1
|
Hirai H, Sen Y, Tamura M, Ohta K. TOR inactivation triggers heterochromatin formation in rDNA during glucose starvation. Cell Rep 2023; 42:113320. [PMID: 37913773 DOI: 10.1016/j.celrep.2023.113320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
In response to environmental cues, such as nutrient starvation, living organisms modulate gene expression through mechanisms involving histone modifications. Specifically, nutrient depletion inactivates the TOR (target of rapamycin) pathway, leading to reduced expression of ribosomal genes. While these regulatory mechanisms are well elucidated in budding yeast Saccharomyces cerevisiae, their conservation across diverse organisms remains unclear. In this study, we demonstrate that fission yeast Schizosaccharomyces pombe cells repress ribosomal gene transcription through a different mechanism. TORC1, which accumulates in the rDNA region, dissociates upon starvation, resulting in enhanced methylation of H3K9 and heterochromatin formation, facilitated by dissociation of the stress-responsive transcription factor Atf1 and accumulation of the histone chaperone FACT. We propose that this mechanism might be adapted in mammals that possess Suv39H1 and HP1, which are absent in budding yeast.
Collapse
Affiliation(s)
- Hayato Hirai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.
| | - Yuki Sen
- Department of Integrated Sciences, College of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Miki Tamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan; Universal Biology Institute, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
2
|
Eukaryotic Ribosomal Protein S5 of the 40S Subunit: Structure and Function. Int J Mol Sci 2023; 24:ijms24043386. [PMID: 36834797 PMCID: PMC9958902 DOI: 10.3390/ijms24043386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
The ribosomal protein RPS5 is one of the prime proteins to combine with RNA and belongs to the conserved ribosomal protein family. It plays a substantial role in the process of translation and also has some non-ribosome functions. Despite the enormous studies on the relationship between the structure and function of prokaryotic RPS7, the structure and molecular details of the mechanism of eukaryotic RPS5 remain largely unexplored. This article focuses on the structure of RPS5 and its role in cells and diseases, especially the binding to 18S rRNA. The role of RPS5 in translation initiation and its potential use as targets for liver disease and cancer are discussed.
Collapse
|
3
|
Martins CF, Ribeiro DM, Matzapetakis M, Pinho MA, Kuleš J, Horvatić A, Guillemin N, Eckersall PD, Freire JPB, de Almeida AM, Prates JAM. Effect of dietary Spirulina (Arthrospira platensis) on the intestinal function of post-weaned piglet: An approach combining proteomics, metabolomics and histological studies. J Proteomics 2022; 269:104726. [PMID: 36096433 DOI: 10.1016/j.jprot.2022.104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/25/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
The effect of dietary Spirulina (Arthrospira platensis) and CAZyme supplementation was assessed on the gut of weaned piglets, using an integrated NMR-metabolomics approach combined with Tandem Mass Tag labelled proteomics. Thirty weaned male piglets were assigned to one of the three following diets (n = 10): cereal and soybean meal basal diet (Control), basal diet with 10% Spirulina inclusion (SP) and SP diet supplemented with 0.01% lysozyme (SP + L). The experiment lasted 4 weeks and, upon slaughter, small intestine samples were collected for histological, metabolomic and proteomic analysis. No significant differences were found for the histology and metabolomics analysis between the three experimental groups. Lactate, glutamate, glycine and myo-inositol were the most abundant metabolites. Proteomics results showed 1502 proteins identified in the intestine tissue. A total of 23, 78, 27 differentially abundant proteins were detected respectively for the SP vs. Control, SP + L vs. Control and SP + L vs. SP comparisons. The incorporation of Spirulina and supplementation of lysozyme in the piglet's diets is associated to intestinal proteomic changes. These include increased protein synthesis and abundance of contractile apparatus proteins, related with increased nutrient availability, which has beneficial (increased glucose uptake) and detrimental (increased digesta viscosity) metabolic effects. SIGNIFICANCE: The use of conventional feedstuffs becomes increasingly prohibitive due to its environmental toll. To increase the sustainability of the livestock sector, novel feedstuffs such as microalgae need to be considered. However, its recalcitrant cell wall has antinutritional effects that can inhibit high dietary inclusion levels. The supplementation with CAZymes is a possible solution to this issue. The small intestine is a central piece in monogastric digestion and of particular importance for the weaned piglet. Studying the effect of dietary Spirulina and CAZyme supplementation on its histomorphology, metabolome and proteome allows studying relevant physiological adaptations to these diets.
