1
|
Deng WH, Liao RZ. Cysteine Radical and Glutamate Collaboratively Enable C-H Bond Activation and C-N Bond Cleavage in a Glycyl Radical Enzyme HplG. J Chem Inf Model 2024; 64:4168-4179. [PMID: 38745447 DOI: 10.1021/acs.jcim.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Hydroxyprolines are abundant in nature and widely utilized by many living organisms. Isomerization of trans-4-hydroxy-d-proline (t4D-HP) to generate 2-amino-4-ketopentanoate has been found to need a glycyl radical enzyme HplG, which catalyzes the cleavage of the C-N bond, while dehydration of trans-4-hydroxy-l-proline involves a homologous enzyme of HplG. Herein, molecular dynamics simulations and quantum mechanics/molecular mechanics (QM/MM) calculations are employed to understand the reaction mechanism of HplG. Two possible reaction pathways of HplG have been explored to decipher the origin of its chemoselectivity. The QM/MM calculations reveal that the isomerization proceeds via an initial hydrogen shift from the Cγ site of t4D-HP to a catalytic cysteine radical, followed by cleavage of the Cδ-N bond in t4D-HP to form a radical intermediate that captures a hydrogen atom from the cysteine. Activation of the Cδ-H bond in t4D-HP to bring about dehydration of t4D-HP possesses an extremely high energy barrier, thus rendering the dehydration pathway implausible in HplG. On the basis of the current calculations, conserved residue Glu429 plays a pivotal role in the isomerization pathway: the hydrogen bonding between it and t4D-HP weakens the hydroxyalkyl Cγ-Hγ bond, and it acts as a proton acceptor to trigger the cleavage of the C-N bond in t4D-HP. Our current QM/MM calculations rationalize the origin of the experimentally observed chemoselectivity of HplG and propose an H-bond-assisted bond activation strategy in radical-containing enzymes. These findings have general implications on radical-mediated enzymatic catalysis and expand our understanding of how nature wisely and selectively activates the C-H bond to modulate catalytic selectivity.
Collapse
Affiliation(s)
- Wen-Hao Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Density functional theory and molecular dynamics simulation support Ganoderma lucidum triterpenoids as broad range antagonist of matrix metalloproteinases. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Jamal S, Ahmed A, Moin ST. Evaluation of a sesquiterpene as possible drug lead against gelatinases via molecular dynamics simulations. J Biomol Struct Dyn 2020; 39:1645-1660. [PMID: 32174257 DOI: 10.1080/07391102.2020.1743363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Malignant tumors can be targeted by accounting for their metastatic capabilities. Matrix metalloproteinases (MMPs) are the key players in tumor metastasis facilitating through their proteolytic activities of angiogenesis and extracellular matrix components (ECM) degradation. MMP-2 and MMP-9 being the members of a distinguished class of MMPs more commonly known as gelatinases are the prominent enzymes which are involved in different cancer progression stages. Targeting these isoforms specifically has always been a challenging task due to highly similar structural and functional features among the other members of MMPs with well preserve active sites containing catalytic zinc atom that was the only reason that none of the MMP inhibitor has been successfully marketed for the tumor pathology up till now. Therefore, non-competitive inhibitors with different structural attributed are needed to be evaluated at the molecular level for further experiments. The present study deals with the application of molecular dynamics simulation for the investigation of an alternative pathway for the inhibition of MMP-2 and MMP-9 by a sesquiterpene isolated from Polygonum barbatum which demonstrates the characteristics binding to the S1' subsite of the enzymes followed by in vitro gene expression studies. The simulation results provide information on the possible binding profile producing inhibitory effects imposed by the inhibitor to these enzymes by acquiring different structural and dynamical features. Moreover, thermodynamic quantities based on the computationally intensive thermodynamic integration approach were also obtained in terms of inhibitor binding affinity computed for the inhibitor against MMP-2 and MMP-9 that completely augmented the experimental gene expression study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sehrish Jamal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Tarique Moin
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
4
|
Abstract
Matrix metalloproteinases (MMPs) are structurally related endopeptidases. They are also known as metzincins due to their interaction with zinc ion of the conserved methionine (Met) at the active site. MMPs play an important role in physiological and signaling processes of wound healing, bone resorption and angiogenesis. The structure of MMPs consists of signal peptide, propeptide, catalytic domain, hinge region and hemopexin-like domain. MMP-9 shares high structural and functional similarities with MMP-2, therefore designing selective MMP-9 inhibitors (MMPIs) is challenging. The selectivity can be achieved by targeting S2 subsite of MMP-9 that is having difference with MMP-2. Further, targeting its exosite and protein disulfide isomerase may also provide selective MMPIs. The review highlights the molecular features and basis of MMP-9 enzyme action. The MMPIs reported in the recent years have also been included.
Collapse
|
5
|
Benkhalifa M, Zayani Y, Bach V, Copin H, Feki M, Benkhalifa M, Allal-Elasmi M. Does the dysregulation of matrix metalloproteinases contribute to recurrent implantation failure? Expert Rev Proteomics 2018; 15:311-323. [PMID: 29648896 DOI: 10.1080/14789450.2018.1464915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION The progress in in vitro fertilization (IVF) techniques for infertility management has led to the investigation of embryo implantation site proteins such as Matrix metalloproteinases (MMPs), which may have a key role in embryo-endometrium crosstalk and in the molecular mechanisms of the embryo implantation. Areas covered: Numerous studies have generated much information concerning the relation between the different proteins at the site of implantation such as cytokines, growth factors, adhesion molecules and MMPs. However, the exact role of the MMPs in embryo implantation and the impact of their dysregulation in recurrent implantation failure have yet to be characterized. Expert commentary: The proteomic investigation of the MMPs and their molecular pathways may enable scientists and clinicians to correct this dysregulation (via appropriate means of prevention and treatment), better manage embryo transfer during IVF cycles, and thus increase the ongoing pregnancy rate.
Collapse
Affiliation(s)
- Mustapha Benkhalifa
- a Department of Biochemistry , University of Tunis El Manar , Tunis , Tunisia.,b Faculty of sciences of Bizerte , Carthage University , Jarzouna Bizerte , Tunisia
| | - Yosra Zayani
- a Department of Biochemistry , University of Tunis El Manar , Tunis , Tunisia
| | - Véronique Bach
- c PERITOX-INERIS laboratory, CURS , Picardie University Jules Verne , Amiens , France
| | - Henri Copin
- d Reproductive Medicine and developmental Biology , University Hospital and School of Medicine Picardie University Jules Verne , Amiens , France
| | - Moncef Feki
- a Department of Biochemistry , University of Tunis El Manar , Tunis , Tunisia
| | - Moncef Benkhalifa
- c PERITOX-INERIS laboratory, CURS , Picardie University Jules Verne , Amiens , France.,d Reproductive Medicine and developmental Biology , University Hospital and School of Medicine Picardie University Jules Verne , Amiens , France
| | - Monia Allal-Elasmi
- a Department of Biochemistry , University of Tunis El Manar , Tunis , Tunisia
| |
Collapse
|
6
|
Vasilevskaya T, Khrenova MG, Nemukhin AV, Thiel W. Methodological aspects of QM/MM calculations: A case study on matrix metalloproteinase-2. J Comput Chem 2016; 37:1801-9. [PMID: 27140531 DOI: 10.1002/jcc.24395] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 01/15/2023]
Abstract
We address methodological issues in quantum mechanics/molecular mechanics (QM/MM) calculations on a zinc-dependent enzyme. We focus on the first stage of peptide bond cleavage by matrix metalloproteinase-2 (MMP-2), that is, the nucleophilic attack of the zinc-coordinating water molecule on the carbonyl carbon atom of the scissile fragment of the substrate. This step is accompanied by significant charge redistribution around the zinc cation, bond cleavage, and bond formation. We vary the size and initial geometry of the model system as well as the computational protocol to demonstrate the influence of these choices on the results obtained. We present QM/MM potential energy profiles for a set of snapshots randomly selected from QM/MM-based molecular dynamics simulations and analyze the differences in the computed profiles in structural terms. Since the substrate in MMP-2 is located on the protein surface, we investigate the influence of the thickness of the water layer around the enzyme on the QM/MM energy profile. Thin water layers (0-2 Å) give unrealistic results because of structural reorganizations in the active-site region at the protein surface. A 12 Å water layer appears to be sufficient to capture the effect of the solvent; the corresponding QM/MM energy profile is very close to that obtained from QM/MM/SMBP calculations using the solvent macromolecular boundary potential (SMBP). We apply the optimized computational protocol to explain the origin of the different catalytic activity of the Glu116Asp mutant: the energy barrier for the first step is higher, which is rationalized on structural grounds. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Maria G Khrenova
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.,A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander V Nemukhin
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Reaction mechanism of matrix metalloproteinases with a catalytically active zinc ion studied by the QM(DFTB)/MM simulations. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Vasilevskaya T, Khrenova MG, Nemukhin AV, Thiel W. Mechanism of proteolysis in matrix metalloproteinase-2 revealed by QM/MM modeling. J Comput Chem 2015; 36:1621-30. [PMID: 26132652 DOI: 10.1002/jcc.23977] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 01/11/2023]
Abstract
The mechanism of enzymatic peptide hydrolysis in matrix metalloproteinase-2 (MMP-2) was studied at atomic resolution through quantum mechanics/molecular mechanics (QM/MM) simulations. An all-atom three-dimensional molecular model was constructed on the basis of a crystal structure from the Protein Data Bank (ID: 1QIB), and the oligopeptide Ace-Gln-Gly∼Ile-Ala-Gly-Nme was considered as the substrate. Two QM/MM software packages and several computational protocols were employed to calculate QM/MM energy profiles for a four-step mechanism involving an initial nucleophilic attack followed by hydrogen bond rearrangement, proton transfer, and C-N bond cleavage. These QM/MM calculations consistently yield rather low overall barriers for the chemical steps, in the range of 5-10 kcal/mol, for diverse QM treatments (PBE0, B3LYP, and BB1K density functionals as well as local coupled cluster treatments) and two MM force fields (CHARMM and AMBER). It, thus, seems likely that product release is the rate-limiting step in MMP-2 catalysis. This is supported by an exploration of various release channels through QM/MM reaction path calculations and steered molecular dynamics simulations.
