not a clear understanding of how SecDF functions, its exact role in the translocation machinery, and how its function is related to Δp. Here, using all-atom molecular dynamics simulations combined with umbrella sampling, we study the P1-head conformational change and how it is coupled to the proton motive force. We report potentials of mean force along a root-mean-square-distance-based reaction coordinate obtained in the presence and absence of the TM electrical potential. Our results show that the interaction of the P1 domain dipole moment with the TM electrical field considerably lowers the free-energy barrier in the direction of F-form to I-form transition.
Collapse
|
18
|
Czub J, Wieczór M, Prokopowicz B, Grubmüller H. Mechanochemical Energy Transduction during the Main Rotary Step in the Synthesis Cycle of F 1-ATPase. J Am Chem Soc 2017; 139:4025-4034. [PMID: 28253614 DOI: 10.1021/jacs.6b11708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
F1-ATPase is a highly efficient molecular motor that can synthesize ATP driven by a mechanical torque. Its ability to function reversibly in either direction requires tight mechanochemical coupling between the catalytic domain and the rotating central shaft, as well as temporal control of substrate binding and product release. Despite great efforts and significant progress, the molecular details of this synchronized and fine-tuned energy conversion mechanism are not fully understood. Here, we use extensive molecular dynamics simulations to reconcile recent single-molecule experiments with structural data and provide a consistent thermodynamic, kinetic and mechanistic description of the main rotary substep in the synthetic cycle of mammalian ATP synthase. The calculated free energy profiles capture a discrete pattern in the rotation of the central γ-shaft, with a metastable intermediate located-consistently with recent experimental findings-at 70° relative to the X-ray position. We identify this rotary step as the ATP-dependent substep, and find that the associated free energy input supports the mechanism involving concurrent nucleotide binding and release. During the main substep, our simulations show no significant opening of the ATP-bound β subunit; instead, we observe that mechanical energy is transmitted to its nucleotide binding site, thus lowering the affinity for ATP. Simultaneously, the empty subunit assumes a conformation that enables the enzyme to harness the free energy of ADP binding to drive ATP release. Finally, we show that ligand exchange is regulated by a checkpoint mechanism, an apparent prerequisite for high efficiency in protein nanomotors.
Collapse
Affiliation(s)
- Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology , ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Miłosz Wieczór
- Department of Physical Chemistry, Gdansk University of Technology , ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Bartosz Prokopowicz
- Department of Physical Chemistry, Gdansk University of Technology , ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
19
|
Hahn-Herrera O, Salcedo G, Barril X, García-Hernández E. Inherent conformational flexibility of F1-ATPase α-subunit. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1392-1402. [PMID: 27137408 DOI: 10.1016/j.bbabio.2016.04.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/12/2016] [Accepted: 04/28/2016] [Indexed: 12/30/2022]
Abstract
The core of F1-ATPase consists of three catalytic (β) and three noncatalytic (α) subunits, forming a hexameric ring in alternating positions. A wealth of experimental and theoretical data has provided a detailed picture of the complex role played by catalytic subunits. Although major conformational changes have only been seen in β-subunits, it is clear that α-subunits have to respond to these changes in order to be able to transmit information during the rotary mechanism. However, the conformational behavior of α-subunits has not been explored in detail. Here, we have combined unbiased molecular dynamics (MD) simulations and calorimetrically measured thermodynamic signatures to investigate the conformational flexibility of isolated α-subunits, as a step toward deepening our understanding of its function inside the α3β3 ring. The simulations indicate that the open-to-closed conformational transition of the α-subunit is essentially barrierless, which is ideal to accompany and transmit the movement of the catalytic subunits. Calorimetric measurements of the recombinant α-subunit from Geobacillus kaustophilus indicate that the isolated subunit undergoes no significant conformational changes upon nucleotide binding. Simulations confirm that the nucleotide-free and nucleotide-bound subunits show average conformations similar to that observed in the F1 crystal structure, but they reveal an increased conformational flexibility of the isolated α-subunit upon MgATP binding, which might explain the evolutionary conserved capacity of α-subunits to recognize nucleotides with considerable strength. Furthermore, we elucidate the different dependencies that α- and β-subunits show on Mg(II) for recognizing ATP.
Collapse
Affiliation(s)
- Otto Hahn-Herrera
- Instituto de Química Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04630, D.F., Mexico
| | - Guillermo Salcedo
- Instituto de Química Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04630, D.F., Mexico
| | - Xavier Barril
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain; Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Enrique García-Hernández
- Instituto de Química Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México 04630, D.F., Mexico.
| |
Collapse
|
20
|
Komuro Y, Re S, Kobayashi C, Muneyuki E, Sugita Y. CHARMM Force-Fields with Modified Polyphosphate Parameters Allow Stable Simulation of the ATP-Bound Structure of Ca(2+)-ATPase. J Chem Theory Comput 2015; 10:4133-42. [PMID: 26588553 DOI: 10.1021/ct5004143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Adenosine triphosphate (ATP) is an indispensable energy source in cells. In a wide variety of biological phenomena like glycolysis, muscle contraction/relaxation, and active ion transport, chemical energy released from ATP hydrolysis is converted to mechanical forces to bring about large-scale conformational changes in proteins. Investigation of structure-function relationships in these proteins by molecular dynamics (MD) simulations requires modeling of ATP in solution and ATP bound to proteins with accurate force-field parameters. In this study, we derived new force-field parameters for the triphosphate moiety of ATP based on the high-precision quantum calculations of methyl triphosphate. We tested our new parameters on membrane-embedded sarcoplasmic reticulum Ca(2+)-ATPase and four soluble proteins. The ATP-bound structure of Ca(2+)-ATPase remains stable during MD simulations, contrary to the outcome in shorter simulations using original parameters. Similar results were obtained with the four ATP-bound soluble proteins. The new force-field parameters were also tested by investigating the range of conformations sampled during replica-exchange MD simulations of ATP in explicit water. Modified parameters allowed a much wider range of conformational sampling compared with the bias toward extended forms with original parameters. A diverse range of structures agrees with the broad distribution of ATP conformations in proteins deposited in the Protein Data Bank. These simulations suggest that the modified parameters will be useful in studies of ATP in solution and of the many ATP-utilizing proteins.
