1
|
Dhibar S, Jana B. Accurate Prediction of Antifreeze Protein from Sequences through Natural Language Text Processing and Interpretable Machine Learning Approaches. J Phys Chem Lett 2023; 14:10727-10735. [PMID: 38009833 DOI: 10.1021/acs.jpclett.3c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Antifreeze proteins (AFPs) bind to growing iceplanes owing to their structural complementarity nature, thereby inhibiting the ice-crystal growth by thermal hysteresis. Classification of AFPs from sequence is a difficult task due to their low sequence similarity, and therefore, the usual sequence similarity algorithms, like Blast and PSI-Blast, are not efficient. Here, a method combining n-gram feature vectors and machine learning models to accelerate the identification of potential AFPs from sequences is proposed. All these n-gram features are extracted from the K-mer counting method. The comparative analysis reveals that, among different machine learning models, Xgboost outperforms others in predicting AFPs from sequence when penta-mers are used as a feature vector. When tested on an independent dataset, our method performed better compared to other existing ones with sensitivity of 97.50%, recall of 98.30%, and f1 score of 99.10%. Further, we used the SHAP method, which provides important insight into the functional activity of AFPs.
Collapse
Affiliation(s)
- Saikat Dhibar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
2
|
Davies PL. Reflections on antifreeze proteins and their evolution. Biochem Cell Biol 2022; 100:282-291. [PMID: 35580352 DOI: 10.1139/bcb-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discovery of radically different antifreeze proteins (AFPs) in fishes during the 1970s and 1980s suggested that these proteins had recently and independently evolved to protect teleosts from freezing in icy seawater. Early forays into the isolation and characterization of AFP genes in these fish showed they were massively amplified, often in long tandem repeats. The work of many labs in the 1980s onward led to the discovery and characterization of AFPs in other kingdoms, such as insects, plants, and many different microorganisms. The distinct ice-binding property that these ice-binding proteins (IBPs) share has facilitated their purification through adsorption to ice, and the ability to produce recombinant versions of IBPs has enabled their structural characterization and the mapping of their ice-binding sites (IBSs) using site-directed mutagenesis. One hypothesis for their ice affinity is that the IBS organizes surface waters into an ice-like pattern that freezes the protein onto ice. With access now to a rapidly expanding database of genomic sequences, it has been possible to trace the origins of some fish AFPs through the process of gene duplication and divergence, and to even show the horizontal transfer of an AFP gene from one species to another.
Collapse
Affiliation(s)
- Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
3
|
Tan M, Ye J, Xie J. Freezing-induced myofibrillar protein denaturation: Role of pH change and freezing rate. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112381] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
4
|
Baskaran A, Kaari M, Venugopal G, Manikkam R, Joseph J, Bhaskar PV. Anti freeze proteins (Afp): Properties, sources and applications - A review. Int J Biol Macromol 2021; 189:292-305. [PMID: 34419548 DOI: 10.1016/j.ijbiomac.2021.08.105] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
Extreme cold marine and freshwater temperatures (below 4 °C) induce massive deterioration to the cell membranes of organisms resulting in the formation of ice crystals, consequently causing organelle damage or cell death. One of the adaptive mechanisms organisms have evolved to thrive in cold environments is the production of antifreeze proteins with the functional capabilities to withstand frigid temperatures. Antifreeze proteins are extensively identified in different cold-tolerant species and they facilitate the persistence of cold-adapted organisms by decreasing the freezing point of their body fluids. Various structurally diverse types of antifreeze proteins detected possess the ability to modify ice crystal growth by thermal hysteresis and ice recrystallization inhibition. The unique properties of antifreeze proteins have made them a promising resource in industry, biomedicine, food storage and cryobiology. This review collates the findings of the various studies carried out in the past and the recent developments observed in the properties, functional mechanisms, classification, distinct sources and the ever-increasing applications of antifreeze proteins. This review also summarizes the possibilities of the way forward to identify new avenues of research on anti-freeze proteins.
Collapse
Affiliation(s)
- Abirami Baskaran
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Manigundan Kaari
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Gopikrishnan Venugopal
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Radhakrishnan Manikkam
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India.
| | - Jerrine Joseph
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Parli V Bhaskar
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama 403804, Goa, India
| |
Collapse
|
5
|
Pal P, Chakraborty S, Jana B. Differential Hydration of Ice‐Binding Surface of Globular and Hyperactive Antifreeze Proteins. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Prasun Pal
- School of Chemical Sciences Indian Association for the Cultivation of Science, Jadavpur Kolkata 700032 India
| | | | - Biman Jana
- School of Chemical Sciences Indian Association for the Cultivation of Science, Jadavpur Kolkata 700032 India
| |
Collapse
|
6
|
Khan NMMU, Arai T, Tsuda S, Kondo H. Characterization of microbial antifreeze protein with intermediate activity suggests that a bound-water network is essential for hyperactivity. Sci Rep 2021; 11:5971. [PMID: 33727595 PMCID: PMC7966756 DOI: 10.1038/s41598-021-85559-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
Antifreeze proteins (AFPs) inhibit ice growth by adsorbing onto specific ice planes. Microbial AFPs show diverse antifreeze activity and ice plane specificity, while sharing a common molecular scaffold. To probe the molecular mechanisms responsible for AFP activity, we here characterized the antifreeze activity and crystal structure of TisAFP7 from the snow mold fungus Typhula ishikariensis. TisAFP7 exhibited intermediate activity, with the ability to bind the basal plane, compared with a hyperactive isoform TisAFP8 and a moderately active isoform TisAFP6. Analysis of the TisAFP7 crystal structure revealed a bound-water network arranged in a zigzag pattern on the surface of the protein's ice-binding site (IBS). While the three AFP isoforms shared the water network pattern, the network on TisAFP7 IBS was not extensive, which was likely related to its intermediate activity. Analysis of the TisAFP7 crystal structure also revealed the presence of additional water molecules that form a ring-like network surrounding the hydrophobic side chain of a crucial IBS phenylalanine, which might be responsible for the increased adsorption of AFP molecule onto the basal plane. Based on these observations, we propose that the extended water network and hydrophobic hydration at IBS together determine the TisAFP activity.