Collapse
Affiliation(s)
| | - Maria G Khrenova
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.,A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander V Nemukhin
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| |
Collapse
|
9
|
Expression of the Cydia pomonella granulovirus matrix metalloprotease enhances Autographa californica multiple nucleopolyhedrovirus virulence and can partially substitute for viral cathepsin. Virology 2015; 481:166-78. [PMID: 25795312 DOI: 10.1016/j.virol.2015.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 11/24/2022]
Abstract
The Cydia pomonella granulovirus open reading frame 46 (CpGV-ORF46) contains predicted domains found in matrix metalloproteases (MMPs), a family of zinc-dependent endopeptidases that degrade extracellular matrix proteins. We showed that CpGV-MMP was active in vitro. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressing CpGV-ORF46 replicated similarly to a control virus lacking CpGV-ORF46 in cultured cells. The effects of AcMNPV expressing CpGV-MMP on virus infection in cultured cells and Trichoplusia ni larvae in the presence or absence of other viral degradative enzymes, cathepsin and chitinase, were evaluated. In the absence of cathepsin and chitinase or cathepsin alone, larval time of death was significantly delayed. This delay was compensated by the expression of CpGV-MMP. CpGV-MMP was also able to promote larvae melanization in the absence of cathepsin and chitinase. In addition, CpGV-MMP partially substituted for cathepsin in larvae liquefaction when chitinase, which is usually retained in the endoplasmic reticulum, was engineered to be secreted.
Collapse
|
10
|
Ishimwe E, Hodgson JJ, Clem RJ, Passarelli AL. Reaching the melting point: Degradative enzymes and protease inhibitors involved in baculovirus infection and dissemination. Virology 2015; 479-480:637-49. [PMID: 25724418 DOI: 10.1016/j.virol.2015.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 01/13/2015] [Accepted: 01/30/2015] [Indexed: 10/24/2022]
Abstract
Baculovirus infection of a host insect involves several steps, beginning with initiation of virus infection in the midgut, followed by dissemination of infection from the midgut to other tissues in the insect, and finally culminating in "melting" or liquefaction of the host, which allows for horizontal spread of infection to other insects. While all of the viral gene products are involved in ultimately reaching this dramatic infection endpoint, this review focuses on two particular types of baculovirus-encoded proteins: degradative enzymes and protease inhibitors. Neither of these types of proteins is commonly found in other virus families, but they both play important roles in baculovirus infection. The types of degradative enzymes and protease inhibitors encoded by baculoviruses are discussed, as are the roles of these proteins in the infection process.
Collapse
Affiliation(s)
- Egide Ishimwe
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506-4901, United States
| | - Jeffrey J Hodgson
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506-4901, United States
| | - Rollie J Clem
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506-4901, United States.
| | - A Lorena Passarelli
- Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506-4901, United States.
| |
Collapse
|
11
|
Abstract
The inhibitory activity of a broad group of known metalloenzyme inhibitors against a panel of metalloenzymes was evaluated. Clinically approved inhibitors were selected as well as several other reported metalloprotein inhibitors in order to represent a broad range of metal binding groups (MBGs), including hydroxamic acid, carboxylate, hydroxypyridinonate, thiol, and N-hydroxyurea functional groups. A panel of metalloenzymes, including carbonic anhydrase (hCAII), several matrix metalloproteinases (MMPs), angiotensin converting enzyme (ACE), histone deacetylase (HDAC-2), and tyrosinase (TY), was selected based on their clinical importance for a range of pathologies. In addition, each inhibitor was evaluated for its ability to remove Fe(3+) from holo-transferrin to gauge the ability of the inhibitors to access Fe(3+) from a primary transport protein. The results show that the metalloenzyme inhibitors are quite selective for their intended targets, suggesting that despite their ability to bind metal ions, metalloprotein inhibitors are not prone to widespread off-target enzyme inhibition activity.
Collapse
Affiliation(s)
- Joshua A Day
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | | |
Collapse
|
12
|
Mishra PK, Givvimani S, Chavali V, Tyagi SC. Cardiac matrix: a clue for future therapy. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2271-6. [PMID: 24055000 DOI: 10.1016/j.bbadis.2013.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/30/2022]
Abstract
Cardiac muscle is unique because it contracts ceaselessly throughout the life and is highly resistant to fatigue. The marvelous nature of the cardiac muscle is attributed to its matrix that maintains structural and functional integrity and provides ambient micro-environment required for mechanical, cellular and molecular activities in the heart. Cardiac matrix dictates the endothelium myocyte (EM) coupling and contractility of cardiomyocytes. The matrix metalloproteinases (MMPs) and their tissue inhibitor of metalloproteinases (TIMPs) regulate matrix degradation that determines cardiac fibrosis and myocardial performance. We have shown that MMP-9 regulates differential expression of micro RNAs (miRNAs), calcium cycling and contractility of cardiomyocytes. The differential expression of miRNAs is associated with angiogenesis, hypertrophy and fibrosis in the heart. MMP-9, which is involved in the degradation of cardiac matrix and induction of fibrosis, is also implicated in inhibition of survival and differentiation of cardiac stem cells (CSC). Cardiac matrix is distinct because it renders mechanical properties and provides a framework essential for differentiation of cardiac progenitor cells (CPC) into specific lineage. Cardiac matrix regulates myocyte contractility by EM coupling and calcium transients and also directs miRNAs required for precise regulation of continuous and synchronized beating of cardiomyocytes that is indispensible for survival. Alteration in the matrix homeostasis due to induction of MMPs, altered expression of specific miRNAs or impaired signaling for contractility of cardiomyocytes leads to catastrophic effects. This review describes the mechanisms by which cardiac matrix regulates myocardial performance and suggests future directions for the development of treatment strategies in cardiovascular diseases.
Collapse
Affiliation(s)
- Paras Kumar Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | |
Collapse
|
13
|
Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L. Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct 2012; 7:18. [PMID: 22731697 PMCID: PMC3482391 DOI: 10.1186/1745-6150-7-18] [Citation(s) in RCA: 376] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/31/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis. RESULTS Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX), and the poorly characterized "Photorhabdus virulence cassettes (PVC)", PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative 'cheating' in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses. CONCLUSIONS Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers.
Collapse
Affiliation(s)
- Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | | | |
Collapse
|
14
|
Hugenberg V, Breyholz HJ, Riemann B, Hermann S, Schober O, Schäfers M, Gangadharmath U, Mocharla V, Kolb H, Walsh J, Zhang W, Kopka K, Wagner S. A new class of highly potent matrix metalloproteinase inhibitors based on triazole-substituted hydroxamates: (radio)synthesis and in vitro and first in vivo evaluation. J Med Chem 2012; 55:4714-27. [PMID: 22540974 DOI: 10.1021/jm300199g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In vivo imaging of MMPs is of great (pre)clinical interest and can potentially be realized with modern three-dimensional and noninvasive in vivo molecular imaging techniques such as positron emission tomography (PET). Consequently, MMP inhibitors (MMPIs) radiolabeled with positron emitting nuclides (e.g., (18)F) represent a suitable tool for the visualization of activated MMPs with PET. On the basis of our previous work and results regarding radiolabeled and unlabeled derivatives of the nonselective MMPIs, we discovered a new class of fluorinated MMPIs with a triazole-substituted hydroxamate substructure. These novel MMPIs are characterized by an increased hydrophilicity compared with the lead structures and excellent MMP inhibition potencies for MMP-2, MMP-8, MMP-9, and MMP-13 (IC(50) = 0.006-107 nM). Therefore, one promising fluorinated triazole-substituted hydroxamate (30b) was selected and resynthesised as its (18)F-labeled version to yield the potential PET radioligand [(18)F]30b. The biodistribution behavior of this novel compound was investigated with small animal PET.