Collapse
Affiliation(s)
- Yasuaki Komuro
- Graduate School of Science and Engineering, Chuo University , 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.,RIKEN Theoretical Molecular Science Laboratory , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan.,RIKEN Advanced Institute for Computational Science, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Suyong Re
- RIKEN Theoretical Molecular Science Laboratory , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Chigusa Kobayashi
- RIKEN Advanced Institute for Computational Science, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Eiro Muneyuki
- Graduate School of Science and Engineering, Chuo University , 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yuji Sugita
- RIKEN Theoretical Molecular Science Laboratory , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan.,RIKEN Advanced Institute for Computational Science, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Quantitative Biology Center, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN iTHES , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
21
|
Abstract
The F1F0-ATP synthase (EC 3.6.1.34) is a remarkable enzyme that functions as a rotary motor. It is found in the inner membranes of Escherichia coli and is responsible for the synthesis of ATP in response to an electrochemical proton gradient. Under some conditions, the enzyme functions reversibly and uses the energy of ATP hydrolysis to generate the gradient. The ATP synthase is composed of eight different polypeptide subunits in a stoichiometry of α3β3γδεab2c10. Traditionally they were divided into two physically separable units: an F1 that catalyzes ATP hydrolysis (α3β3γδε) and a membrane-bound F0 sector that transports protons (ab2c10). In terms of rotary function, the subunits can be divided into rotor subunits (γεc10) and stator subunits (α3β3δab2). The stator subunits include six nucleotide binding sites, three catalytic and three noncatalytic, formed primarily by the β and α subunits, respectively. The stator also includes a peripheral stalk composed of δ and b subunits, and part of the proton channel in subunit a. Among the rotor subunits, the c subunits form a ring in the membrane, and interact with subunit a to form the proton channel. Subunits γ and ε bind to the c-ring subunits, and also communicate with the catalytic sites through interactions with α and β subunits. The eight subunits are expressed from a single operon, and posttranscriptional processing and translational regulation ensure that the polypeptides are made at the proper stoichiometry. Recent studies, including those of other species, have elucidated many structural and rotary properties of this enzyme.
Collapse
|
22
|
Identification of the Conformational transition pathway in PIP2 Opening Kir Channels. Sci Rep 2015; 5:11289. [PMID: 26063437 PMCID: PMC4462750 DOI: 10.1038/srep11289] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/29/2015] [Indexed: 11/08/2022] Open
Abstract
The gating of Kir channels depends critically on phosphatidylinositol 4,5-bisphosphate (PIP2), but the detailed mechanism by which PIP2 regulates Kir channels remains obscure. Here, we performed a series of Targeted molecular dynamics simulations on the full-length Kir2.1 channel and, for the first time, were able to achieve the transition from the closed to the open state. Our data show that with the upward motion of the cytoplasmic domain (CTD) the structure of the C-Linker changes from a loop to a helix. The twisting of the C-linker triggers the rotation of the CTD, which induces a small downward movement of the CTD and an upward motion of the slide helix toward the membrane that pulls the inner helix gate open. At the same time, the rotation of the CTD breaks the interaction between the CD- and G-loops thus releasing the G-loop. The G-loop then bounces away from the CD-loop, which leads to the opening of the G-loop gate and the full opening of the pore. We identified a series of interaction networks, between the N-terminus, CD loop, C linker and G loop one by one, which exquisitely regulates the global conformational changes during the opening of Kir channels by PIP2.
Collapse
|
23
|
Buchert F, Konno H, Hisabori T. Redox regulation of CF1-ATPase involves interplay between the γ-subunit neck region and the turn region of the βDELSEED-loop. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:441-450. [PMID: 25660164 DOI: 10.1016/j.bbabio.2015.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/23/2014] [Accepted: 01/27/2015] [Indexed: 11/26/2022]
Abstract
The soluble F1 complex of ATP synthase (FoF1) is capable of ATP hydrolysis, accomplished by the minimum catalytic core subunits α3β3γ. A special feature of cyanobacterial F1 and chloroplast F1 (CF1) is an amino acid sequence inserted in the γ-subunit. The insertion is extended slightly into the CF1 enzyme containing two additional cysteines for regulation of ATPase activity via thiol modulation. This molecular switch was transferred to a chimeric F1 by inserting the cysteine-containing fragment from spinach CF1 into a cyanobacterial γ-subunit [Y. Kim et al., redox regulation of rotation of the cyanobacterial F1-ATPase containing thiol regulation switch, J Biol Chem, 286 (2011) 9071-9078]. Under oxidizing conditions, the obtained F1 tends to lapse into an ADP-inhibited state, a common regulation mechanism to prevent wasteful ATP hydrolysis under unfavorable circumstances. However, the information flow between thiol modulation sites on the γ-subunit and catalytic sites on the β-subunits remains unclear. Here, we clarified a possible interplay for the CF1-ATPase redox regulation between structural elements of the βDELSEED-loop and the γ-subunit neck region, i.e., the most convex part of the α-helical γ-termini. Critical residues were assigned on the β-subunit, which received the conformation change signal produced by disulfide/dithiol formation on the γ-subunit. Mutant response to the ATPase redox regulation ranged from lost to hypersensitive. Furthermore, mutant cross-link experiments and inversion of redox regulation indicated that the γ-redox state might modulate the subunit interface via reorientation of the βDELSEED motif region.