Collapse
Affiliation(s)
- N M-Mofiz Uddin Khan
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Department of Chemistry, Dhaka University of Engineering and Technology, Gazipur Gazipur, 1700, Bangladesh
| | - Tatsuya Arai
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Sakae Tsuda
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1, Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido, 062-8517, Japan.,OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8563, Japan
| | - Hidemasa Kondo
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan. .,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1, Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido, 062-8517, Japan.
| |
Collapse
|
7
|
Huang Q, Hu R, Hui zhu, Peng C, Chen L. Expression of multi-domain type III antifreeze proteins from the Antarctic eelpout (Lycodichths dearborni) in transgenic tobacco plants improves cold resistance. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2019.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture. Biomolecules 2020; 10:biom10121649. [PMID: 33317024 PMCID: PMC7764015 DOI: 10.3390/biom10121649] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Antifreeze proteins (AFPs) are specific proteins, glycopeptides, and peptides made by different organisms to allow cells to survive in sub-zero conditions. AFPs function by reducing the water’s freezing point and avoiding ice crystals’ growth in the frozen stage. Their capability in modifying ice growth leads to the stabilization of ice crystals within a given temperature range and the inhibition of ice recrystallization that decreases the drip loss during thawing. This review presents the potential applications of AFPs from different sources and types. AFPs can be found in diverse sources such as fish, yeast, plants, bacteria, and insects. Various sources reveal different α-helices and β-sheets structures. Recently, analysis of AFPs has been conducted through bioinformatics tools to analyze their functions within proper time. AFPs can be used widely in various aspects of application and have significant industrial functions, encompassing the enhancement of foods’ freezing and liquefying properties, protection of frost plants, enhancement of ice cream’s texture, cryosurgery, and cryopreservation of cells and tissues. In conclusion, these applications and physical properties of AFPs can be further explored to meet other industrial players. Designing the peptide-based AFP can also be done to subsequently improve its function.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (A.E.); (T.C.L.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (A.E.); (T.C.L.)
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Enzyme Technology Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia; (A.E.); (T.C.L.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Enzyme Technology Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-39769-6710; Fax: +60-39769-7590
| |
Collapse
|
9
|
Zhang Y, Hu W, Sun J, Li Y, Chen C. Hydrogen bonds and hydrate interaction between RiAFP and water revealed by molecular dynamics simulations. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Sturtivant A, Callanan A. The use of antifreeze proteins to modify pore structure in directionally frozen alginate sponges for cartilage tissue engineering. Biomed Phys Eng Express 2020; 6:055016. [PMID: 33444247 DOI: 10.1088/2057-1976/aba7aa] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
It is thought that osteoarthritis is one of the world's leading causes of disability, with over 8.75 million people in the UK alone seeking medical treatment in 2013. Although a number of treatments are currently in use, a new wave of tissue engineered structures are being investigated as potential solutions for early intervention. One of the key challenges seen in cartilage tissue engineering is producing constructs that can support the formation of articular cartilage, rather than mechanically inferior fibrocartilage. Some research has suggested that mimicking structural properties of the natural cartilage can be used to enhance this response. Herein directional freezing was used to fabricate scaffolds with directionally aligned pores mimicking the mid-region of cartilage, anti-freeze proteins were used to modify the porous structure, which in turn effected the mechanical properties. Pore areas at the tops of the scaffolds were 180.46 ± 44.17 μm2 and 65.66 ± 36.20 μm2 for the AFP free and the AFP scaffolds respectively, and for the bases of the scaffolds were 91.22 ± 19.05 μm2 and 69.41 ± 21.94 μm2 respectively. Scaffolds were seeded with primary bovine chondrocytes, with viability maintained over the course of the study, and regulation of key genes was observed.
Collapse
Affiliation(s)
- Alexander Sturtivant
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Faraday Building, King's Buildings, EH9 3JL, United Kingdom
| | | |
Collapse
|
11
|
Arsiccio A, Pisano R. The Ice-Water Interface and Protein Stability: A Review. J Pharm Sci 2020; 109:2116-2130. [DOI: 10.1016/j.xphs.2020.03.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022]
|
12
|
|
13
|
Maddah M, Maddah M, Peyvandi K. The influence of a type III antifreeze protein and its mutants on methane hydrate adsorption-inhibition: a molecular dynamics simulation study. Phys Chem Chem Phys 2019; 21:21836-21846. [PMID: 31552400 DOI: 10.1039/c9cp03833g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antifreeze proteins (AFPs) inhibit ice growth in various organisms at subzero temperature. Recently, AFPs as a hydrate inhibitor have been a topic of intense discussion, while the detailed mechanism remains obscure. The present work aims to explore molecular insight into the adsorption and inhibition of an AFP III on methane hydrate. Three polar, hydrophilic, and neutral amino acids (Asn14, Thr18, and Gln44) are mutated to elucidate the molecular mechanism of AFP III antifreeze activity. Another triple mutation is also designed to investigate the effect of the side chain. Atomistic molecular dynamics simulations provide detailed structural and dynamical aspects of protein residues and water molecules at the hydrate/water interface. Initially, it was proposed that the AFP III operates by the adsorption-inhibition mechanism on hydrates, almost similar to that of ice. The exchange of amide and hydroxyl groups by mutagenesis alters the shape of the side chain and the capability of hydrogen bonding and demonstrates that hydrogen bonds are not directly responsible for the AFP III antifreeze activity. Moreover, we deciphered that the length of the pendant group is an important factor in the entrapment of the AFP III on the hydrate cages, which is compatible with van der Waals interactions between the side chains and hydrate surface. The results suggest that this interaction is sensitive to the geometry and shape of the hydrate-binding surface (HBS) of the AFP, which implies that the interface between hydrates and the AFP is relatively rigid.
Collapse
Affiliation(s)
- Mitra Maddah
- Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran.
| | | | | |
Collapse
|
14
|
Zanetti-Polzi L, Biswas AD, Del Galdo S, Barone V, Daidone I. Hydration Shell of Antifreeze Proteins: Unveiling the Role of Non-Ice-Binding Surfaces. J Phys Chem B 2019; 123:6474-6480. [PMID: 31280567 DOI: 10.1021/acs.jpcb.9b06375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antifreeze proteins (AFPs) have the ability to inhibit ice growth by binding to ice nuclei. Their ice-binding mechanism is still unclear, yet the hydration layer is thought to play a fundamental role. Here, we use molecular dynamics simulations to characterize the hydration shell of two AFPs and two non-AFPs. The calculated shell thickness and density of the AFPs do not feature any relevant difference with respect to the non-AFPs. Moreover, the hydration shell density is always higher than the bulk density and, thus, no low-density, ice-like layer is detected at the ice-binding surface (IBS) of AFPs. Instead, we observe local water-density differences in AFPs between the IBS (lower density) and the non-IBS (higher density). The lower solvent density at the ice-binding site can pave the way to the protein binding to ice nuclei, while the higher solvent density at the non-ice-binding surfaces might provide protection against ice growth.