Collapse
Affiliation(s)
- Verena Hugenberg
- Department of Nuclear Medicine, University Hospital Münster , Albert-Schweitzer-Campus 1, Building A1, D-48149 Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wilfong EM, Kogiso Y, Muthukrishnan S, Kowatz T, Du Y, Bowie A, Naismith JH, Hadad CM, Toone EJ, Gustafson TL. A multidisciplinary approach to probing enthalpy-entropy compensation and the interfacial mobility model. J Am Chem Soc 2011; 133:11515-23. [PMID: 21692482 DOI: 10.1021/ja1098287] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, interfacial mobility has gained popularity as a model with which to rationalize both affinity in ligand binding and the often observed phenomenon of enthalpy-entropy compensation. While protein contraction and reduced mobility, as demonstrated by computational and NMR techniques respectively, have been correlated to entropies of binding for a variety of systems, to our knowledge, Raman difference spectroscopy has never been included in these analyses. Here, nonresonance Raman difference spectroscopy, isothermal titration calorimetry, and X-ray crystallography were utilized to correlate protein contraction, as demonstrated by an increase in protein interior packing and decreased residual protein movement, with trends of enthalpy-entropy compensation. These results are in accord with the interfacial mobility model and lend additional credence to this view of protein activity.
Collapse
Affiliation(s)
- Erin M Wilfong
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Matrix metalloproteinase-3 (MMP-3) is a member of the class of zinc-dependent proteases known to degrade the extracellular matrix. MMP-3 activity is regulated at three different levels: gene expression, proteolytic activation of the zymogen, and inhibition by the endogenous tissue inhibitors of metalloproteinase. A line of evidence indicates a role of MMP-3 in neurodegeneration. In neuronal cells, MMP-3 expression is increased in response to cell stress, and the cleaved, active MMP-3 participates in apoptotic signaling. In the extracellular space, MMP-3 triggers microglia to produce proinflammatory and cytotoxic molecules as well as MMP-3, which in turn contribute to neuronal damage. MMP-3 is increased in various experimental models of Parkinson's disease that are produced by selective toxins and by inflammagen, and the neuronal death is attenuated by various ways that inhibit MMP-3. α-Synuclein, whose gene mutations are associated with familial forms of Parkinson's disease, is proteolyzed by MMP-3. Contribution of MMP-3 toward the pathogenesis of Alzheimer's disease and other neurodegenerative diseases has also been suggested. Thus, modulation of MMP-3 expression and/or activity could be of therapeutic value for neurodegenerative diseases.
Collapse
Affiliation(s)
- Eun-Mee Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | | |
Collapse
|
17
|
Abstract
Different common drugs (Meloxicam, Tenoxicam and Piroxicam, and sodium alendronate) were tested both experimental and theoretically as inhibitors of interstitial human collagenase, also known as matrix metalloproteinase 1 (MMP-1). The in vitro collagenase activity, alone and in the presence of inhibitors, was quantified by the reaction with a fluorescent synthetic substrate and measuring the change of emission. Collagenase-inhibitor interaction was studied theoretically by computational calculations. Three among the four tested substances showed moderate inhibiting activity against the human collagenase.
Collapse
|
18
|
Paul Beckett R. Patent Update Oncologic, Endocrine & Metabolic: Oncologic, Endocrine & Metabolic: Recent advances in the field of matrix metalloproteinase inhibitors. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.6.12.1305] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Tochowicz A, Maskos K, Huber R, Oltenfreiter R, Dive V, Yiotakis A, Zanda M, Pourmotabbed T, Bode W, Goettig P. Crystal Structures of MMP-9 Complexes with Five Inhibitors: Contribution of the Flexible Arg424 Side-chain to Selectivity. J Mol Biol 2007; 371:989-1006. [PMID: 17599356 DOI: 10.1016/j.jmb.2007.05.068] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/15/2007] [Accepted: 05/21/2007] [Indexed: 01/09/2023]
Abstract
Human matrix metalloproteinase 9 (MMP-9), also called gelatinase B, is particularly involved in inflammatory processes, bone remodelling and wound healing, but is also implicated in pathological processes such as rheumatoid arthritis, atherosclerosis, tumour growth, and metastasis. We have prepared the inactive E402Q mutant of the truncated catalytic domain of human MMP-9 and co-crystallized it with active site-directed synthetic inhibitors of different binding types. Here, we present the X-ray structures of five MMP-9 complexes with gelatinase-specific, tight binding inhibitors: a phosphinic acid (AM-409), a pyrimidine-2,4,6-trione (RO-206-0222), two carboxylate (An-1 and MJ-24), and a trifluoromethyl hydroxamic acid inhibitor (MS-560). These compounds bind by making a compromise between optimal coordination of the catalytic zinc, favourable hydrogen bond formation in the active-site cleft, and accommodation of their large hydrophobic P1' groups in the slightly flexible S1' cavity, which exhibits distinct rotational conformations of the Pro421 carbonyl group in each complex. In all these structures, the side-chain of Arg424 located at the bottom of the S1' cavity is not defined in the electron density beyond C(gamma), indicating its mobility. However, we suggest that the mobile Arg424 side-chain partially blocks the S1' cavity, which might explain the weaker binding of most inhibitors with a long P1' side-chain for MMP-9 compared with the closely related MMP-2 (gelatinase A), which exhibits a short threonine side-chain at the equivalent position. These novel structural details should facilitate the design of more selective MMP-9 inhibitors.
Collapse
Affiliation(s)
- Anna Tochowicz
- Arbeitsgruppe Proteinaseforschung, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Landon MR, Lancia DR, Yu J, Thiel SC, Vajda S. Identification of hot spots within druggable binding regions by computational solvent mapping of proteins. J Med Chem 2007; 50:1231-40. [PMID: 17305325 DOI: 10.1021/jm061134b] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we apply the computational solvent mapping (CS-Map) algorithm toward the in silico identification of hot spots, that is, regions of protein binding sites that are major contributors to the binding energy and, hence, are prime targets in drug design. The CS-Map algorithm, developed for binding site characterization, moves small organic functional groups around the protein surface and determines their most energetically favorable binding positions. The utility of CS-Map algorithm toward the prediction of hot spot regions in druggable binding pockets is illustrated by three test systems: (1) renin aspartic protease, (2) a set of previously characterized druggable proteins, and (3) E. coli ketopantoate reductase. In each of the three studies, existing literature was used to verify our results. Based on our analyses, we conclude that the information provided by CS-Map can contribute substantially to the identification of hot spots, a necessary predecessor of fragment-based drug discovery efforts.
Collapse
Affiliation(s)
- Melissa R Landon
- Bioinformatics Graduate Program, Boston University, 24 Cummington Street, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
21
|
Biasone A, Tortorella P, Campestre C, Agamennone M, Preziuso S, Chiappini M, Nuti E, Carelli P, Rossello A, Mazza F, Gallina C. α-Biphenylsulfonylamino 2-methylpropyl phosphonates: Enantioselective synthesis and selective inhibition of MMPs. Bioorg Med Chem 2007; 15:791-9. [PMID: 17088065 DOI: 10.1016/j.bmc.2006.10.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/17/2006] [Accepted: 10/23/2006] [Indexed: 11/26/2022]
Abstract
(R)-alpha-Biphenylsulfonylamino 2-methylpropyl phosphonates attain nM potency against several MMPs and are the most effective inhibitors based on phosphonate as zinc binding group. Since their preparation by direct N-acylation of expensive, enantiopure, alpha-aminophosphonic acids proceeds in low yields, we devised and evaluated a stereoselective and straightforward method of synthesis that avoids the unfavourable step of N-acylation. The key intermediate (R)-4-bromophenylsulfonylamino 2-methylpropyl phosphonate 9 was obtained by highly stereoselective addition of dibenzylphosphite to the enantiopure (S)-N-isobutylidene-p-bromobenzenesulfinamide 3, followed by oxidation with m-CPBA. Suzuki coupling of 9 with the desired arylboronic acids, gave the expected biphenylsulfonylamino derivatives in satisfactory yields. Liberation of the phosphonic group by hydrogenolysis led to the desired (R)-alpha-biphenylsulfonylamino 2-methylpropyl phosphonates 14a-i. Screening of the new compounds on MMP-1, -2, -3, -7, -8, -9, -13 and -14 showed IC(50) in the range of nM in most cases.