Collapse
Affiliation(s)
- Felix Buchert
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroki Konno
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan; Imaging Research Division, Bio-AFM Frontier Research Center, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama 226-8503, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo 102-0075, Japan.
| |
Collapse
|
24
|
Computational study of correlated domain motions in the AcrB efflux transporter. BIOMED RESEARCH INTERNATIONAL 2015; 2015:487298. [PMID: 25685792 PMCID: PMC4313061 DOI: 10.1155/2015/487298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/09/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022]
Abstract
As active part of the major efflux system in E. coli bacteria, AcrB is responsible for the uptake and pumping of toxic substrates from the periplasm toward the extracellular space. In combination with the channel protein TolC and membrane fusion protein AcrA, this efflux pump is able to help the bacterium to survive different kinds of noxious compounds. With the present study we intend to enhance the understanding of the interactions between the domains and monomers, for example, the transduction of mechanical energy from the transmembrane domain into the porter domain, correlated motions of different subdomains within monomers, and cooperative effects between monomers. To this end, targeted molecular dynamics simulations have been employed either steering the whole protein complex or specific parts thereof. By forcing only parts of the complex towards specific conformational states, the risk for transient artificial conformations during the simulations is reduced. Distinct cooperative effects between the monomers in AcrB have been observed. Possible allosteric couplings have been identified providing microscopic insights that might be exploited to design more efficient inhibitors of efflux systems.
Collapse
|
25
|
Trapping the ATP binding state leads to a detailed understanding of the F1-ATPase mechanism. Proc Natl Acad Sci U S A 2014; 111:17851-6. [PMID: 25453082 DOI: 10.1073/pnas.1419486111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The rotary motor enzyme FoF1-ATP synthase uses the proton-motive force across a membrane to synthesize ATP from ADP and Pi (H2PO4(-)) under cellular conditions that favor the hydrolysis reaction by a factor of 2 × 10(5). This remarkable ability to drive a reaction away from equilibrium by harnessing an external force differentiates it from an ordinary enzyme, which increases the rate of reaction without shifting the equilibrium. Hydrolysis takes place in the neighborhood of one conformation of the catalytic moiety F1-ATPase, whose structure is known from crystallography. By use of molecular dynamics simulations we trap a second structure, which is rotated by 40° from the catalytic dwell conformation and represents the state associated with ATP binding, in accord with single-molecule experiments. Using the two structures, we show why Pi is not released immediately after ATP hydrolysis, but only after a subsequent 120° rotation, in agreement with experiment. A concerted conformational change of the α3β3 crown is shown to induce the 40° rotation of the γ-subunit only when the βE subunit is empty, whereas with Pi bound, βE serves as a latch to prevent the rotation of γ. The present results provide a rationalization of how F1-ATPase achieves the coupling between the small changes in the active site of βDP and the 40° rotation of γ.
Collapse
|
26
|
|
27
|
Noel JK, Whitford PC. How Simulations Reveal Dynamics, Disorder, and the Energy Landscapes of Biomolecular Function. Isr J Chem 2014. [DOI: 10.1002/ijch.201400018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Whitford PC, Sanbonmatsu KY. Simulating movement of tRNA through the ribosome during hybrid-state formation. J Chem Phys 2014; 139:121919. [PMID: 24089731 DOI: 10.1063/1.4817212] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Biomolecular simulations provide a means for exploring the relationship between flexibility, energetics, structure, and function. With the availability of atomic models from X-ray crystallography and cryoelectron microscopy (cryo-EM), and rapid increases in computing capacity, it is now possible to apply molecular dynamics (MD) simulations to large biomolecular machines, and systematically partition the factors that contribute to function. A large biomolecular complex for which atomic models are available is the ribosome. In the cell, the ribosome reads messenger RNA (mRNA) in order to synthesize proteins. During this essential process, the ribosome undergoes a wide range of conformational rearrangements. One of the most poorly understood transitions is translocation: the process by which transfer RNA (tRNA) molecules move between binding sites inside of the ribosome. The first step of translocation is the adoption of a "hybrid" configuration by the tRNAs, which is accompanied by large-scale rotations in the ribosomal subunits. To illuminate the relationship between these rearrangements, we apply MD simulations using a multi-basin structure-based (SMOG) model, together with targeted molecular dynamics protocols. From 120 simulated transitions, we demonstrate the viability of a particular route during P/E hybrid-state formation, where there is asynchronous movement along rotation and tRNA coordinates. These simulations not only suggest an ordering of events, but they highlight atomic interactions that may influence the kinetics of hybrid-state formation. From these simulations, we also identify steric features (H74 and surrounding residues) encountered during the hybrid transition, and observe that flexibility of the single-stranded 3'-CCA tail is essential for it to reach the endpoint. Together, these simulations provide a set of structural and energetic signatures that suggest strategies for modulating the physical-chemical properties of protein synthesis by the ribosome.