Collapse
Affiliation(s)
- Cátia F Martins
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - David M Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Manolis Matzapetakis
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal; Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Av., 11635 Athens, Greece
| | - Mário A Pinho
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Josipa Kuleš
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Anita Horvatić
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottieva 6, 10 000 Zagreb, Croatia
| | - Nicolas Guillemin
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Peter David Eckersall
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, UK
| | - João P B Freire
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - André M de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal.
| | - José A M Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| |
Collapse
|
4
|
Bheemireddy S, Sandhya S, Srinivasan N. Comparative Analysis of Structural and Dynamical Features of Ribosome Upon Association With mRNA Reveals Potential Role of Ribosomal Proteins. Front Mol Biosci 2021; 8:654164. [PMID: 34409066 PMCID: PMC8365230 DOI: 10.3389/fmolb.2021.654164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Ribosomes play a critical role in maintaining cellular proteostasis. The binding of messenger RNA (mRNA) to the ribosome regulates kinetics of protein synthesis. To generate an understanding of the structural, mechanistic, and dynamical features of mRNA recognition in the ribosome, we have analysed mRNA-protein interactions through a structural comparison of the ribosomal complex in the presence and absence of mRNA. To do so, we compared the 3-Dimensional (3D) structures of components of the two assembly structures and analysed their structural differences because of mRNA binding, using elastic network models and structural network-based analysis. We observe that the head region of 30S ribosomal subunit undergoes structural displacement and subunit rearrangement to accommodate incoming mRNA. We find that these changes are observed in proteins that lie far from the mRNA-protein interface, implying allostery. Further, through perturbation response scanning, we show that the proteins S13, S19, and S20 act as universal sensors that are sensitive to changes in the inter protein network, upon binding of 30S complex with mRNA and other initiation factors. Our study highlights the significance of mRNA binding in the ribosome complex and identifies putative allosteric sites corresponding to alterations in structure and/or dynamics, in regions away from mRNA binding sites in the complex. Overall, our work provides fresh insights into mRNA association with the ribosome, highlighting changes in the interactions and dynamics of the ribosome assembly because of the binding.
Collapse
Affiliation(s)
- Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | - Sankaran Sandhya
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
5
|
Structural insights into the complex of trigger factor chaperone and ribosomal protein S7 from Mycobacterium tuberculosis. Biochem Biophys Res Commun 2019; 512:838-844. [PMID: 30928093 DOI: 10.1016/j.bbrc.2019.03.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), has threaten human health for thousands years. The chaperone trigger factor (TF) of Mtb (mtbTF), a ribosome-associated molecule, plays important roles in co-translational nascent chain folding and post-translational protein assembly. However, due to lack of structural information, the dynamic regulatory mechanism of mtbTF remains barely investigated. Herein we report the structural basis of the complex of TF and ribosomal protein S7 (mtbS7) from Mtb. The mtbTF-mtbS7 complex was obtained with high purity and homogeneity in vitro. MtbTF bound with mtbS7 in a Kd value of 1.433 μM, and formed a complex with mtbS7 at 1:2 M ratios as shown by isothermal titration calorimetry. In addition, the crystal structure of mtbS7 was solved to a resolution at 1.8 Å, which was composed of six α-helices and two β-strands. Moreover, the molecular envelopes of mtbTF and mtbTF-mtbS7 complex were built and consisted with these homologous structures by small-angle X-ray scattering method. Our current findings might provide structural basis for understanding the molecular mechanism of TF in protein folding and the regulation of ribosomal assembly in Mtb.
Collapse
|
6
|
Nikulin AD. Structural Aspects of Ribosomal RNA Recognition by Ribosomal Proteins. BIOCHEMISTRY (MOSCOW) 2018; 83:S111-S133. [DOI: 10.1134/s0006297918140109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Fisunov GY, Evsyutina DV, Garanina IA, Arzamasov AA, Butenko IO, Altukhov IA, Nikitina AS, Govorun VM. Ribosome profiling reveals an adaptation strategy of reduced bacterium to acute stress. Biochimie 2016; 132:66-74. [PMID: 27984202 DOI: 10.1016/j.biochi.2016.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/25/2016] [Indexed: 01/08/2023]
Abstract
Bacteria of class Mollicutes (mycoplasmas) feature significant genome reduction which makes them good model organisms for systems biology studies. Previously we demonstrated, that drastic transcriptional response of mycoplasmas to stress results in a very limited response on the level of protein. In this study we used heat stress model of M. gallisepticum and ribosome profiling to elucidate the process of genetic information transfer under stress. We found that under heat stress ribosomes demonstrate selectivity towards mRNA binding. We identified that heat stress response may be divided into two groups on the basis of absolute transcript abundance and fold-change in the translatome. One represents a noise-like response and another is likely an adaptive one. The latter include ClpB chaperone, cell division cluster, homologs of immunoblocking proteins and short ORFs with unknown function. We found that previously identified read-through of terminators contributes to the upregulation of transcripts in the translatome as well. In addition we identified that ribosomes of M. gallisepticum undergo reorganization under the heat stress. The most notable event is decrease of the amount of associated HU protein. In conclusion, only changes of few adaptive transcripts significantly impact translatome, while widespread noise-like transcription plays insignificant role in translation during stress.