Collapse
Affiliation(s)
- Alessandro Biasone
- Dipartimento di Scienze del Farmaco, Università "G. d'Annunzio", Via dei Vestini 31, 66013 Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kukacka J, Průsa R, Kotaska K, Pelouch V. Matrix metalloproteinases and their function in myocardium. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005; 149:225-36. [PMID: 16601761 DOI: 10.5507/bp.2005.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A significant number of myocardial diseases are accompanied by increased synthesis and degradation of the extracellular matrix (ECM) as well as by changed maturation and incorporation of ECM components. Important groups of enzymes responsible for both normal and pathological processes in ECM remodeling are matrix metaloproteinases (MMPs). These enzymes share a relatively conserved structure with a number of identifiable modules linked to their specific functions. The most important function of MMPs is the ability to cleave various ECM components; including such rigid molecules as fibrillar collagen molecules. The amount and activity of MMPs in cardiac tissue are regulated by a range of activating and inhibiting processes. Although MMPs play multifarious roles in many myocardial diseases, here we have focused on their function in ischemic cardiac tissue, dilated cardiomyopathy and hypertrophied cardiac tissue. The inhibition of MMPs by means of synthetic inhibitors seems to be a promising strategy in cardiac disease treatment. Their effects on diseased cardiac tissue have been successfully tested in several experimental studies.
Collapse
Affiliation(s)
- Jirí Kukacka
- Department of Clinical Biochemistry and Pathobiochemistry Faculty Hospital Motol and 2nd Medical Faculty of Charles University, Prague, Czech Republic
| | | | | | | |
Collapse
|
23
|
|
24
|
Manzetti S, McCulloch DR, Herington AC, van der Spoel D. Modeling of enzyme-substrate complexes for the metalloproteases MMP-3, ADAM-9 and ADAM-10. J Comput Aided Mol Des 2004; 17:551-65. [PMID: 14713188 DOI: 10.1023/b:jcam.0000005765.13637.38] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The matrix metalloproteases (MMPs) and the ADAMs (A Disintegrin And Metalloprotease domain) are proteolytic enzyme families containing a catalytic zinc ion, that are implicated in a variety of normal and pathological processes involving tissue remodeling and cancer. Synthetic MMP inhibitors have been designed for applications in pathological situations. However, a greater understanding of substrate binding and the catalytic mechanism is required so that more effective and selective inhibitors may be developed for both experimental and clinical purposes. By modeling a natural substrate spanning P4-P4' in complex with the catalytic domains, we aim to compare substrate-specificities between Stromelysin-1 (MMP-3), ADAM-9 and ADAM-10, with the aid of molecular dynamics simulations. Our results show that the substrate retains a favourable antiparallel beta-sheet conformation on the P-side in addition to the well-known orientation of the P'-region of the scissile bond, and that the primary substrate selectivity is dominated by the sidechains in the S1' pocket and the S2/S3 region. ADAM-9 has a hydrophobic residue as the central determinant in the S1' pocket, while ADAM-10 has an amphiphilic residue, which suggests a different primary specificity. The S2/S3 pocket is largely hydrophobic in all three enzymes. Inspired by our molecular dynamics calculations and supported by a large body of literature, we propose a novel, hypothetical, catalytic mechanism where the Zn-ion polarizes the oxygens from the catalytic glutamate to form a nucleophile, leading to a tetrahedral oxyanion anhydride transition state.
Collapse
Affiliation(s)
- Sergio Manzetti
- Centre for Molecular Biotechnology, School of Life Sciences, GPO Box 2434, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | | | | | | |
Collapse
|
25
|
Saghatelian A, Jessani N, Joseph A, Humphrey M, Cravatt BF. Activity-based probes for the proteomic profiling of metalloproteases. Proc Natl Acad Sci U S A 2004; 101:10000-5. [PMID: 15220480 PMCID: PMC454150 DOI: 10.1073/pnas.0402784101] [Citation(s) in RCA: 362] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metalloproteases (MPs) are a large and diverse class of enzymes implicated in numerous physiological and pathological processes, including tissue remodeling, peptide hormone processing, and cancer. MPs are tightly regulated by multiple posttranslational mechanisms in vivo, hindering their functional analysis by conventional genomic and proteomic methods. Here we describe a general strategy for creating activity-based proteomic probes for MPs by coupling a zinc-chelating hydroxamate to a benzophenone photocrosslinker, which promote selective binding and modification of MP active sites, respectively. These probes labeled active MPs but not their zymogen or inhibitor-bound counterparts and were used to identify members of this enzyme class up-regulated in invasive cancer cells and to evaluate the selectivity of MP inhibitors in whole proteomes. Interestingly, the matrix metalloproteinase inhibitor GM6001 (ilomastat), which is currently in clinical development, was found to also target the neprilysin, aminopeptidase, and dipeptidylpeptidase clans of MPs. These results demonstrate that MPs can display overlapping inhibitor sensitivities despite lacking sequence homology and stress the need to evaluate MP inhibitors broadly across this enzyme class to develop agents with suitable target selectivities in vivo. Activity-based profiling offers a powerful means for conducting such screens, as this approach can be carried out directly in whole proteomes, thereby facilitating the discovery of disease-associated MPs concurrently with inhibitors that selectively target these proteins.
Collapse
Affiliation(s)
- Alan Saghatelian
- The Skaggs Institute for Chemical Biology and Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
26
|
Ockey DA, Dotson JL, Struble ME, Stults JT, Bourell JH, Clark KR, Gadek TR. Structure–activity relationships by mass spectrometry: identification of novel MMP-3 inhibitors. Bioorg Med Chem 2004; 12:37-44. [PMID: 14697768 DOI: 10.1016/j.bmc.2003.10.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel class of nonpeptide inhibitors of stromelysin (MMP-3) has been discovered with the use of mass spectrometry. The method relies on the development of structure-activity relationships by mass spectrometry (SAR by MS) and utilizes information derived from the binding of known inhibitors to identify novel inhibitors of a target protein with a minimum of synthetic effort. Noncovalent complexes of known inhibitors with a target protein are analyzed; these inhibitors are deconstructed into sets of fragments which compete for common or overlapping binding sites on the target protein. The binding of each fragment set can be studied independently. With the use of competition studies, novel members of each fragment set are identified from compound libraries that bind to the same site on the target protein. A novel inhibitor of the target protein was then constructed by chemically linking a combination of members of each fragment set in a manner guided by the proximity and orientation of the fragments derived from the known inhibitors. In the case of stromelysin, a novel inhibitor composed of favorably linked fragments was observed to form a 1:1 complex with stromelysin. Compounds that were not linked appropriately formed higher order complexes with stoichiometries of 2:1 or greater. These linked molecules were subsequently assessed for their ability to block stromelysin function in a chromogenic substrate assay.
Collapse
Affiliation(s)
- Denise A Ockey
- Genentech Inc. Department of Bioorganic Chemistry, One DNA Way, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Turk BE, Wong TY, Schwarzenbacher R, Jarrell ET, Leppla SH, Collier RJ, Liddington RC, Cantley LC. The structural basis for substrate and inhibitor selectivity of the anthrax lethal factor. Nat Struct Mol Biol 2003; 11:60-6. [PMID: 14718924 DOI: 10.1038/nsmb708] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Accepted: 10/23/2003] [Indexed: 11/09/2022]
Abstract
Recent events have created an urgent need for new therapeutic strategies to treat anthrax. We have applied a mixture-based peptide library approach to rapidly determine the optimal peptide substrate for the anthrax lethal factor (LF), a metalloproteinase with an important role in the pathogenesis of the disease. Using this approach we have identified peptide analogs that inhibit the enzyme in vitro and that protect cultured macrophages from LF-mediated cytolysis. The crystal structures of LF bound to an optimized peptide substrate and to peptide-based inhibitors provide a rationale for the observed selectivity and may be exploited in the design of future generations of LF inhibitors.
Collapse
Affiliation(s)
- Benjamin E Turk
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wasserman ZR, Duan JJW, Voss ME, Xue CB, Cherney RJ, Nelson DJ, Hardman KD, Decicco CP. Identification of a selectivity determinant for inhibition of tumor necrosis factor-alpha converting enzyme by comparative modeling. CHEMISTRY & BIOLOGY 2003; 10:215-23. [PMID: 12670535 DOI: 10.1016/s1074-5521(03)00044-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Inhibition of tumor necrosis factor-alpha converting enzyme (TACE) is a widespread objective in the search for disease modifying agents to combat rheumatoid arthritis and other autoimmune diseases. Until recently, most of the inhibitors in the literature have shown concomitant activity against the related matrix metalloproteinases (MMPs), producing undesired side effects. Here we describe the successful search for a TACE selectivity mechanism. We built a homology model based on the crystal structure of the related snake venom protein atrolysin. Comparison of the model with crystal structures of MMPs suggested a uniquely shaped S1' pocket that might be exploited for selectivity. A novel gamma-lactam scaffold was used to explore the activity profile of P1' sidechains, resulting in highly selective compounds consistent with this hypothesis. Transferability of the hypothesis was then demonstrated with five other distinct scaffolds.