Collapse
Affiliation(s)
- Paul C Whitford
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
29
|
Phosphate release coupled to rotary motion of F1-ATPase. Proc Natl Acad Sci U S A 2013; 110:16468-73. [PMID: 24062450 DOI: 10.1073/pnas.1305497110] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
F1-ATPase, the catalytic domain of ATP synthase, synthesizes most of the ATP in living organisms. Running in reverse powered by ATP hydrolysis, this hexameric ring-shaped molecular motor formed by three αβ-dimers creates torque on its central γ-subunit. This reverse operation enables detailed explorations of the mechanochemical coupling mechanisms in experiment and simulation. Here, we use molecular dynamics simulations to construct a first atomistic conformation of the intermediate state following the 40° substep of rotary motion, and to study the timing and molecular mechanism of inorganic phosphate (Pi) release coupled to the rotation. In response to torque-driven rotation of the γ-subunit in the hydrolysis direction, the nucleotide-free αβE interface forming the "empty" E site loosens and singly charged Pi readily escapes to the P loop. By contrast, the interface stays closed with doubly charged Pi. The γ-rotation tightens the ATP-bound αβTP interface, as required for hydrolysis. The calculated rate for the outward release of doubly charged Pi from the αβE interface 120° after ATP hydrolysis closely matches the ~1-ms functional timescale. Conversely, Pi release from the ADP-bound αβDP interface postulated in earlier models would occur through a kinetically infeasible inward-directed pathway. Our simulations help reconcile conflicting interpretations of single-molecule experiments and crystallographic studies by clarifying the timing of Pi exit, its pathway and kinetics, associated changes in Pi protonation, and changes of the F1-ATPase structure in the 40° substep. Important elements of the molecular mechanism of Pi release emerging from our simulations appear to be conserved in myosin despite the different functional motions.
Collapse
|
30
|
Mutations on the N-terminal edge of the DELSEED loop in either the α or β subunit of the mitochondrial F1-ATPase enhance ATP hydrolysis in the absence of the central γ rotor. EUKARYOTIC CELL 2013; 12:1451-61. [PMID: 24014764 DOI: 10.1128/ec.00177-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
F(1)-ATPase is a rotary molecular machine with a subunit stoichiometry of α(3)β(3)γ(1)δ(1)ε(1). It has a robust ATP-hydrolyzing activity due to effective cooperativity between the three catalytic sites. It is believed that the central γ rotor dictates the sequential conformational changes to the catalytic sites in the α(3)β(3) core to achieve cooperativity. However, recent studies of the thermophilic Bacillus PS3 F(1)-ATPase have suggested that the α(3)β(3) core can intrinsically undergo unidirectional cooperative catalysis (T. Uchihashi et al., Science 333:755-758, 2011). The mechanism of this γ-independent ATP-hydrolyzing mode is unclear. Here, a unique genetic screen allowed us to identify specific mutations in the α and β subunits that stimulate ATP hydrolysis by the mitochondrial F(1)-ATPase in the absence of γ. We found that the F446I mutation in the α subunit and G419D mutation in the β subunit suppress cell death by the loss of mitochondrial DNA (ρ(o)) in a Kluyveromyces lactis mutant lacking γ. In organello ATPase assays showed that the mutant but not the wild-type γ-less F(1) complexes retained 21.7 to 44.6% of the native F(1)-ATPase activity. The γ-less F(1) subcomplex was assembled but was structurally and functionally labile in vitro. Phe446 in the α subunit and Gly419 in the β subunit are located on the N-terminal edge of the DELSEED loops in both subunits. Mutations in these two sites likely enhance the transmission of catalytically required conformational changes to an adjacent α or β subunit, thereby allowing robust ATP hydrolysis and cell survival under ρ(o) conditions. This work may help our understanding of the structural elements required for ATP hydrolysis by the α(3)β(3) subcomplex.
Collapse
|
31
|
Ito Y, Yoshidome T, Matubayasi N, Kinoshita M, Ikeguchi M. Molecular dynamics simulations of yeast F1-ATPase before and after 16° rotation of the γ subunit. J Phys Chem B 2013; 117:3298-307. [PMID: 23452086 DOI: 10.1021/jp312499u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have recently proposed the "packing exchange mechanism" for F1-ATPase, wherein the perturbation by a substrate binding/release or an ATP hydrolysis is followed by the reorganization of the asymmetric packing structure of the α3β3 complex, accompanying the γ subunit rotation. As part of a further investigation of this rotational mechanism, we performed all-atom molecular dynamics simulations for yeast F1-ATPase both before and after a 16° rotation of the γ subunit triggered by a Pi release. We analyzed the structural fluctuations, the subunit interface interactions, and the dynamics of the relative subunit arrangements before and after the rotation. We found that with the Pi release the αEβE subunit interface becomes looser, which also allosterically makes the αDPβDP subunit interface looser. This structural communication between these interfaces takes place through a tightening of the αTPβTP subunit interface. The γ subunit interacts less strongly with αDP and βDP and more strongly with αTP and βTP. After the Pi release, the tightly packed interfaces are reorganized from the interfaces around βDP to those around βTP, inducing the 16° rotation. These results, which are consistent with the packing exchange mechanism, allow us to deduce a view of the structural change during the 40° rotation.
Collapse
Affiliation(s)
- Yuko Ito
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29, Yokohama, 230-0045 Japan
| | | | | | | | | |
Collapse
|
32
|
Tanigawara M, Tabata KV, Ito Y, Ito J, Watanabe R, Ueno H, Ikeguchi M, Noji H. Role of the DELSEED loop in torque transmission of F1-ATPase. Biophys J 2013; 103:970-8. [PMID: 23009846 DOI: 10.1016/j.bpj.2012.06.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/23/2012] [Accepted: 06/25/2012] [Indexed: 11/18/2022] Open
Abstract
F(1)-ATPase is an ATP-driven rotary motor that generates torque at the interface between the catalytic β-subunits and the rotor γ-subunit. The β-subunit inwardly rotates the C-terminal domain upon nucleotide binding/dissociation; hence, the region of the C-terminal domain that is in direct contact with γ-termed the DELSEED loop-is thought to play a critical role in torque transmission. We substituted all the DELSEED loop residues with alanine to diminish specific DELSEED loop-γ interactions and with glycine to disrupt the loop structure. All the mutants rotated unidirectionally with kinetic parameters comparable to those of the wild-type F(1), suggesting that the specific interactions between DELSEED loop and γ is not involved in cooperative interplays between the catalytic β-subunits. Glycine substitution mutants generated half the torque of the wild-type F(1), whereas the alanine mutant generated comparable torque. Fluctuation analyses of the glycine/alanine mutants revealed that the γ-subunit was less tightly held in the α(3)β(3)-stator ring of the glycine mutant than in the wild-type F(1) and the alanine mutant. Molecular dynamics simulation showed that the DELSEED loop was disordered by the glycine substitution, whereas it formed an α-helix in the alanine mutant. Our results emphasize the importance of loop rigidity for efficient torque transmissions.