Collapse
Affiliation(s)
- Laura Zanetti-Polzi
- Department of Physical and Chemical Sciences , University of L'Aquila , via Vetoio (Coppito 1) , 67010 L'Aquila , Italy
| | - Akash Deep Biswas
- Department of Physical and Chemical Sciences , University of L'Aquila , via Vetoio (Coppito 1) , 67010 L'Aquila , Italy.,Scuola Normale Superiore di Pisa , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy
| | - Sara Del Galdo
- Scuola Normale Superiore di Pisa , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy.,Institute for the Chemistry of Organometallic Compounds , Italian National Council for Research (ICCOMCNR) , Via G. Moruzzi 1 , I-6124 Pisa , Italy
| | - Vincenzo Barone
- Scuola Normale Superiore di Pisa , Piazza dei Cavalieri 7 , I-56126 Pisa , Italy.,National Institute for Nuclear Physics (INFN) Pisa Section , Largo BrunoPontecorvo 3 , 56127 Pisa , Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences , University of L'Aquila , via Vetoio (Coppito 1) , 67010 L'Aquila , Italy
| |
Collapse
|
15
|
Hudait A, Qiu Y, Odendahl N, Molinero V. Hydrogen-Bonding and Hydrophobic Groups Contribute Equally to the Binding of Hyperactive Antifreeze and Ice-Nucleating Proteins to Ice. J Am Chem Soc 2019; 141:7887-7898. [DOI: 10.1021/jacs.9b02248] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Arpa Hudait
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Yuqing Qiu
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Nathan Odendahl
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
16
|
Zhang B, Cao HJ, Lin HM, Deng SG, Wu H. Insights into ice-growth inhibition by trehalose and alginate oligosaccharides in peeled Pacific white shrimp (Litopenaeus vannamei) during frozen storage. Food Chem 2019; 278:482-490. [DOI: 10.1016/j.foodchem.2018.11.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 10/27/2022]
|
17
|
Lee H. Effects of hydrophobic and hydrogen-bond interactions on the binding affinity of antifreeze proteins to specific ice planes. J Mol Graph Model 2018; 87:48-55. [PMID: 30502671 DOI: 10.1016/j.jmgm.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 11/26/2022]
Abstract
Tenebrio molitor antifreeze protein (TmAFP) was simulated with growing ice surfaces such as primary prism, secondary prism, basal, and pyramidal planes. The ice-binding site of TmAFP, which is full of threonine (Thr), binds to the primary-prism plane but does not bind to other ice planes, in agreement with experiments showing the fast adsorption of TmAFP to the primary-prism plane. To mimic the ice-binding site of shorthorn sculpin AFP (ssAFP; type I) that predominantly consists of alanine (Ala) and has the binding affinity to the secondary-prism plane, the ice-binding site of TmAFP was mutated by replacing a few Thr residues with Ala residues, showing that mutated TmAFP binds to the secondary-prism plane, similar to the ice-binding affinity of ssAFP. Ala residues are located at the cavity of ice, while Thr residues form hydrogen bonds with water molecules. When the mutated TmAFP is further modified by removing Thr, it does not bind to the secondary-prism plane. These findings indicate that simulations can successfully capture the experimentally observed binding affinity of AFP to specific ice planes, to an extent dependent on hydrophobicity of the ice-binding site. In particular, the addition of hydrophobic residues influences the ice-binding affinity of TmAFP, while a certain amount of hydrophilic residue is still required for hydrogen-bond interactions, which supports experimental observations regarding the key roles of hydrophobic and hydrophilic interactions on the AFP-ice binding.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si, Gyeonggi-do, 16890, South Korea.
| |
Collapse
|
18
|
Koshio K, Arai K, Waku T, Wilson PW, Hagiwara Y. Suppression of droplets freezing on glass surfaces on which antifreeze polypeptides are adhered by a silane coupling agent. PLoS One 2018; 13:e0204686. [PMID: 30289883 PMCID: PMC6173376 DOI: 10.1371/journal.pone.0204686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/11/2018] [Indexed: 12/02/2022] Open
Abstract
The development of ice-phobic, glass-substrate surfaces is important for many reasons such as poor visibility through the ice-covered windshields of vehicles. The present authors have developed new glass surfaces coated with a silane coupling agent and polypeptides whose amino-acid sequence is identical to a partial sequence of winter flounder antifreeze protein. We have conducted experiments on the freezing of sessile water droplets on the glass surfaces, and measured the droplet temperature, contact angle, contact area and surface roughness. The results show that the supercooling temperature decreased noticeably in the case where a higher concentration solution of polypeptide was used for the coating. The adhesion strength of frozen droplets was lowest in the same case. In addition, we observed many nanoscale humps on the coated surface, which were formed by polypeptide aggregates in the solution. We argue that the combination of the hydrophilic humps and the hydrophobic base surfaces causes water molecules adjacent to the surfaces to have a variety of orientations in that plane, even after the ice layer started to grow. This then induces a misfit of water-molecule spacing in the ice layers and consequent formation of fragile polycrystalline structure. This explains the lower values of ice adhesion strength and supercooling enhancement in the cases of the polypeptide-coated glass plates.
Collapse
Affiliation(s)
- Kazuya Koshio
- Division of Mechanophysics, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | - Kazuhide Arai
- Division of Mechanophysics, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | - Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | - Peter W. Wilson
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Hobart, Australia and Honors College, University of South Florida, Tampa, FL, United States of America
| | - Yoshimichi Hagiwara
- Faculty of Mechanical Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
- * E-mail:
| |
Collapse
|
19
|
Abstract
Antifreeze proteins (AFPs) protect marine fishes from freezing in icy seawater. They evolved relatively recently, most likely in response to the formation of sea ice and Cenozoic glaciations that occurred less than 50 million years ago, following a greenhouse Earth event. Based on their diversity, AFPs have independently evolved on many occasions to serve the same function, with some remarkable examples of convergent evolution at the structural level, and even instances of lateral gene transfer. For some AFPs, the progenitor gene is recognizable. The intense selection pressure exerted by icy seawater, which can rapidly kill unprotected fish, has led to massive AFP gene amplification, as well as some partial gene duplications that have increased the size and activity of the antifreeze. The many protein evolutionary processes described in Gordon H. Dixon's Essays in Biochemistry article will be illustrated here by examples from studies on AFPs. Abbreviations: AFGP: antifreeze glycoproteins; AFP: antifreeze proteins; GHD: Gordon H. Dixon; SAS: sialic acid synthase; TH: thermal hysteresis.