Collapse
Affiliation(s)
- Zelda R Wasserman
- Structural Biology and Molecular Design Group, Bristol-Myers Squibb Company, Experimental Station, Wilmington, DE 19880, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Pelmenschikov V, Siegbahn PEM. Catalytic mechanism of matrix metalloproteinases: two-layered ONIOM study. Inorg Chem 2002; 41:5659-66. [PMID: 12401069 DOI: 10.1021/ic0255656] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The two-layered ONIOM(B3LYP:MNDO) method has been used to investigate the hydrolytical mechanism of matrix metalloproteinases (MMPs), a large family of zinc-dependent endopeptidases capable of degrading a wide range of macromolecules of the extracellular matrix. Human stromelysin-1 (MMP-3) was chosen as a physiologically important member of the MMP family. As a structural reference, X-ray data on the stromelysin-1 catalytic domain (SCD) complexed to the transition state analogue diphenyl piperidine sulfonamide inhibitor was used. The backbone spacer of 11 residues (201-211) was included in the final model, spanning the catalytic Glu202 residue and the three structural His201,205,211 zinc ligands. The polypeptide framework incorporated, partly accounting for the protein rigidity, reduces the activation free energy slightly by 1.6 kcal/mol. Essentially a single-step catalytic mechanism was obtained, generally following a classical proposal for MMPs. Glu202 here acts as a base, abstracting a proton from the metal-bound reactant water and delivering this proton to the peptide nitrogen. An auxiliary water molecule is suggested to be of crucial importance acting as an electrophilic agent to the carbonyl oxygen of the substrate. The direct inclusion of the auxiliary water molecule decreases the activation free energy by about 5 kcal/mol via donation of a strong hydrogen bond. The calculated activation barrier of 13.1 kcal/mol agrees well with experimental rates.
Collapse
Affiliation(s)
- Vladimir Pelmenschikov
- Department of Physics, Stockholm Center for Physics, Astronomy and Biotechnology (SCFAB), Stockholm University, S-106 91 Stockholm, Sweden
| | | |
Collapse
|
30
|
Rowsell S, Hawtin P, Minshull CA, Jepson H, Brockbank SMV, Barratt DG, Slater AM, McPheat WL, Waterson D, Henney AM, Pauptit RA. Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J Mol Biol 2002; 319:173-81. [PMID: 12051944 DOI: 10.1016/s0022-2836(02)00262-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Matrix metalloproteinases (MMPs) and their inhibitors are important in connective tissue re-modelling in diseases of the cardiovascular system, such as atherosclerosis. Various members of the MMP family have been shown to be expressed in atherosclerotic lesions, but MMP9 is consistently seen in inflammatory atherosclerotic lesions. MMP9 over-expression is implicated in the vascular re-modelling events preceding plaque rupture (the most common cause of acute myocardial infarction). Reduced MMP9 activity, either by genetic manipulation or through pharmacological intervention, has an impact on ventricular re-modelling following infarction. MMP9 activity may therefore represent a key mechanism in the pathogenesis of heart failure. We have determined the crystal structure, at 2.3 A resolution, of the catalytic domain of human MMP9 bound to a peptidic reverse hydroxamate inhibitor as well as the complex of the same inhibitor bound to an active-site mutant (E402Q) at 2.1 A resolution. MMP9 adopts the typical MMP fold. The catalytic centre is composed of the active-site zinc ion, co-ordinated by three histidine residues (401, 405 and 411) and the essential glutamic acid residue (402). The main differences between the catalytic domains of various MMPs occur in the S1' subsite or selectivity pocket. The S1' specificity site in MMP9 is perhaps best described as a tunnel leading toward solvent, as in MMP2 and MMP13, as opposed to the smaller pocket found in fibroblast collagenase and matrilysin. The present structure enables us to aid the design of potent and specific inhibitors for this important cardiovascular disease target.
Collapse
Affiliation(s)
- Siân Rowsell
- AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hall MD, Failes TW, Hibbs DE, Hambley TW. Structural investigations of palladium(II) and platinum(II) complexes of salicylhydroxamic acid. Inorg Chem 2002; 41:1223-8. [PMID: 11874359 DOI: 10.1021/ic010760q] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Complexes of salicylhydroxamic acid (shaH) with palladium(II) and platinum(II) were investigated. The synthesis of [Pt(sha)(2)] was attempted via a number of methods, and ultimately (1)H NMR investigations revealed that salicylhydroxamate would not coordinate to chloro complexes of platinum(II). However, [Pt(sha-H)(PPh(3))(2)] was successfully synthesized and the crystal structure determined (orthorhombic, space group Pca2(1) a = 17.9325(19) A, b = 11.3102(12) A, c = 18.2829(19) A, Z = 4, R = 0.0224). The sha binds via an [O,O] binding mode, in its hydroximate form. In contrast the palladium complex [Pd(sha)(2)] was readily synthesized and crystallized as [Pd(sha)(2)](DMF)(4) in the triclinic space group P(-)1,a = 7.066(1) A, b = 9.842(2) A, c = 12.385(2) A, alpha = 99.213(3)(o), beta = 90.669(3), gamma = 109.767(3)(o), Z = 1, R = 0.037. The unexpected [N,O'] binding mode of the salicylhydroxamate ligand in [Pd(sha)(2)] prompted investigation of the stability of a number of binding modes of salicylhydroxamic acid in [M(sha)(2)] (M = Pd, Pt) by density functional theory, using the B3LYP hybrid functional at the 6-311G* level of theory. Geometry optimizations were carried out for various binding modes of the ligands and their relative energies established. It was found that the [N,O'] mode gave the more stable complex, in accord with experimental observations. Stabilization of hydroxamate binding to platinum is evidently afforded by soft ligands lying trans to them.
Collapse
Affiliation(s)
- Matthew D Hall
- Centre for Heavy Metals Research, School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| | | | | | | |
Collapse
|
32
|
Maggiora GM, Rohrer DC, Mestres J. Comparing protein structures: a Gaussian-based approach to the three-dimensional structural similarity of proteins. J Mol Graph Model 2002; 19:168-78. [PMID: 11381528 DOI: 10.1016/s1093-3263(00)00129-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study describes a new method for comparing three-dimensional protein structures based on an optimal alignment of their steric fields. The method is based upon the use of spherical Gaussian functions located on individual atoms. This representation generates a flexible description of the underlying fold geometry of proteins that can be adjusted by changing the 'width' of the Gaussians. Reducing the width sharpens the representation and leads to a more 'atomlike' description; increasing the width creates a fuzzier representation that preserves the general shape features of the chain fold but with a consequent loss in atomic resolution. The width used in this study is based upon the features of individual atoms and provides a representation that is quite robust with respect to the variety of geometric features typically encountered in the alignment process. In addition, a post-alignment analysis is performed that generates sequence alignments from the corresponding structure alignments. An example, based on five mammalian and fungal matrix metalloproteinase crystal structures (human fibroblast collagenase, neutrophil collagenase, stromelysin, astacin, and adamalysin), illustrates a number of features of the Gaussian-based approach.
Collapse
Affiliation(s)
- G M Maggiora
- Computer-Aided Drug Discovery, Pharmacia Corporation, Kalamazoo, MI 49007-4940, USA.
| | | | | |
Collapse
|
33
|
Grant SK, Green BG, Kozarich JW. Inhibition and Structure-Activity Studies of Methionine Hydroxamic Acid Derivatives with Bacterial Peptide Deformylase. Bioorg Chem 2001; 29:211-22. [PMID: 16256693 DOI: 10.1006/bioo.2001.1214] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2001] [Indexed: 11/22/2022]
Abstract
The posttranslational deformylation of N-formyl-Met-polypeptides by the metalloenzyme, peptide deformylase, is essential for bacterial growth. Methionine hydroxamic acid derivatives were found to inhibit recombinant Escherichia coli peptide deformylase activity containing either zinc or cobalt. The binding of methionine hydroxamate and hydrazide inhibitors to cobalt-substituted deformylase caused spectral changes consistent with the formation of a pentacoordinate metal complex similar to that of actinonin, a psuedopeptide hydroxamate inhibitor. The spectral and kinetic data support the binding of these N-substituted L-methionine derivatives in a reverse orientation with respect to N-formyl-Met-peptide substrates within the active site. Based on this hypothesis a second generation of N-substituted methionyl hydroxamic acids were evaluated and found to possess greater inhibitory potency. These results may provide the basis for the design of more potent and selective deformylase inhibitors as potential antibacterial agents.