Collapse
Affiliation(s)
- Mizue Tanigawara
- Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The ATP synthases are multiprotein complexes found in the energy-transducing membranes of bacteria, chloroplasts and mitochondria. They employ a transmembrane protonmotive force, Δp, as a source of energy to drive a mechanical rotary mechanism that leads to the chemical synthesis of ATP from ADP and Pi. Their overall architecture, organization and mechanistic principles are mostly well established, but other features are less well understood. For example, ATP synthases from bacteria, mitochondria and chloroplasts differ in the mechanisms of regulation of their activity, and the molecular bases of these different mechanisms and their physiological roles are only just beginning to emerge. Another crucial feature lacking a molecular description is how rotation driven by Δp is generated, and how rotation transmits energy into the catalytic sites of the enzyme to produce the stepping action during rotation. One surprising and incompletely explained deduction based on the symmetries of c-rings in the rotor of the enzyme is that the amount of energy required by the ATP synthase to make an ATP molecule does not have a universal value. ATP synthases from multicellular organisms require the least energy, whereas the energy required to make an ATP molecule in unicellular organisms and chloroplasts is higher, and a range of values has been calculated. Finally, evidence is growing for other roles of ATP synthases in the inner membranes of mitochondria. Here the enzymes form supermolecular complexes, possibly with specific lipids, and these complexes probably contribute to, or even determine, the formation of the cristae.
Collapse
|
34
|
Rate of hydrolysis in ATP synthase is fine-tuned by α-subunit motif controlling active site conformation. Proc Natl Acad Sci U S A 2013; 110:2117-22. [PMID: 23345443 DOI: 10.1073/pnas.1214741110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. F(o)F(1) ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing ATP using a rotary motor. Isolated F(1) performs hydrolysis with a rate very sensitive to ATP concentration. Experimental and theoretical results show that, at low ATP concentrations, ATP is slowly hydrolyzed in the so-called tight binding site, whereas at higher concentrations, the binding of additional ATP molecules induces rotation of the central γ-subunit, thereby forcing the site to transform through subtle conformational changes into a loose binding site in which hydrolysis occurs faster. How the 1-Å-scale rearrangements are controlled is not yet fully understood. By a combination of theoretical approaches, we address how large macromolecular rearrangements may manipulate the active site and how the reaction rate changes with active site conformation. Simulations reveal that, in response to γ-subunit position, the active site conformation is fine-tuned mainly by small α-subunit changes. Quantum mechanics-based results confirm that the sub-Ångström gradual changes between tight and loose binding site structures dramatically alter the hydrolysis rate.
Collapse
|
35
|
Daily MD, Yu H, Phillips GN, Cui Q. Allosteric activation transitions in enzymes and biomolecular motors: insights from atomistic and coarse-grained simulations. Top Curr Chem (Cham) 2013; 337:139-64. [PMID: 23468286 PMCID: PMC3976962 DOI: 10.1007/128_2012_409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The chemical step in enzymes is usually preceded by a kinetically distinct activation step that involves large-scale conformational transitions. In "simple" enzymes this step corresponds to the closure of the active site; in more complex enzymes, such as biomolecular motors, the activation step is more complex and may involve interactions with other biomolecules. These activation transitions are essential to the function of enzymes and perturbations in the scale and/or rate of these transitions are implicated in various serious human diseases; incorporating key flexibilities into engineered enzymes is also considered a major remaining challenge in rational enzyme design. Therefore it is important to understand the underlying mechanism of these transitions. This is a significant challenge to both experimental and computational studies because of the allosteric and multi-scale nature of such transitions. Using our recent studies of two enzyme systems, myosin and adenylate kinase (AK), we discuss how atomistic and coarse-grained simulations can be used to provide insights into the mechanism of activation transitions in realistic systems. Collectively, the results suggest that although many allosteric transitions can be viewed as domain displacements mediated by flexible hinges, there are additional complexities and various deviations. For example, although our studies do not find any evidence for "cracking" in AK, our results do underline the contribution of intra-domain properties (e.g., dihedral flexibility) to the rate of the transition. The study of mechanochemical coupling in myosin highlights that local changes important to chemistry require stabilization from more extensive structural changes; in this sense, more global structural transitions are needed to activate the chemistry in the active site. These discussions further emphasize the importance of better understanding factors that control the degree of co-operativity for allosteric transitions, again hinting at the intimate connection between protein stability and functional flexibility. Finally, a number of topics of considerable future interest are briefly discussed.