Collapse
Affiliation(s)
- Peter L Davies
- a Department of Biomedical and Molecular Sciences , Queen's University , Kingston , Canada
| | - Laurie A Graham
- a Department of Biomedical and Molecular Sciences , Queen's University , Kingston , Canada
| |
Collapse
|
20
|
Ice cream structure modification by ice-binding proteins. Food Chem 2018; 246:164-171. [DOI: 10.1016/j.foodchem.2017.10.152] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 11/22/2022]
|
21
|
Chakraborty S, Jana B. Optimum Number of Anchored Clathrate Water and Its Instantaneous Fluctuations Dictate Ice Plane Recognition Specificities of Insect Antifreeze Protein. J Phys Chem B 2018; 122:3056-3067. [PMID: 29510055 DOI: 10.1021/acs.jpcb.8b00548] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ice recognition by antifreeze proteins (AFPs) is a subject of topical interest. Among several classes of AFPs, insect AFPs are hyperactive presumably due to their ability to adsorb on basal plane. However, the origin of the basal plane binding specificity is not clearly known. Present work aims to provide atomistic insight into the origin of basal plane recognition by an insect antifreeze protein. Free energy calculations reveal that the order of binding affinity of the AFP toward different ice planes is basal plane > prism plane > pyramidal plane. Critical insight reveals that the observed plane specificity is strongly correlated with the number and their instantaneous fluctuations of clathrate water forming hydrogen bonds with both ice binding surface (IBS) of AFP and ice surface, thus anchoring AFP to the ice surface. On basal plane, anchored clathrate water array is highly stable due to exact match in the periodicity of oxygen atom repeat distances of the ice surface and the threonine repeat distances at the IBS. The stability of anchored clathrate water array progressively decreases upon prism and pyramidal plane adsorption due to mismatch between the threonine ladder and oxygen atom repeat distance. Further analysis reveals that hydration around the methyl side-chains of threonine residues becomes highly significant at low temperature which stabilizes the anchored clathrate water array and dual hydrogen-bonding is a consequence of this stability. Structural insight gained from this study paves the way for rational designing of highly potent antifreeze-mimetic with potential industrial applications.
Collapse
Affiliation(s)
- Sandipan Chakraborty
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| | - Biman Jana
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700032 , India
| |
Collapse
|
22
|
Cid FP, Maruyama F, Murase K, Graether SP, Larama G, Bravo LA, Jorquera MA. Draft genome sequences of bacteria isolated from the Deschampsia antarctica phyllosphere. Extremophiles 2018; 22:537-552. [PMID: 29492666 DOI: 10.1007/s00792-018-1015-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/18/2018] [Indexed: 11/28/2022]
Abstract
Genome analyses are being used to characterize plant growth-promoting (PGP) bacteria living in different plant compartiments. In this context, we have recently isolated bacteria from the phyllosphere of an Antarctic plant (Deschampsia antarctica) showing ice recrystallization inhibition (IRI), an activity related to the presence of antifreeze proteins (AFPs). In this study, the draft genomes of six phyllospheric bacteria showing IRI activity were sequenced and annotated according to their functional gene categories. Genome sizes ranged from 5.6 to 6.3 Mbp, and based on sequence analysis of the 16S rRNA genes, five strains were identified as Pseudomonas and one as Janthinobacterium. Interestingly, most strains showed genes associated with PGP traits, such as nutrient uptake (ammonia assimilation, nitrogen fixing, phosphatases, and organic acid production), bioactive metabolites (indole acetic acid and 1-aminocyclopropane-1-carboxylate deaminase), and antimicrobial compounds (hydrogen cyanide and pyoverdine). In relation with IRI activity, a search of putative AFPs using current bioinformatic tools was also carried out. Despite that genes associated with reported AFPs were not found in these genomes, genes connected to ice-nucleation proteins (InaA) were found in all Pseudomonas strains, but not in the Janthinobacterium strain.
Collapse
Affiliation(s)
- Fernanda P Cid
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Applied Microbial Ecology Laboratory, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Fumito Maruyama
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- The Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Tokyo, Japan
| | - Kazunori Murase
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Giovanni Larama
- Department of Mathematical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Leon A Bravo
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de la Frontera, Temuco, Chile
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Milko A Jorquera
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile.
- Applied Microbial Ecology Laboratory, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile.
| |
Collapse
|
23
|
Mochizuki K, Molinero V. Antifreeze Glycoproteins Bind Reversibly to Ice via Hydrophobic Groups. J Am Chem Soc 2018; 140:4803-4811. [PMID: 29392937 DOI: 10.1021/jacs.7b13630] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antifreeze molecules allow organisms to survive in subzero environments. Antifreeze glycoproteins (AFGPs), produced by polar fish, are the most potent inhibitors of ice recrystallization. To date, the molecular mechanism by which AFGPs bind to ice has not yet been elucidated. Mutation experiments cannot resolve whether the binding occurs through the peptide, the saccharides, or both. Here, we use molecular simulations to determine the mechanism and driving forces for binding of AFGP8 to ice, its selectivity for the primary prismatic plane, and the molecular origin of its exceptional ice recrystallization activity. Consistent with experiments, AFGP8 in simulations preferentially adopts the PPII helix secondary structure in solution. We show that the segregation of hydrophilic and hydrophobic groups in the PPII helix is vital for ice binding. Binding occurs through adsorption of methyl groups of the peptide and disaccharides to ice, driven by the entropy of dehydration of the hydrophobic groups as they nest in the cavities at the ice surface. The selectivity to the primary prismatic plane originates in the deeper cavities it has compared to the basal plane. We estimate the free energy of binding of AFGP8 and the longer AFGPs4-6, and find them to be consistent with the reversible binding demonstrated in experiments. The simulations reveal that AFGP8 binds to ice through a myriad of conformations that it uses to diffuse through the ice surface and find ice steps, to which it strongly adsorbs. We interpret that the existence of multiple, weak binding sites is the key for the exceptional ice recrystallization inhibition activity of AFGPs.
Collapse
Affiliation(s)
- Kenji Mochizuki
- Department of Chemistry , The University of Utah , Salt Lake City , Utah 84112-0580 , United States.,Institute for Fiber Engineering , Shinshu University , Ueda , Nagano 386-8567 , Japan
| | - Valeria Molinero
- Department of Chemistry , The University of Utah , Salt Lake City , Utah 84112-0580 , United States
| |
Collapse
|
24
|
Zhang B, Zhang XL, Shen CL, Deng SG. Understanding the influence of carrageenan oligosaccharides and xylooligosaccharides on ice-crystal growth in peeled shrimp (Litopenaeus vannamei) during frozen storage. Food Funct 2018; 9:4394-4403. [DOI: 10.1039/c8fo00364e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cryoprotective saccharides are widely accepted antifreeze additives that reduce thawing loss, maintain texture, and retard protein denaturation in frozen seafood.
Collapse
Affiliation(s)
- Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province
- College of Food Science and Pharmacy
- Zhejiang Ocean University
- Zhoushan
- 316022 P. R. China
| | - Xiao-li Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province
- College of Food Science and Pharmacy
- Zhejiang Ocean University
- Zhoushan
- 316022 P. R. China
| | - Chun-lei Shen
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province
- College of Food Science and Pharmacy
- Zhejiang Ocean University
- Zhoushan
- 316022 P. R. China
| | - Shang-gui Deng
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province
- College of Food Science and Pharmacy
- Zhejiang Ocean University
- Zhoushan
- 316022 P. R. China
| |
Collapse
|
25
|
Soyano K, Mushirobira Y. The Mechanism of Low-Temperature Tolerance in Fish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:149-164. [DOI: 10.1007/978-981-13-1244-1_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Verreault D, Alamdari S, Roeters SJ, Pandey R, Pfaendtner J, Weidner T. Ice-binding site of surface-bound type III antifreeze protein partially decoupled from water. Phys Chem Chem Phys 2018; 20:26926-26933. [DOI: 10.1039/c8cp03382j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Combined SFG/MD analysis together with spectral calculations revealed that type III antifreeze proteins adsorbed at the air–water interface maintains a native state and adopts an orientation that leads to a partial decoupling of its ice-binding site from water.