Collapse
Affiliation(s)
- S K Grant
- Department of HTS and Automation, Merck & Co., Rahway, New Jersey 07065, USA.
| | | | | |
Collapse
|
34
|
Arza B, De Maeyer M, Félez J, Collen D, Lijnen HR. Critical role of glutamic acid 202 in the enzymatic activity of stromelysin-1 (MMP-3). EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:826-31. [PMID: 11168424 DOI: 10.1046/j.1432-1327.2001.01943.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To test the hypothesis that Glu202, adjacent to the His201 residue that participates in the coordination of Zn(2+) in matrix metalloproteinase-3 (MMP-3 or stromelysin-1), plays a role in its enzymatic activity it was substituted with Ala, Lys or Asp by site-specific mutagenesis. Wild-type proMMP-3, proMMP-3(E202A), proMMP-3(E202K) and proMMP-3(E202D) were expressed in Escherichia coli and purified to apparent homogeneity. Whereas 33-kDa wild-type proMMP-3 (consisting of the propeptide and catalytic domains) was quantitatively converted to 24-kDa active MMP-3 by treatment with p-aminophenyl-mercuric acetate (APMA), proMMP-3(E202A) and proMMP-3 (E202K) were fully resistant to APMA and proMMP-3 (E202D) was quantitatively converted into a 14-kDa species. In contrast, treatment with plasmin quantitatively converted the wild-type and the three mutant proMMP-3 moieties into the corresponding 24-kDa MMP-3 moieties. Biospecific interaction analysis revealed comparable affinity for binding to plasminogen of wild-type and mutant proMMP-3 (K(a) of 2.6-6.3 x 10(6) M(-1)) or MMP-3 (K(a) of 33-58 x 10(6) M(-1)) moieties. The affinity for binding to single-chain urokinase-type plasminogen activator (scu-PA) was also similar for wild-type and mutant proMMP-3 (K(a) of 5.0-6.9 x 10(6) M(-1)) or MMP-3 (K(a) of 37-72 x 10(6) M(-1)) moieties. However, MMP-3(E202A) and MMP-3(E202K) did not hydrolyze plasminogen whereas MMP-3(E202D) showed an activity of 20--30% of wild-type MMP-3. All three mutants were inactive towards scu-PA under conditions where this was quantitatively cleaved by wild-type MMP-3. Furthermore, MMP-3(E202A) and MMP-3(E202K) were inactive toward a fluorogenic substrate and MMP-3 (E202D) displayed about 15% of the activity of wild-type MMP-3. Taken together, these data suggest that Glu202 plays a crucial role in the enzymatic activity of MMP-3.
Collapse
Affiliation(s)
- B Arza
- Center for Molecular and Vascular Biology, University of Leuven, Belgium
| | | | | | | | | |
Collapse
|
35
|
Chung L, Shimokawa K, Dinakarpandian D, Grams F, Fields GB, Nagase H. Identification of the (183)RWTNNFREY(191) region as a critical segment of matrix metalloproteinase 1 for the expression of collagenolytic activity. J Biol Chem 2000; 275:29610-7. [PMID: 10871619 DOI: 10.1074/jbc.m004039200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinase 1 (MMP-1) cleaves types I, II, and III collagen triple helices into (3/4) and (1/4) fragments. To understand the structural elements responsible for this activity, various lengths of MMP-1 segments have been introduced into MMP-3 (stromelysin 1) starting from the C-terminal end. MMP-3/MMP-1 chimeras and variants were overexpressed in Escherichia coli, folded from inclusion bodies, and isolated as zymogens. After activation, recombinant chimeras were tested for their ability to digest triple helical type I collagen at 25 degrees C. The results indicate that the nine residues (183)RWTNNFREY(191) located between the fifth beta-strand and the second alpha-helix in the catalytic domain of MMP-1 are critical for the expression of collagenolytic activity. Mutation of Tyr(191) of MMP-1 to Thr, the corresponding residue in MMP-3, reduced collagenolytic activity about 5-fold. Replacement of the nine residues with those of the MMP-3 sequence further decreased the activity 2-fold. Those variants exhibited significant changes in substrate specificity and activity against gelatin and synthetic substrates, further supporting the notion that this region plays a critical role in the expression of collagenolytic activity. However, introduction of this sequence into MMP-3 or a chimera consisting of the catalytic domain of MMP-3 with the hinge region and the C-terminal hemopexin domain of MMP-1 did not express any collagenolytic activity. It is therefore concluded that RWTNNFREY, together with the C-terminal hemopexin domain, is essential for collagenolytic activity but that additional structural elements in the catalytic domain are also required. These elements probably act in a concerted manner to cleave the collagen triple helix.
Collapse
Affiliation(s)
- L Chung
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Procollagen C-proteinase (PCP) is essential for the cleavage of procollagen to collagen in the extracellular matrix of animals and is, therefore, of major relevance to studies of ectopic deposition of collagen during fibrosis. In this study, we describe the design and synthesis of acidic side chain hydroxamate dipeptide inhibitors of PCP having IC50 values in the range 0.1-10 microM that mimic the location of aspartic acid residues in the P1' and P2' positions (i.e. immediately C-terminal) of the PCP cleavage site in procollagen. Assays of PCP using purified human type I procollagen (a natural substrate of PCP) showed that the structure activity relationship of the inhibitors was improved with a glutamic acid mimic at the P1' position. The results also showed that the presence of an acidic side chain at the P2' position was not necessary for PCP inhibition. Marimastat and BB3103, which are highly effective inhibitors of matrix metalloproteinases and ADAMS proteinases, respectively, did not inhibit PCP.
Collapse
Affiliation(s)
- A Ovens
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, UK
| | | | | |
Collapse
|
37
|
Zhang X, Gonnella NC, Koehn J, Pathak N, Ganu V, Melton R, Parker D, Hu SI, Nam KY. Solution structure of the catalytic domain of human collagenase-3 (MMP-13) complexed to a potent non-peptidic sulfonamide inhibitor: binding comparison with stromelysin-1 and collagenase-1. J Mol Biol 2000; 301:513-24. [PMID: 10926524 DOI: 10.1006/jmbi.2000.3988] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The full three-dimensional structure of the catalytic domain of human collagenase-3 (MMP-13) complexed to a potent, sulfonamide hydroxamic acid inhibitor (CGS 27023) has been determined by NMR spectroscopy. The results reveal a core domain for the protein consisting of three alpha-helices and five beta-sheet strands with an overall tertiary fold similar to the catalytic domains of other matrix metalloproteinase family members. The S1' pocket, which is the major site of hydrophobic binding interaction, was found to be a wide cleft spanning the length of the protein and presenting facile opportunity for inhibitor extension deep into the pocket. Comparison with the reported X-ray structure of collagenase-3 showed evidence of flexibility for the loop region flanking the S1' pocket in both NMR and X-ray data. This flexibility was corroborated by NMR dynamics studies. Inhibitor binding placed the methoxy phenyl ring in the S1' pocket with the remainder of the molecule primarily solvent-exposed. The binding mode for this inhibitor was found to be similar with respect to stromelysin-1 and collagenase-1; however, subtle comparative differences in the interactions between inhibitor and enzyme were observed for the three MMPs that were consistent with their respective binding potencies.
Collapse
Affiliation(s)
- X Zhang
- Novartis Institute for Biomedical Research, 556 Morris Ave., Summit, NJ 07901, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Roderfeld M, Büttner FH, Bartnik E, Tschesche H. Expression of human membrane type 1 matrix metalloproteinase in Pichia pastoris. Protein Expr Purif 2000; 19:369-74. [PMID: 10910727 DOI: 10.1006/prep.2000.1259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A soluble, C-terminal truncated form of human membrane type 1 matrix metalloproteinase (MT1-MMP) containing the hemopexin-like domain was expressed in Pichia pastoris strain KM71. High levels of secreted protein were detected. Although the c-DNA for the proenzyme (Ala(21)-Glu(523) called DeltaTM-MT1-MMP) was cloned, almost only active MT1-MMP (Tyr(112)-Glu(523)) with identical N-terminus as described for the wild-type enzyme was isolated. This active enzyme was highly purified and characterized with respect to its biochemical properties. The recombinant protein showed high stability against autolysis and proteolysis by yeast proteases, although the calculated in vivo half-life is rather low. The biochemical properties of this new MT1-MMP species were compared with the well-characterized catalytic domain (Ile(114)-Ile(318)) of MT1-MMP. The novel form of MT1-MMP exhibited a higher stability against autolysis than the isolated catalytic domain (Ile(114)-Ile(318)).
Collapse
Affiliation(s)
- M Roderfeld
- Faculty of Chemistry/Biochemistry I, University of Bielefeld, Universitätsstrasse 25, Bielefeld, D-33615, Germany
| | | | | | | |
Collapse
|
39
|
Steele DL, El-Kabbani O, Dunten P, Windsor LJ, Kammlott RU, Crowther RL, Michoud C, Engler JA, Birktoft JJ. Expression, characterization and structure determination of an active site mutant (Glu202-Gln) of mini-stromelysin-1. PROTEIN ENGINEERING 2000; 13:397-405. [PMID: 10877850 DOI: 10.1093/protein/13.6.397] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human stromelysin-1 is a member of the matrix metalloproteinase (MMP) family of enzymes. The active site glutamic acid of the MMPs is conserved throughout the family and plays a pivotal role in the catalytic mechanism. The structural and functional consequences of a glutamate to glutamine substitution in the active site of stromelysin-1 were investigated in this study. In contrast to the wild-type enzyme, the glutamine-substituted mutant was not active in a zymogram assay where gelatin was the substrate, was not activated by organomercurials and showed no activity against a peptide substrate. The glutamine-substituted mutant did, however, bind to TIMP-1, the tissue inhibitor of metalloproteinases, after cleavage of the propeptide with trypsin. A second construct containing the glutamine substitution but lacking the propeptide was also inactive in the proteolysis assays and capable of TIMP-1 binding. X-ray structures of the wild-type and mutant proteins complexed with the propeptide-based inhibitor Ro-26-2812 were solved and in both structures the inhibitor binds in an orientation the reverse of that of the propeptide in the pro-form of the enzyme. The inhibitor makes no specific interactions with the active site glutamate and a comparison of the wild-type and mutant structures revealed no major structural changes resulting from the glutamate to glutamine substitution.