Collapse
Affiliation(s)
- Michael D Daily
- Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | | | | | | |
Collapse
|
36
|
Yoshidome T, Ito Y, Matubayasi N, Ikeguchi M, Kinoshita M. Structural characteristics of yeast F1-ATPase before and after 16-degree rotation of the γ subunit: theoretical analysis focused on the water-entropy effect. J Chem Phys 2012; 137:035102. [PMID: 22830731 DOI: 10.1063/1.4734298] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have recently proposed a novel picture of the rotation mechanism for F(1)-ATPase [T. Yoshidome, Y. Ito, M. Ikeguchi, and M. Kinoshita, J. Am. Chem. Soc. 133, 4030 (2011)]. In the picture, the asymmetric packing in F(1)-ATPase, originating from the water-entropy effect, plays the key role in the rotation. Here, we analyze the differences between the experimentally determined structures of yeast F(1)-ATPase before and after 16° rotation of the γ subunit with the emphasis on the water-entropy effect. For each of these structures, we calculate the hydration entropies of three sub-complexes comprising the γ subunit, one of the β subunits, and two α subunits adjacent to them. The β(E), β(TP), and β(DP) subunits are involved in sub-complexes I, II, and III, respectively. The calculation is performed using a hybrid of the angle-dependent integral equation theory combined with the molecular model for water and the morphometric approach. The absolute value of the hydration entropy is in the following order: sub-complex I > sub-complex II > sub-complex III. The packing efficiency of the sub-complex follows the opposite order. The rotation gives rise to less efficient packing in sub-complex III and a corresponding water-entropy loss. However, the other two sub-complexes, accompanying water-entropy gains, become more efficiently packed. These results are consistent with our picture of the rotation mechanism, supporting its validity. The water-entropy analysis shows that the interfaces of α(DP)-β(DP) and α(E)-β(E) become more open after the rotation, which is in accord with the experimental observation.
Collapse
Affiliation(s)
- Takashi Yoshidome
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
37
|
Ovchinnikov V, Karplus M. Analysis and elimination of a bias in targeted molecular dynamics simulations of conformational transitions: application to calmodulin. J Phys Chem B 2012; 116:8584-603. [PMID: 22409258 PMCID: PMC3406239 DOI: 10.1021/jp212634z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The popular targeted molecular dynamics (TMD) method for generating transition paths in complex biomolecular systems is revisited. In a typical TMD transition path, the large-scale changes occur early and the small-scale changes tend to occur later. As a result, the order of events in the computed paths depends on the direction in which the simulations are performed. To identify the origin of this bias, and to propose a method in which the bias is absent, variants of TMD in the restraint formulation are introduced and applied to the complex open ↔ closed transition in the protein calmodulin. Due to the global best-fit rotation that is typically part of the TMD method, the simulated system is guided implicitly along the lowest-frequency normal modes, until the large spatial scales associated with these modes are near the target conformation. The remaining portion of the transition is described progressively by higher-frequency modes, which correspond to smaller-scale rearrangements. A straightforward modification of TMD that avoids the global best-fit rotation is the locally restrained TMD (LRTMD) method, in which the biasing potential is constructed from a number of TMD potentials, each acting on a small connected portion of the protein sequence. With a uniform distribution of these elements, transition paths that lack the length-scale bias are obtained. Trajectories generated by steered MD in dihedral angle space (DSMD), a method that avoids best-fit rotations altogether, also lack the length-scale bias. To examine the importance of the paths generated by TMD, LRTMD, and DSMD in the actual transition, we use the finite-temperature string method to compute the free energy profile associated with a transition tube around a path generated by each algorithm. The free energy barriers associated with the paths are comparable, suggesting that transitions can occur along each route with similar probabilities. This result indicates that a broad ensemble of paths needs to be calculated to obtain a full description of conformational changes in biomolecules. The breadth of the contributing ensemble suggests that energetic barriers for conformational transitions in proteins are offset by entropic contributions that arise from a large number of possible paths.
Collapse
|
38
|
Xu L, Liu F. The chemo-mechanical coupled model for F1F0-motor. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 108:139-48. [DOI: 10.1016/j.pbiomolbio.2012.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 03/20/2011] [Accepted: 01/31/2012] [Indexed: 10/14/2022]
|
39
|
Dynamics, flexibility and ligand-induced conformational changes in biological macromolecules: a computational approach. Future Med Chem 2012; 3:2079-100. [PMID: 22098354 DOI: 10.4155/fmc.11.159] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biomolecules possess important dynamical properties that enable them to adapt and alternate their conformation as a response to environmental stimuli. Recent advancements in computational resources and methodology allow a higher capability to mimic in vitro conditions and open up the possibility of studying large systems over longer timescales. Here, we describe commonly used computational approaches for studying the dynamic properties of proteins. We review a selected set of simulation studies on ligand-induced changes in the chaperonin GroEL-GroES, a molecular folding machine, maltose-binding protein, a prototypical member of the periplasmic binding proteins, and the bacterial ribosomal A-site, focusing on aminoglycoside antibiotic recognition. We also discuss a recent quantitative reconstruction of the binding process of benzamidine and trypsin. These studies contribute to the understanding and further development of the medicinal regulation of large biomolecular systems.
Collapse
|
40
|
Buchachenko AL, Kuznetsov DA, Breslavskaya NN. Chemistry of enzymatic ATP synthesis: an insight through the isotope window. Chem Rev 2012; 112:2042-58. [PMID: 22277055 DOI: 10.1021/cr200142a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anatoly L Buchachenko
- N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119991 Moscow, Russian Federation.
| | | | | |
Collapse
|
41
|
BAKER LINDSAYA, RUBINSTEIN JOHNL. SINGLE PARTICLE ELECTRON MICROSCOPY OF THE MITOCHONDRIAL ATP SYNTHASE. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048010001135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitochondrial ATP synthase is a large, membrane-bound protein complex that plays a central role in cellular metabolism. Since the identification of this assembly in micrographs of mitochondrial membranes, electron microscopy has been crucial in elucidating the structure and mechanism of the enzyme. This review addresses the recent use of single particle electron microscopy for structure determination of ATP synthase, including subunit localization, the challenges posed by the protein, and areas in which further work is needed.