Collapse
Affiliation(s)
| | - Sarah Alamdari
- Department of Chemical Engineering
- University of Washington
- Seattle
- USA
| | | | - Ravindra Pandey
- Department of Chemistry
- Indian Institute of Technology
- Roorkee 247667
- India
| | - Jim Pfaendtner
- Department of Chemical Engineering
- University of Washington
- Seattle
- USA
| | - Tobias Weidner
- Department of Chemistry
- Aarhus University
- 8000 Aarhus C
- Denmark
- Department of Chemical Engineering
| |
Collapse
|
27
|
Affiliation(s)
- Alexander G. Shtukenberg
- Department of Chemistry and Molecular
Design Institute, New York University, 100 Washington Square East, New York City, New York 10003, United States
| | - Michael D. Ward
- Department of Chemistry and Molecular
Design Institute, New York University, 100 Washington Square East, New York City, New York 10003, United States
| | - Bart Kahr
- Department of Chemistry and Molecular
Design Institute, New York University, 100 Washington Square East, New York City, New York 10003, United States
| |
Collapse
|
28
|
Wang C, Pakhomova S, Newcomer ME, Christner BC, Luo BH. Structural basis of antifreeze activity of a bacterial multi-domain antifreeze protein. PLoS One 2017; 12:e0187169. [PMID: 29108002 PMCID: PMC5673226 DOI: 10.1371/journal.pone.0187169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/13/2017] [Indexed: 01/05/2023] Open
Abstract
Antifreeze proteins (AFPs) enhance the survival of organisms inhabiting cold environments by affecting the formation and/or structure of ice. We report the crystal structure of the first multi-domain AFP that has been characterized. The two ice binding domains are structurally similar. Each consists of an irregular β-helix with a triangular cross-section and a long α-helix that runs parallel on one side of the β-helix. Both domains are stabilized by hydrophobic interactions. A flat plane on the same face of each domain’s β-helix was identified as the ice binding site. Mutating any of the smaller residues on the ice binding site to bulkier ones decreased the antifreeze activity. The bulky side chain of Leu174 in domain A sterically hinders the binding of water molecules to the protein backbone, partially explaining why antifreeze activity by domain A is inferior to that of domain B. Our data provide a molecular basis for understanding differences in antifreeze activity between the two domains of this protein and general insight on how structural differences in the ice-binding sites affect the activity of AFPs.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Svetlana Pakhomova
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Marcia E. Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Brent C. Christner
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Microbiology and Cell Science, Biodiversity Institute, University of Florida, Gainesville, Florida, United States of America
| | - Bing-Hao Luo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
29
|
Banach M, Konieczny L, Roterman I. Why do antifreeze proteins require a solenoid? Biochimie 2017; 144:74-84. [PMID: 29054801 DOI: 10.1016/j.biochi.2017.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022]
Abstract
Proteins whose presence prevents water from freezing in living organisms at temperatures below 0 °C are referred to as antifreeze proteins. This group includes molecules of varying size (from 30 to over 300 aa) and variable secondary/supersecondary conformation. Some of these proteins also contain peculiar structural motifs called solenoids. We have applied the fuzzy oil drop model in the analysis of four categories of antifreeze proteins: 1 - very small proteins, i.e. helical peptides (below 40 aa); 2 - small globular proteins (40-100 aa); 3 - large globular proteins (>100 aa) and 4 - proteins containing solenoids. The FOD model suggests a mechanism by which antifreeze proteins prevent freezing. In accordance with this theory, the presence of the protein itself produces an ordering of water molecules which counteracts the formation of ice crystals. This conclusion is supported by analysis of the ordering of hydrophobic and hydrophilic residues in antifreeze proteins, revealing significant variability - from perfect adherence to the fuzzy oil drop model through structures which lack a clearly defined hydrophobic core, all the way to linear arrangement of alternating local minima and maxima propagating along the principal axis of the solenoid (much like in amyloids). The presented model - alternative with respect to the ice docking model - explains the antifreeze properties of compounds such as saccharides and fatty acids. The fuzzy oil drop model also enables differentiation between amyloids and antifreeze proteins.
Collapse
Affiliation(s)
- M Banach
- Department of Bioinformatics and Telemedicine, Jagiellonian University, Medical College, Lazarza 16, 31-530, Krakow, Poland
| | - L Konieczny
- Chair of Medical Biochemistry, Jagiellonian University, Medical College, Kopernika 7, 31-034, Krakow, Poland
| | - I Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University, Medical College, Lazarza 16, 31-530, Krakow, Poland.
| |
Collapse
|
30
|
Balance between hydration enthalpy and entropy is important for ice binding surfaces in Antifreeze Proteins. Sci Rep 2017; 7:11901. [PMID: 28928396 PMCID: PMC5605524 DOI: 10.1038/s41598-017-11982-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/29/2017] [Indexed: 11/21/2022] Open
Abstract
Antifreeze Proteins (AFPs) inhibit the growth of an ice crystal by binding to it. The detailed binding mechanism is, however, still not fully understood. We investigated three AFPs using Molecular Dynamics simulations in combination with Grid Inhomogeneous Solvation Theory, exploring their hydration thermodynamics. The observed enthalpic and entropic differences between the ice-binding sites and the inactive surface reveal key properties essential for proteins in order to bind ice: While entropic contributions are similar for all sites, the enthalpic gain for all ice-binding sites is lower than for the rest of the protein surface. In contrast to most of the recently published studies, our analyses show that enthalpic interactions are as important as an ice-like pre-ordering. Based on these observations, we propose a new, thermodynamically more refined mechanism of the ice recognition process showing that the appropriate balance between entropy and enthalpy facilitates ice-binding of proteins. Especially, high enthalpic interactions between the protein surface and water can hinder the ice-binding activity.