Collapse
Affiliation(s)
- D L Steele
- Department of Biochemistry and Molecular Genetics, Oral Cancer Research Center and Research Center in Oral Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Johnson LL, Pavlovsky AG, Johnson AR, Janowicz JA, Man CF, Ortwine DF, Purchase CF, White AD, Hupe DJ. A rationalization of the acidic pH dependence for stromelysin-1 (Matrix metalloproteinase-3) catalysis and inhibition. J Biol Chem 2000; 275:11026-33. [PMID: 10753905 DOI: 10.1074/jbc.275.15.11026] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pH dependence of matrix metalloproteinase (MMP) catalysis is described by a broad bell-shaped curve, indicating the involvement of two unspecified ionizable groups in proteolysis. Stromelysin-1 has a third pK(a) near 6, resulting in a uniquely sharp acidic catalytic optimum, which has recently been attributed to His(224). This suggests the presence of a critical, but unidentified, S1' substructure. Integrating biochemical characterizations of inhibitor-enzyme interactions with active site topography from corresponding crystal structures, we isolated contributions to the pH dependence of catalysis and inhibition of active site residues Glu(202) and His(224). The acidic pK(a) 5.6 is attributed to the Glu(202).zinc.H(2)O complex, consistent with a role for the invariant active site Glu as a general base in MMP catalysis. The His(224)-dependent substructure is identified as a tripeptide (Pro(221)-Leu(222)-Tyr(223)) that forms the substrate cleft lower wall. Substrate binding induces a beta-conformation in this sequence, which extends and anchors the larger beta-sheet of the enzyme. substrate complex and appears to be essential for productive substrate binding. Because the PXY tripeptide is strictly conserved among MMPs, this "beta-anchor" may represent a common motif required for macromolecular substrate hydrolysis. The striking acidic profile of stromelysin-1 defined by the combined ionization of Glu(202) and His(224) allows the design of highly selective inhibitors.
Collapse
Affiliation(s)
- L L Johnson
- Department of Cancer Research, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Co., Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ottl J, Gabriel D, Murphy G, Knäuper V, Tominaga Y, Nagase H, Kröger M, Tschesche H, Bode W, Moroder L. Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases. CHEMISTRY & BIOLOGY 2000; 7:119-32. [PMID: 10662694 DOI: 10.1016/s1074-5521(00)00077-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND The general consensus is that interstitial collagens are digested by collagenases and denatured collagen by gelatinases, although processing of fibrillar and acetic-acid-soluble collagen by gelatinase A has also been reported. One of the main difficulties in studying the mechanism of action of these matrix metalloproteinases (MMPs) derives from the physicochemical properties of the natural triple-helical collagen, which makes it difficult to handle. RESULTS Synthetic heterotrimeric collagenous peptides that contain the collagenase cleavage site of human collagen type I and differ in the thermal stability of the triple-helical fold were used to mimic natural collagen and gelatin, respectively. Results from digestion of these substrates by fibroblast and neutrophil collagenases (MMP-1 and MMP-8), as well as by gelatinase A (MMP-2), confirmed that the two classes of enzymes operate within the context of strong conformational dependency of the substrates. It was also found that gelatinases and collagenases exhibit two distinct proteolytic mechanisms: gelatinase digests the gelatin-like heterotrimer rapidly in individual steps with intermediate releases of partially processed substrate into the medium, whereas collagenases degrade the triple-helical heterotrimer by trapping it until scission through all three alpha chains is achieved. CONCLUSIONS The results confirm the usefulness of synthetic heterotrimeric collagenous peptides in the folded and unfolded state as mimics of the natural substrates collagen and gelatin, respectively, to gain a better a insight into the proteolytic mechanisms of matrix metalloproteinases.
Collapse
Affiliation(s)
- J Ottl
- Max-Planck-Institut für Biochemie, Martinsried, D-82152, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
O'Brien PM, Ortwine DF, Pavlovsky AG, Picard JA, Sliskovic DR, Roth BD, Dyer RD, Johnson LL, Man CF, Hallak H. Structure-activity relationships and pharmacokinetic analysis for a series of potent, systemically available biphenylsulfonamide matrix metalloproteinase inhibitors. J Med Chem 2000; 43:156-66. [PMID: 10649971 DOI: 10.1021/jm9903141] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of biphenylsulfonamide derivatives of (S)-2-(biphenyl-4-sulfonylamino)-3-methylbutyric acid (5) were prepared and evaluated for their ability to inhibit matrix metalloproteinases (MMPs). For this series of compounds, our objective was to systematically replace substituents appended to the biphenyl and alpha-position of 5 with structurally diverse functionalities to assess the effects these changes have on biological and pharmacokinetic activity. The ensuing structure-activity relationship (SAR) studies showed that biphenylsulfonamides substituted with bromine in the 4'-position (11c) significantly improved in vitro activity and exhibited superior pharmacokinetics (C(max), t(1/2), AUCs), relative to compound 5. Varying the lipophilicity of the alpha-position by replacing the isopropyl group of 11c with a variety of substituents, in general, maintained potency versus MMP-2, -3, and -13 but decreased the oral systemic availability. Subsequent evaluation of its enantiomer, 11c', showed that both compounds were equally effective MMP inhibitors. In contrast, the corresponding hydroxamic acid enantiomeric pair, 16a (S-isomer) and 16a' (R-isomer), stereoselectivity inhibited MMPs. For the first time in this series, 16a' provided nanomolar potency against MMP-1, -7, and -9 (IC(50)'s = 110, 140, and 18 nM, respectively), whereas 16a was less potent against these MMPs (IC(50)'s = 24, 78, and 84 microM, respectively). However, unlike 11c, compound 16a' afforded very low plasma concentrations following a single 5 mg/kg oral dose in rat. Subsequent X-ray crystal structures of the catalytic domain of stromelysin (MMP-3CD) complexed with inhibitors from closely related series established the differences in the binding mode of carboxylic acid-based inhibitors (11c,c') relative to the corresponding hydroxamic acids (16a,a').
Collapse
Affiliation(s)
- P M O'Brien
- Department of Chemistry, Parke-Davis Pharmaceutical Research, Division of Warner Lambert Company, 2800 Plymouth Road, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang Y, Johnson AR, Ye QZ, Dyer RD. Catalytic activities and substrate specificity of the human membrane type 4 matrix metalloproteinase catalytic domain. J Biol Chem 1999; 274:33043-9. [PMID: 10551873 DOI: 10.1074/jbc.274.46.33043] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane type (MT) matrix metalloproteinases (MMPs) are recently recognized members of the family of Zn(2+)- and Ca(2+)-dependent MMPs. To investigate the proteolytic capabilities of human MT4-MMP (i.e. MMP-17), we have cloned DNA encoding its catalytic domain (CD) from a breast carcinoma cDNA library. Human membrane type 4 MMP CD (MT4-MMPCD) protein, expressed as inclusion bodies in Escherichia coli, was purified to homogeneity and refolded in the presence of Zn(2+) and Ca(2+). While MT4-MMPCD cleaved synthetic MMP substrates Ac-PLG-[2-mercapto-4-methylpentanoyl]-LG-OEt and Mca-PLGL-Dpa-AR-NH(2) with modest efficiency, it catalyzed with much higher efficiency the hydrolysis of a pro-tumor necrosis factor-alpha converting enzyme synthetic substrate, Mca-PLAQAV-Dpa-RSSSR-NH(2). Catalytic efficiency with the pro-tumor necrosis factor-alpha converting enzyme substrate was maximal at pH 7.4 and was modulated by three ionizable enzyme groups (pK(a3) = 6.2, pK(a2) = 8.3, and pK(a1) = 10.6). MT4-MMPCD cleaved gelatin but was inactive toward type I collagen, type IV collagen, fibronectin, and laminin. Like all known MT-MMPs, MT4-MMPCD was also able to activate 72-kDa progelatinase A to its 68-kDa form. EDTA, 1,10-phenanthroline, reference hydroxamic acid MMP inhibitors, tissue inhibitor of metalloproteinases-1, and tissue inhibitor of metalloproteinases-2 all potently blocked MT4-MMPCD enzymatic activity. MT4-MMP is, therefore, a competent Zn(2+)-dependent MMP with unique specificity among synthetic substrates and the capability to both degrade gelatin and activate progelatinase A.