Collapse
Affiliation(s)
- LINDSAY A. BAKER
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
| | - JOHN L. RUBINSTEIN
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
42
|
Yoshidome T. Importance of water entropy in rotation mechanism of F 1-ATPase. Biophysics (Nagoya-shi) 2011; 7:113-122. [PMID: 27857599 PMCID: PMC5036781 DOI: 10.2142/biophysics.7.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/21/2011] [Indexed: 12/01/2022] Open
Abstract
We briefly review our theoretical study on the rotation scheme of F1-ATPase. In the scheme, the key factor is the water entropy which has been shown to drive a variety of self-assembly processes in biological systems. We decompose the crystal structure of F1-ATPase into three sub-complexes each of which is composed of the γ subunit, one of the β subunits, and two α subunits adjacent to them. The βE, βTP, and βDP subunits are involved in the sub-complexes I, II, and III, respectively. We calculate the hydration entropy of each sub-complex using a hybrid of the integral equation theory for molecular liquids and the morphometric approach. It is found that the absolute value of the hydration entropy follows the order, sub-complex I > sub-complex II > sub-complex III. Moreover, the differences are quite large, which manifests highly asymmetrical packing of F1-ATPase. In our picture, this asymmetrical packing plays crucially important roles in the rotation of the γ subunit. We discuss how the rotation is induced by the water-entropy effect coupled with such chemical processes as ATP binding, ATP hydrolysis, and release of the products.
Collapse
Affiliation(s)
- Takashi Yoshidome
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
43
|
A direct coupling between global and internal motions in a single domain protein? MD investigation of extreme scenarios. Biophys J 2011; 101:196-204. [PMID: 21723830 DOI: 10.1016/j.bpj.2011.05.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/25/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022] Open
Abstract
Proteins are not rigid molecules, but exhibit internal motions on timescales ranging from femto- to milliseconds and beyond. In solution, proteins also experience global translational and rotational motions, sometimes on timescales comparable to those of the internal fluctuations. The possibility that internal and global motions may be directly coupled has intriguing implications, given that enzymes and cell signaling proteins typically associate with binding partners and cellular scaffolds. Such processes alter their global motion and may affect protein function. Here, we present molecular dynamics simulations of extreme case scenarios to examine whether a possible relationship exists. In our model protein, a ubiquitin-like RhoGTPase binding domain of plexin-B1, we removed either internal or global motions. Comparisons with unrestrained simulations show that internal and global motions are not appreciably coupled in this single-domain protein. This lack of coupling is consistent with the observation that the dynamics of water around the protein, which is thought to permit, if not stimulate, internal dynamics, is also largely independent of global motion. We discuss implications of these results for the structure and function of proteins.
Collapse
|
44
|
Kleinekathöfer U, Isralewitz B, Dittrich M, Schulten K. Domain motion of individual F1-ATPase β-subunits during unbiased molecular dynamics simulations. J Phys Chem A 2011; 115:7267-74. [PMID: 21452901 PMCID: PMC3121902 DOI: 10.1021/jp2005088] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
F(1)-ATPase is the catalytic domain of F(1)F(o)-ATP synthase and consists of a hexameric arrangement of three noncatalytic α and three catalytic β subunits. We have used unbiased molecular dynamics simulations with a total simulation time of 900 ns to investigate the dynamic relaxation properties of isolated β-subunits as a step toward explaining the function of the integral F(1) unit. To this end, we simulated the open (β(E)) and the closed (β(TP)) conformations under unbiased conditions for up to 120 ns each using several samples. The simulations confirm that nucleotide-free β(E) retains its open configuration over the course of the simulations. The same is true when the neighboring α subunits are included. The nucleotide-depleted as well as the nucleotide-bound isolated β(TP) subunits show a significant trend toward the open conformation during our simulations, with one trajectory per case opening completely. Hence, our simulations suggest that the equilibrium conformation of a nucleotide-free β-subunit is the open conformation and that the transition from the closed to the open conformation can occur on a time scale of a few tens of nanoseconds.
Collapse
Affiliation(s)
- Ulrich Kleinekathöfer
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | | | | | | |
Collapse
|
45
|
Schulz R, Vargiu AV, Ruggerone P, Kleinekathöfer U. Role of Water during the Extrusion of Substrates by the Efflux Transporter AcrB. J Phys Chem B 2011; 115:8278-87. [DOI: 10.1021/jp200996x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Robert Schulz
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen,
Germany
| | - Attilio V. Vargiu
- CNR-IOM, Unità SLACS,
c/o Dipartimento di Fisica, Università di Cagliari, s.p. Monserrato-Sestu km 0.7, I-09042 Monserrato (CA), Italy
| | - Paolo Ruggerone
- CNR-IOM, Unità SLACS,
c/o Dipartimento di Fisica, Università di Cagliari, s.p. Monserrato-Sestu km 0.7, I-09042 Monserrato (CA), Italy
| | - Ulrich Kleinekathöfer
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen,
Germany
| |
Collapse
|
46
|
Abstract
AbstractThe rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F1Fo-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H+-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A1Ao-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump. All three of these multi-subunit complexes are rotary molecular motors, sharing a fundamentally similar mechanism in which rotational movement drives the energy conversion process. By analogy to macroscopic systems, individual subunits can be assigned to rotor, axle or stator functions. Recently, three-dimensional reconstructions from electron microscopy and single particle image processing have led to a significant step forward in understanding of the overall architecture of all three forms of these complexes and have allowed the organisation of subunits within the rotor and stator parts of the motors to be more clearly mapped out. This review describes the emerging consensus regarding the organisation of the rotor and stator components of V-, A- and F-ATPases, examining core similarities that point to a common evolutionary origin, and highlighting key differences. In particular, it discusses how newly revealed variation in the complexity of the inter-domain connections may impact on the mechanics and regulation of these molecular machines.