Collapse
|
31
|
|
32
|
Stevens CA, Semrau J, Chiriac D, Litschko M, Campbell RL, Langelaan DN, Smith SP, Davies PL, Allingham JS. Peptide backbone circularization enhances antifreeze protein thermostability. Protein Sci 2017; 26:1932-1941. [PMID: 28691252 DOI: 10.1002/pro.3228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/22/2017] [Accepted: 07/03/2017] [Indexed: 11/09/2022]
Abstract
Antifreeze proteins (AFPs) are a class of ice-binding proteins that promote survival of a variety of cold-adapted organisms by decreasing the freezing temperature of bodily fluids. A growing number of biomedical, agricultural, and commercial products, such as organs, foods, and industrial fluids, have benefited from the ability of AFPs to control ice crystal growth and prevent ice recrystallization at subzero temperatures. One limitation of AFP use in these latter contexts is their tendency to denature and irreversibly lose activity at the elevated temperatures of certain industrial processing or large-scale AFP production. Using the small, thermolabile type III AFP as a model system, we demonstrate that AFP thermostability is dramatically enhanced via split intein-mediated N- and C-terminal end ligation. To engineer this circular protein, computational modeling and molecular dynamics simulations were applied to identify an extein sequence that would fill the 20-Å gap separating the free ends of the AFP, yet impose little impact on the structure and entropic properties of its ice-binding surface. The top candidate was then expressed in bacteria, and the circularized protein was isolated from the intein domains by ice-affinity purification. This circularized AFP induced bipyramidal ice crystals during ice growth in the hysteresis gap and retained 40% of this activity even after incubation at 100°C for 30 min. NMR analysis implicated enhanced thermostability or refolding capacity of this protein compared to the noncyclized wild-type AFP. These studies support protein backbone circularization as a means to expand the thermostability and practical applications of AFPs.
Collapse
Affiliation(s)
- Corey A Stevens
- Protein Function Discovery Group and the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Joanna Semrau
- Protein Function Discovery Group and the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Dragos Chiriac
- Protein Function Discovery Group and the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Morgan Litschko
- Protein Function Discovery Group and the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Robert L Campbell
- Protein Function Discovery Group and the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - David N Langelaan
- Protein Function Discovery Group and the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Steven P Smith
- Protein Function Discovery Group and the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Peter L Davies
- Protein Function Discovery Group and the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - John S Allingham
- Protein Function Discovery Group and the Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
33
|
PDB2CD visualises dynamics within protein structures. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:607-616. [PMID: 28374045 PMCID: PMC5599472 DOI: 10.1007/s00249-017-1203-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 11/23/2022]
Abstract
Proteins tend to have defined conformations, a key factor in enabling their function. Atomic resolution structures of proteins are predominantly obtained by either solution nuclear magnetic resonance (NMR) or crystal structure methods. However, when considering a protein whose structure has been determined by both these approaches, on many occasions, the resultant conformations are subtly different, as illustrated by the examples in this study. The solution NMR approach invariably results in a cluster of structures whose conformations satisfy the distance boundaries imposed by the data collected; it might be argued that this is evidence of the dynamics of proteins when in solution. In crystal structures, the proteins are often in an energy minimum state which can result in an increase in the extent of regular secondary structure present relative to the solution state depicted by NMR, because the more dynamic ends of alpha helices and beta strands can become ordered at the lower temperatures. This study examines a novel way to display the differences in conformations within an NMR ensemble and between these and a crystal structure of a protein. Circular dichroism (CD) spectroscopy can be used to characterise protein structures in solution. Using the new bioinformatics tool, PDB2CD, which generates CD spectra from atomic resolution protein structures, the differences between, and possible dynamic range of, conformations adopted by a protein can be visualised.
Collapse
|
34
|
Investigation of the physiochemical properties, cryoprotective activity and possible action mechanisms of sericin peptides derived from membrane separation. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Kim HJ, Lee JH, Hur YB, Lee CW, Park SH, Koo BW. Marine Antifreeze Proteins: Structure, Function, and Application to Cryopreservation as a Potential Cryoprotectant. Mar Drugs 2017; 15:md15020027. [PMID: 28134801 PMCID: PMC5334608 DOI: 10.3390/md15020027] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/20/2017] [Indexed: 11/16/2022] Open
Abstract
Antifreeze proteins (AFPs) are biological antifreezes with unique properties, including thermal hysteresis(TH),ice recrystallization inhibition(IRI),and interaction with membranes and/or membrane proteins. These properties have been utilized in the preservation of biological samples at low temperatures. Here, we review the structure and function of marine-derived AFPs, including moderately active fish AFPs and hyperactive polar AFPs. We also survey previous and current reports of cryopreservation using AFPs. Cryopreserved biological samples are relatively diverse ranging from diatoms and reproductive cells to embryos and organs. Cryopreserved biological samples mainly originate from mammals. Most cryopreservation trials using marine-derived AFPs have demonstrated that addition of AFPs can improve post-thaw viability regardless of freezing method (slow-freezing or vitrification), storage temperature, and types of biological sample type.
Collapse
Affiliation(s)
- Hak Jun Kim
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Young Baek Hur
- Tidal Flat Research Institute, National Fisheries Research and Development Institute, Gunsan, Jeonbuk 54014, Korea.
| | - Chang Woo Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Sun-Ha Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Bon-Won Koo
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
36
|
Bredow M, Walker VK. Ice-Binding Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:2153. [PMID: 29312400 PMCID: PMC5744647 DOI: 10.3389/fpls.2017.02153] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/05/2017] [Indexed: 05/04/2023]
Abstract
Sub-zero temperatures put plants at risk of damage associated with the formation of ice crystals in the apoplast. Some freeze-tolerant plants mitigate this risk by expressing ice-binding proteins (IBPs), that adsorb to ice crystals and modify their growth. IBPs are found across several biological kingdoms, with their ice-binding activity and function uniquely suited to the lifestyle they have evolved to protect, be it in fishes, insects or plants. While IBPs from freeze-avoidant species significantly depress the freezing point, plant IBPs typically have a reduced ability to lower the freezing temperature. Nevertheless, they have a superior ability to inhibit the recrystallization of formed ice. This latter activity prevents ice crystals from growing larger at temperatures close to melting. Attempts to engineer frost-hardy plants by the controlled transfer of IBPs from freeze-avoiding fish and insects have been largely unsuccessful. In contrast, the expression of recombinant IBP sequences from freeze-tolerant plants significantly reduced electrolyte leakage and enhanced freezing survival in freeze-sensitive plants. These promising results have spurred additional investigations into plant IBP localization and post-translational modifications, as well as a re-evaluation of IBPs as part of the anti-stress and anti-pathogen axis of freeze-tolerant plants. Here we present an overview of plant freezing stress and adaptation mechanisms and discuss the potential utility of IBPs for the generation of freeze-tolerant crops.
Collapse
Affiliation(s)
- Melissa Bredow
- Department of Biology, Queen’s University, Kingston, ON, Canada
- *Correspondence: Melissa Bredow,
| | - Virginia K. Walker
- Department of Biomedical and Molecular Sciences, and School of Environmental Studies, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
37
|
Chakraborty S, Jana B. Conformational and hydration properties modulate ice recognition by type I antifreeze protein and its mutants. Phys Chem Chem Phys 2017; 19:11678-11689. [DOI: 10.1039/c7cp00221a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mutation of wfAFP changes the intrinsic dynamics in such a way that it significantly influences water mediated AFP adsorption on ice.