Collapse
Affiliation(s)
- Y Wang
- Department of Biochemistry, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan 48105, USA
| | | | | | | |
Collapse
|
44
|
Chen L, Rydel TJ, Gu F, Dunaway CM, Pikul S, Dunham KM, Barnett BL. Crystal structure of the stromelysin catalytic domain at 2.0 A resolution: inhibitor-induced conformational changes. J Mol Biol 1999; 293:545-57. [PMID: 10543949 DOI: 10.1006/jmbi.1999.3147] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinases are believed to play an important role in pathological conditions such as osteoarthritis, rheumatoid arthritis and tumor invasion. Stromelysin is a zinc-dependent proteinase and a member of the matrix metalloproteinase family. We have solved the crystal structure of an active uninhibited form of truncated stromelysin and a complex with a hydroxamate-based inhibitor. The catalytic domain of the enzyme of residues 83-255 is an active fragment. Two crystallographically independent molecules, A and B, associate as a dimer in the crystals. There are three alpha-helices and one twisted, five-strand beta-sheet in each molecule, as well as one catalytic Zn, one structural Zn and three structural Ca ions. The active site of stromelysin is located in a large, hydrophobic cleft. In particular, the S1' specificity site is a deep and highly hydrophobic cavity. The structure of a hydroxamate-phosphinamide-type inhibitor-bound stromelysin complex, formed by diffusion soaking, has been solved as part of our structure-based design strategy. The most important feature we observed is an inhibitor-induced conformational change in the S1' cavity which is triggered by Tyr223. In the uninhibited enzyme structure, Tyr223 completely covers the S1' cavity, while in the complex, the P1' group of the inhibitor displaces the Tyr223 in order to fit into the S1' cavity. Furthermore, the displacement of Tyr223 induces a major conformational change of the entire loop from residue 222 to residue 231. This finding provides direct evidence that Tyr223 plays the role of gatekeeper of the S1' cavity. Another important intermolecular interaction occurs at the active sit of molecule A, in which the C-terminal tail (residues 251-255) from molecule B inserts. The C-terminal tail interacts extensively with the active site of molecule A, and the last residue (Thr255) coordinated to the catalytic zinc as the fourth ligand, much like a product inhibitor would. The inhibitor-induced conformational change and the intermolecular C-terminal-zinc coordination are significant in understanding the structure-activity relationships of the enzyme.
Collapse
Affiliation(s)
- L Chen
- The Procter & Gamble Company, Health Care Research Center, Mason, OH, 45040-9462, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Botos I, Meyer E, Swanson SM, Lemaître V, Eeckhout Y, Meyer EF. Structure of recombinant mouse collagenase-3 (MMP-13). J Mol Biol 1999; 292:837-44. [PMID: 10525409 DOI: 10.1006/jmbi.1999.3068] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The matrix metalloproteinases are crucial in the physiological and pathological degradation of the mammalian extracellular matrix, including breast tumours, and osteoarthritic cartilage. These enzymes are classified according to their matrix substrate specificity. Collagenase-3 (MMP-13) is a member of this family and preferentially cleaves type II collagen, cartilage, fibronectin and aggrecan. Collagenase-3 is normally expressed in hypertrophic chondrocytes, periosteal cells, and osteoblasts during bone development. The structure of the catalytic domain of recombinant mouse collagenase-3, complexed to the hydroxamate inhibitor (RS-113456), is reported at 2.0 A resolution. Molecular replacement and weak phasing information from a single derivative determined the structure. Neither molecular replacement nor derivative methods had a sufficient radius of convergence to yield a refinable structure. The structure illuminates the atomic zinc ion interactions with functional groups in the active site, emphasizing zinc ligation and the very voluminous hydrophobic P1' group for the inhibitor potency. The structure provides insight into the specificity of this enzyme, facilitating design of specific inhibitors to target various diseases.
Collapse
Affiliation(s)
- I Botos
- Department of Biochemistry and Biophysics, Texas A&M University, TX, 77843-2128, USA
| | | | | | | | | | | |
Collapse
|
46
|
Whittaker M, Floyd CD, Brown P, Gearing AJ. Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev 1999; 99:2735-76. [PMID: 11749499 DOI: 10.1021/cr9804543] [Citation(s) in RCA: 755] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- M Whittaker
- Departments of Medicinal Chemistry, Biology, and Clinical Research, British Biotech Pharmaceuticals Limited, Oxford, U.K
| | | | | | | |
Collapse
|
47
|
Johnson LL, Bornemeier DA, Janowicz JA, Chen J, Pavlovsky AG, Ortwine DF. Effect of species differences on stromelysin-1 (MMP-3) inhibitor potency. An explanation of inhibitor selectivity using homology modeling and chimeric proteins. J Biol Chem 1999; 274:24881-7. [PMID: 10455161 DOI: 10.1074/jbc.274.35.24881] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For an animal model to predict a compound's potential for treating human disease, inhibitor interactions with the cognate enzymes of separate species must be comparable. Rabbit and human isoforms of stromelysin-1 are highly homologous, yet there are clear and significant compound-specific differences in inhibitor potencies between these two enzymes. Using crystal structures of discordant inhibitors complexed with the human enzyme, we generated a rabbit enzyme homology model that was used to identify two unmatched residues near the active site that could explain the observed disparities. To test these observations, we designed and synthesized three chimeric mutants of the human enzyme containing the single (H224N and L226F) and double (H224N/L226F) mutations. A comparison of inhibitor potencies among the mutant and wild-type enzymes shows that the mutation of a single amino acid in the human enzyme, histidine 224 to asparagine, is sufficient to change the selectivity profile of the mutant to that of the rabbit isoform. These studies emphasize the importance of considering species differences, which can result from even minor protein sequence variations, for the critical enzymes in an animal disease model. Homology modeling provides a tool to identify key differences in isoforms that can significantly affect native enzyme activity.
Collapse
Affiliation(s)
- L L Johnson
- Department of Cancer Research, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- H Nagase
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | |
Collapse
|
49
|
Pavlovsky AG, Williams MG, Ye QZ, Ortwine DF, Purchase CF, White AD, Dhanaraj V, Roth BD, Johnson LL, Hupe D, Humblet C, Blundell TL. X-ray structure of human stromelysin catalytic domain complexed with nonpeptide inhibitors: implications for inhibitor selectivity. Protein Sci 1999; 8:1455-62. [PMID: 10422833 PMCID: PMC2144373 DOI: 10.1110/ps.8.7.1455] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Effective inhibitors of matrix metalloproteinases (MMPs), a family of connective tissue-degrading enzymes, could be useful for the treatment of diseases such as cancer, multiple sclerosis, and arthritis. Many of the known MMP inhibitors are derived from peptide substrates, with high potency in vitro but little selectivity among MMPs and poor bioavailability. We have discovered nonpeptidic MMP inhibitors with improved properties, and report here the crystal structures of human stromelysin-1 catalytic domain (SCD) complexed with four of these inhibitors. The structures were determined and refined at resolutions ranging from 1.64 to 2.0 A. Each inhibitor binds in the active site of SCD such that a bulky diphenyl piperidine moiety penetrates a deep, predominantly hydrophobic S'1 pocket. The active site structure of the SCD is similar in all four inhibitor complexes, but differs substantially from the peptide hydroxamate complex, which has a smaller side chain bound in the S'1 pocket. The largest differences occur in the loop forming the "top" of this pocket. The occupation of these nonpeptidic inhibitors in the S'1 pocket provides a structural basis to explain their selectivity among MMPs. An analysis of the unique binding mode predicts structural modifications to design improved MMP inhibitors.
Collapse
Affiliation(s)
- A G Pavlovsky
- Department of Chemistry, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bode W, Fernandez-Catalan C, Grams F, Gomis-Rüth FX, Nagase H, Tschesche H, Maskos K. Insights into MMP-TIMP interactions. Ann N Y Acad Sci 1999; 878:73-91. [PMID: 10415721 DOI: 10.1111/j.1749-6632.1999.tb07675.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The proteolytic activity of the matrix metalloproteinases (MMPs) involved in extracellular matrix degradation must be precisely regulated by their endogenous protein inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance can result in serious diseases such as arthritis and tumor growth and metastasis. Knowledge of the tertiary structures of the proteins involved in such processes is crucial for understanding their functional properties and to interfere with associated dysfunctions. Within the last few years, several three-dimensional structures have been determined showing the domain organization, the polypeptide fold, and the main specificity determinants of the MMPs. Complexes of the catalytic MMP domains with various synthetic inhibitors enabled the structure-based design and improvement of high-affinity ligands, which might be elaborated into drugs. Very recently, structural information also became available for some TIMP structures and MMP-TIMP complexes, and these new data elucidated important structural features that govern the enzyme-inhibitor interaction.
Collapse
Affiliation(s)
- W Bode
- Max-Planck-Institut für Biochemie, Martinsried, Germany.
| | | | | | | | | | | | | |
Collapse
|