Collapse
|
47
|
Double-lock ratchet mechanism revealing the role of alphaSER-344 in FoF1 ATP synthase. Proc Natl Acad Sci U S A 2011; 108:4828-33. [PMID: 21383131 DOI: 10.1073/pnas.1010453108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a majority of living organisms, FoF1 ATP synthase performs the fundamental process of ATP synthesis. Despite the simple net reaction formula, ADP+Pi→ATP+H2O, the detailed step-by-step mechanism of the reaction yet remains to be resolved owing to the complexity of this multisubunit enzyme. Based on quantum mechanical computations using recent high resolution X-ray structures, we propose that during ATP synthesis the enzyme first prepares the inorganic phosphate for the γP-OADP bond-forming step via a double-proton transfer. At this step, the highly conserved αS344 side chain plays a catalytic role. The reaction thereafter progresses through another transition state (TS) having a planar ion configuration to finally form ATP. These two TSs are concluded crucial for ATP synthesis. Using stepwise scans and several models of the nucleotide-bound active site, some of the most important conformational changes were traced toward direction of synthesis. Interestingly, as the active site geometry progresses toward the ATP-favoring tight binding site, at both of these TSs, a dramatic increase in barrier heights is observed for the reverse direction, i.e., hydrolysis of ATP. This change could indicate a "ratchet" mechanism for the enzyme to ensure efficacy of ATP synthesis by shifting residue conformation and thus locking access to the crucial TSs.
Collapse
|
48
|
Yoshidome T, Ito Y, Ikeguchi M, Kinoshita M. Rotation Mechanism of F1-ATPase: Crucial Importance of the Water Entropy Effect. J Am Chem Soc 2011; 133:4030-9. [PMID: 21348521 DOI: 10.1021/ja109594y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takashi Yoshidome
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuko Ito
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
49
|
Wacker SA, Bradley MJ, Marion J, Bell E. Ligand-induced changes in the conformational stability and flexibility of glutamate dehydrogenase and their role in catalysis and regulation. Protein Sci 2011; 19:1820-9. [PMID: 20665690 DOI: 10.1002/pro.459] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bovine glutamate dehydrogenase (GDH) is allosterically regulated and requires substrate-induced subunit interactions for maximum catalytic activity. Steady-state and presteady-state kinetics indicate that the rate-limiting step depends on the nature of the substrate and are likely associated with conformational fluctuations necessary for optimal hydride transfer. Deuterated glutamate shows a steady-state isotope effect but no effect on the presteady-state burst rate, demonstrating that conformational effects are rate limiting for hydride transfer while product release is overall rate limiting for glutamate. Guanidine hydrochloride unfolding, heat inactivation, and differential scanning calorimetry demonstrate the effects of alternative substrates, glutamate and norvaline, on conformational stability. Glutamate has little effect on overall stability, whereas norvaline markedly stabilizes the protein. Limited proteolysis demonstrates that glutamate had a variety of effects on local flexibility, whereas norvaline significantly decreased conformational fluctuations that allow protease cleavage. Dynamic light scattering suggests that norvaline stabilizes all interfaces in the hexamer, whereas glutamate had little effect on trimer-trimer interactions. The substrate glutamate exhibits negative cooperativity and complex allosteric regulation but has only minor effects on global GDH stability, while promoting certain local conformational fluctuations. In contrast, the substrate norvaline does not show negative cooperativity or allow allosteric regulation. Instead, norvaline significantly stabilizes the enzyme and markedly slows or prevents local conformational fluctuations that are likely to be important for cooperative effects and to determine the overall rate of hydride transfer. This suggests that homotropic allosteric regulation by the enzymatic substrate involves changes in both global stability and local flexibility of the protein.
Collapse
Affiliation(s)
- Sarah A Wacker
- Biochemistry and Molecular Biology Program, Department of Chemistry, University of Richmond, Richmond, Virginia 23173, USA
| | | | | | | |
Collapse
|
50
|
Ito Y, Ikeguchi M. Structural fluctuation and concerted motions in F(1)-ATPase: A molecular dynamics study. J Comput Chem 2010; 31:2175-85. [PMID: 20336770 DOI: 10.1002/jcc.21508] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
F(1)-ATPase is an adenosine tri-phosphate (ATP)-driven rotary motor enzyme. We investigated the structural fluctuations and concerted motions of subunits in F(1)-ATPase using molecular dynamics (MD) simulations. An MD simulation for the alpha(3)beta(3)gamma complex was carried out for 30 ns. Although large fluctuations of the N-terminal domain observed in simulations of the isolated beta(E) subunit were suppressed in the complex simulation, the magnitude of fluctuations in the C-terminal domain was clearly different among the three beta subunits (beta(E), beta(TP), and beta(DP)). Despite fairly similar conformations of the beta(TP) and beta(DP) subunits, the beta(DP) subunit exhibits smaller fluctuations in the C-terminal domain than the beta(TP) subunit due to their dissimilar interface configurations. Compared with the beta(TP) subunit, the beta(DP) subunit stably interacts with both the adjacent alpha(DP) and alpha(E) subunits. This sandwiched configuration in the beta(DP) subunit leads to strongly correlated motions between the beta(DP) and adjacent alpha subunits. The beta(DP) subunit exhibits an extensive network of highly correlated motions with bound ATP and the gamma subunit, as well as with the adjacent alpha subunits, suggesting that the structural changes occurring in the catalytically active beta(DP) subunit can effectively induce movements of the gamma subunit.
Collapse
Affiliation(s)
- Yuko Ito
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | |
Collapse
|