Collapse
Affiliation(s)
- Sandipan Chakraborty
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Biman Jana
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| |
Collapse
|
38
|
Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus. Biochem J 2016; 473:4011-4026. [DOI: 10.1042/bcj20160543] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022]
Abstract
Snow mold fungus, Typhula ishikariensis, secretes seven antifreeze protein isoforms (denoted TisAFPs) that assist in the survival of the mold under snow cover. Here, the X-ray crystal structure of a hyperactive isoform, TisAFP8, at 1.0 Å resolution is presented. TisAFP8 folds into a right-handed β-helix accompanied with a long α-helix insertion. TisAFP8 exhibited significantly high antifreeze activity that is comparable with other hyperactive AFPs, despite its close structural and sequence similarity with the moderately active isoform TisAFP6. A series of mutations introduced into the putative ice-binding sites (IBSs) in the β-sheet and adjacent loop region reduced antifreeze activity. A double-mutant A20T/A212S, which comprises a hydrophobic patch between the β-sheet and loop region, caused the greatest depression of antifreeze activity of 75%, when compared with that of the wild-type protein. This shows that the loop region is involved in ice binding and hydrophobic residues play crucial functional roles. Additionally, bound waters around the β-sheet and loop region IBSs were organized into an ice-like network and can be divided into two groups that appear to mediate separately TisAFP and ice. The docking model of TisAFP8 with the basal plane via its loop region IBS reveals a better shape complementarity than that of TisAFP6. In conclusion, we present new insights into the ice-binding mechanism of TisAFP8 by showing that a higher hydrophobicity and better shape complementarity of its IBSs, especially the loop region, may render TisAFP8 hyperactive to ice binding.
Collapse
|
39
|
Ramya L, Ramakrishnan V. Interaction ofTenebrio MolitorAntifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations. Mol Inform 2016; 35:268-77. [DOI: 10.1002/minf.201600034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/10/2016] [Indexed: 11/09/2022]
Affiliation(s)
- L. Ramya
- Centre for Nanotechnology & Advanced Biomaterials; SASTRA University; Thanjavur-613401 Tamilnadu India
| | | |
Collapse
|
40
|
Rajan R, Hayashi F, Nagashima T, Matsumura K. Toward a Molecular Understanding of the Mechanism of Cryopreservation by Polyampholytes: Cell Membrane Interactions and Hydrophobicity. Biomacromolecules 2016; 17:1882-93. [DOI: 10.1021/acs.biomac.6b00343] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Robin Rajan
- School
of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Fumiaki Hayashi
- NMR
Facility Support Unit, NMR Facility, Division of Structural and Synthetic
Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Toshio Nagashima
- NMR
Facility, Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Kazuaki Matsumura
- School
of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
41
|
Yoshida K, Baron AQR, Uchiyama H, Tsutsui S, Yamaguchi T. Structure and collective dynamics of hydrated anti-freeze protein type III from 180 K to 298 K by X-ray diffraction and inelastic X-ray scattering. J Chem Phys 2016; 144:134505. [PMID: 27059578 DOI: 10.1063/1.4944987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated hydrated antifreeze protein type III (AFP III) powder with a hydration level h (=mass of water/mass of protein) of 0.4 in the temperature range between 180 K and 298 K using X-ray diffraction and inelastic X-ray scattering (IXS). The X-ray diffraction data showed smooth, largely monotonic changes between 180 K and 298 K without freezing water. Meanwhile, the collective dynamics observed by IXS showed a strong change in the sound velocity at 180 K, after being largely temperature independent at higher temperatures (298-220 K). We interpret this change in terms of the dynamic transition previously discussed using other probes including THz IR absorption spectroscopy and incoherent elastic and quasi-elastic neutron scattering. This finding suggests that the dynamic transition of hydrated proteins is observable on the subpicosecond time scale as well as nano- and pico-second scales, both in collective dynamics from IXS and single particle dynamics from neutron scattering. Moreover, it is most likely that the dynamic transition of hydrated AFP III is not directly correlated with its hydration structure.
Collapse
Affiliation(s)
- Koji Yoshida
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Alfred Q R Baron
- Materials Dynamics Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hiroshi Uchiyama
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Satoshi Tsutsui
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Toshio Yamaguchi
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
42
|
Sharp KA. The remarkable hydration of the antifreeze protein Maxi: a computational study. J Chem Phys 2015; 141:22D510. [PMID: 25494781 DOI: 10.1063/1.4896693] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The long four-helix bundle antifreeze protein Maxi contains an unusual core for a globular protein. More than 400 ordered waters between the helices form a nano-pore of internal water about 150 Å long. Molecular dynamics simulations of hydrated Maxi were carried out using the CHARMM27 protein forcefield and the TIP3P water model. Solvation in the core and non-core first hydration shell was analyzed in terms of water-water H-bond distance-angle distributions. The core had an increased population of low-angle H-bonds between water pairs relative to bulk water. Enhancement of low angle H-bonds was particularly pronounced for water pairs at the interfaces between apolar and polar regions inside the protein core, characteristic of the anchored clathrate solvation structure seen previously in the ice-nuclei binding surfaces of type I, type III, and beta-helical antifreeze proteins. Anchored clathrate type solvation structure was not seen in the exterior solvation shell except around residues implicated in ice binding. Analysis of solvation dynamics using water residence times and diffusion constants showed that exterior solvation shell waters exchanged rapidly with bulk water, with no difference between ice-binding and non-binding residues. Core waters had about ten-fold slower diffusion than bulk water. Water residence times around core residues averaged about 8 ps, similar to those on the exterior surface, but they tended to exchange primarily with other core water, resulting in longer, >40 ps residence times within the core. Preferential exchange or diffusion of the water along the long axis of the water core of Maxi was not detected.
Collapse
Affiliation(s)
- Kim A Sharp
- Department of Biochemistry and Biophysics, E. R. Johnson Foundation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, USA
| |
Collapse
|
43
|
Temperature-independent polymer optical fiber evanescent wave sensor. Sci Rep 2015; 5:11508. [PMID: 26112908 PMCID: PMC4481644 DOI: 10.1038/srep11508] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/28/2015] [Indexed: 12/01/2022] Open
Abstract
Although the numerous advantages of polymer optical fibers have been exploited in the fields of sensors and telecommunications, such fibers still experience a critical problem: the temperature dependency. Therefore, we explored the temperature-independent operation of a polymer fiber-optic evanescent wave sensor immersed in distilled water. We investigated variations in the surface morphology, deformation trajectory, refractive index, and weight of the fiber-sensing region with varying water temperature. We also examined the spectral transmission and transmitted light intensity of fibers subjected to a heating-cooling treatment. We observed that the light-transmission modes and sensitivity of the sensor were affected by changes in the surface morphology, diameter, and refractive index of the sensing region caused by changes in temperature. The transmitted light intensity of the sensor was maintained at a constant level after five cycles of the heating-cooling treatment, after which the fibers exhibited a smooth surface, low refractive index, and large fiber diameter. Consequently, we utilized the heating-cooling-treated fiber to realize a temperature-independent, U-shaped polymer fiber-optic evanescent wave sensor. The temperature independence was evaluated using glucose solutions in the range of 10 to 70 °C. The fabricated sensor showed significant temperature independence and high degree of consistency in measuring solutions.
Collapse
|
44
|
Todde G, Hovmöller S, Laaksonen A. Influence of antifreeze proteins on the ice/water interface. J Phys Chem B 2015; 119:3407-13. [PMID: 25611783 DOI: 10.1021/jp5119713] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antifreeze proteins (AFP) are responsible for the survival of several species, ranging from bacteria to fish, that encounter subzero temperatures in their living environment. AFPs have been divided into two main families, moderately and hyperactive, depending on their thermal hysteresis activity. We have studied one protein from both families, the AFP from the snow flea (sfAFP) and from the winter flounder (wfAFP), which belong to the hyperactive and moderately active family, respectively. On the basis of molecular dynamics simulations, we have estimated the thickness of the water/ice interface for systems both with and without the AFPs attached onto the ice surface. The calculation of the diffusion profiles along the simulation box allowed us to measure the interface width for different ice planes. The obtained widths clearly show a different influence of the two AFPs on the ice/water interface. The different impact of the AFPs here studied on the interface thickness can be related to two AFPs properties: the protein hydrophobic surface and the number of hydrogen bonds that the two AFPs faces form with water molecules.
Collapse
Affiliation(s)
- Guido Todde
- Department of Material and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , 10691 Stockholm, Sweden
| | | | | |
Collapse
|
45
|
Choi YG, Park CJ, Kim HE, Seo YJ, Lee AR, Choi SR, Lee SS, Lee JH. Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase. JOURNAL OF BIOMOLECULAR NMR 2015; 61:137-150. [PMID: 25575834 DOI: 10.1007/s10858-014-9895-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
Antifreeze proteins (AFPs) are found in a variety of cold-adapted (psychrophilic) organisms to promote survival at subzero temperatures by binding to ice crystals and decreasing the freezing temperature of body fluids. The type III AFPs are small globular proteins that consist of one α-helix, three 3(10)-helices, and two β-strands. Sialic acids play important roles in a variety of biological functions, such as development, recognition, and cell adhesion and are synthesized by conserved enzymatic pathways that include sialic acid synthase (SAS). SAS consists of an N-terminal catalytic domain and a C-terminal antifreeze-like (AFL) domain, which is similar to the type III AFPs. Despite having very similar structures, AFL and the type III AFPs exhibit very different temperature-dependent stability and activity. In this study, we have performed backbone dynamics analyses of a type III AFP (HPLC12 isoform) and the AFL domain of human SAS (hAFL) at various temperatures. We also characterized the structural/dynamic properties of the ice-binding surfaces by analyzing the temperature gradient of the amide proton chemical shift and its correlation with chemical shift deviation from random coil. The dynamic properties of the two proteins were very different from each other. While HPLC12 was mostly rigid with a few residues exhibiting slow motions, hAFL showed fast internal motions at low temperature. Our results provide insight into the molecular basis of thermostability and structural flexibility in homologous psychrophilic HPLC12 and mesophilic hAFL proteins.
Collapse
Affiliation(s)
- Yong-Geun Choi
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, Gyeongnam, 660-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Todde G, Whitman C, Hovmöller S, Laaksonen A. Induced ice melting by the snow flea antifreeze protein from molecular dynamics simulations. J Phys Chem B 2014; 118:13527-34. [PMID: 25353109 DOI: 10.1021/jp508992e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Antifreeze proteins (AFP) allow different life forms, insects as well as fish and plants, to survive in subzero environments. AFPs prevent freezing of the physiological fluids. We have studied, through molecular dynamics simulations, the behavior of the small isoform of the AFP found in the snow flea (sfAFP), both in water and at the ice/water interface, of four different ice planes. In water at room temperature, the structure of the sfAFP is found to be slightly unstable. The loop between two polyproline II helices has large fluctuations as well as the C-terminus. Torsional angle analyses show a decrease of the polyproline II helix area in the Ramachandran plots. The protein structure instability, in any case, should not affect its antifreeze activity. At the ice/water interface the sfAFP triggers local melting of the ice surface. Bipyramidal, secondary prism, and prism ice planes melt in the presence of AFP at temperatures below the melting point of ice. Only the basal plane is found to be stable at the same temperatures, indicating an adsorption of the sfAFP on this ice plane as confirmed by experimental evidence.
Collapse
Affiliation(s)
- Guido Todde
- Department of Material and Environmental Chemistry, Arrhenius Laboratory, Stockholm University , 10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
47
|
Davies PL. Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth. Trends Biochem Sci 2014; 39:548-55. [DOI: 10.1016/j.tibs.2014.09.005] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/01/2022]
|
48
|
Lotze S, Olijve LLC, Voets IK, Bakker HJ. Observation of vibrational energy exchange in a type-III antifreeze protein. J Phys Chem B 2014; 118:8962-71. [PMID: 25051212 DOI: 10.1021/jp503481e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We performed time- and polarization-resolved pump-probe and two-dimensional infrared (2D-IR) experiments to study the dynamics of the amide I vibration of a 7 kDa type-III antifreeze protein. In the pump-probe experiments, we used femtosecond mid-infrared pulses to investigate the vibrational relaxation dynamics of the amide mode. The transient spectra show the presence of two spectral components that decay with different lifetimes, indicative of the presence of two distinct amide subbands. The 2D-IR experiments reveal the coupling between the two bands in the form of cross-peaks. On the basis of previous work by Demirdöven et al. ( J. Am. Chem. Soc. 2004 , 126 , 7981 - 7990 ), we assign the observed bands to the two infrared-active modes α(-) and α(+) found in protein β-sheets. The amplitudes of the cross-peak were found to increase with delay time, indicating that the cross-peaks originate from population transfer between the coupled amide oscillators. The time constant of the energy transfer was found to be 6-7 ps.
Collapse
Affiliation(s)
- S Lotze
- FOM-Institute for Atomic and Molecular Physics AMOLF , Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
49
|
Molecular cloning, expression and characterisation of Afp4, an antifreeze protein from Glaciozyma antarctica. Polar Biol 2014. [DOI: 10.1007/s00300-014-1539-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Balcerzak AK, Capicciotti CJ, Briard JG, Ben RN. Designing ice recrystallization inhibitors: from antifreeze (glyco)proteins to small molecules. RSC Adv 2014. [DOI: 10.1039/c4ra06893a] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ice recrystallization occurs during cryopreservation and is correlated with reduced cell viability after thawing.
Collapse
Affiliation(s)
| | | | | | - Robert N. Ben
- Department of Chemistry
- University of Ottawa
- Ottawa, Canada
| |
Collapse
|