Collapse
Affiliation(s)
- Gleb Y Fisunov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation.
| | - Daria V Evsyutina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation; Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, GSP-1, 73, Moscow 119234, Russian Federation
| | - Irina A Garanina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation
| | - Alexander A Arzamasov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation
| | - Ivan O Butenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation
| | - Ilya A Altukhov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation
| | - Anastasia S Nikitina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation; Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny 141700, Russian Federation
| | - Vadim M Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny 141700, Russian Federation
| |
Collapse
|
8
|
Peter E, Dick B, Stambolic I, Baeurle SA. Exploring the multiscale signaling behavior of phototropin1 from Chlamydomonas reinhardtii using a full-residue space kinetic Monte Carlo molecular dynamics technique. Proteins 2014; 82:2018-40. [PMID: 24623633 DOI: 10.1002/prot.24556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/19/2014] [Accepted: 03/10/2014] [Indexed: 12/21/2022]
Abstract
Devising analysis tools for elucidating the regulatory mechanism of complex enzymes has been a challenging task for many decades. It generally requires the determination of the structural-dynamical information of protein solvent systems far from equilibrium over multiple length and time scales, which is still difficult both theoretically and experimentally. To cope with the problem, we introduce a full-residue space multiscale simulation method based on a combination of the kinetic Monte Carlo and molecular dynamics techniques, in which the rates of the rate-determining processes are evaluated from a biomolecular forcefield on the fly during the simulation run by taking into account the full space of residues. To demonstrate its reliability and efficiency, we explore the light-induced functional behavior of the full-length phototropin1 from Chlamydomonas reinhardtii (Cr-phot1) and its various subdomains. Our results demonstrate that in the dark state the light oxygen voltage-2-Jα (LOV2-Jα) photoswitch inhibits the enzymatic activity of the kinase, whereas the LOV1-Jα photoswitch controls the dimerization with the LOV2 domain. This leads to the repulsion of the LOV1-LOV2 linker out of the interface region between both LOV domains, which results in a positively charged surface suitable for cell-membrane interaction. By contrast, in the light state, we observe that the distance between both LOV domains is increased and the LOV1-LOV2 linker forms a helix-turn-helix (HTH) motif, which enables gene control through nucleotide binding. Finally, we find that the kinase is activated through the disruption of the Jα-helix from the LOV2 domain, which is followed by a stretching of the activation loop (A-loop) and broadening of the catalytic cleft of the kinase.
Collapse
Affiliation(s)
- Emanuel Peter
- Department of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, D-93040, Regensburg, Germany
| | | | | | | |
Collapse
|
9
|
O'Brien MA, Misner I, Lane CE. Mitochondrial genome sequences and comparative genomics of Achlya hypogyna and Thraustotheca clavata. J Eukaryot Microbiol 2013; 61:146-54. [PMID: 24252096 DOI: 10.1111/jeu.12092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/12/2013] [Accepted: 10/17/2013] [Indexed: 01/08/2023]
Abstract
As a lineage, oomycetes have adapted to a wide range of lifestyles. Although the common ancestor of the group was likely a marine pathogen, extant members inhabit a spectrum from free-living saprobes to obligate biotrophs. The mitochondrial genomes of Achlya hypogyna and Thraustotheca clavata were sequenced to directly compare a facultative parasitic species (A. hypogyna) to a closely related free living saprobe (T. clavata). Both sequenced mitochondrial genomes are circular, with sizes of 46,869 bp for A. hypogyna and 47,381 bp for T. clavata. They share 63 common genes, indicating little influence of lifestyle on gene content, but small differences in total number and order of genes. Achlya hypogyna has a single copy of nad2, whereas T. clavata has one pseudogene (rps7) and two duplicated genes (nad5 and nad2), each with one full and one truncated copy. The genomes encode a total of 29 or 30 tRNAs (A. hypogyna and T. clavata, respectively) for 19 amino acids. Three unidentified open reading frames are conserved, and one is unique to T. clavata. Comparisons of these genomes with published sequences of the closely related Saprolegnia ferax mitochondrial genome, and four other more distantly related oomycetes, reveals no correlation in genome content or architecture with lifestyle.
Collapse
Affiliation(s)
- Megan A O'Brien
- Department of Biology, The University of Rhode Island, Kingston, RI, 02881
| | | | | |
Collapse
|
10
|
Surdina AV, Rassokhin TI, Golovin AV, Spiridonova VA, Kopylov AM. Mapping the ribosomal protein S7 regulatory binding site on mRNA of the E. coli streptomycin operon. BIOCHEMISTRY (MOSCOW) 2010; 75:841-50. [PMID: 20673207 DOI: 10.1134/s0006297910070059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work it is shown by deletion analysis that an intercistronic region (ICR) approximately 80 nucleotides in length is necessary for interaction with recombinant E. coli S7 protein (r6hEcoS7). A model is proposed for the interaction of S7 with two ICR sites-region of hairpin bifurcations and Shine-Dalgarno sequence of cistron S7. A de novo RNA binding site for heterologous S7 protein of Thermus thermophilus (r6hTthS7) was constructed by selection of a combinatorial RNA library based on E. coli ICR: it has only a single supposed protein recognition site in the region of bifurcation. The SERW technique was used for selection of two intercistronic RNA libraries in which five nucleotides of a double-stranded region, adjacent to the bifurcation, had the randomized sequence. One library contained an authentic AG (-82/-20) pair, while in the other this pair was replaced by AU. A serwamer capable of specific binding to r6hTthS7 was selected; it appeared to be the RNA68 mutant with eight nucleotide mutations. The serwamer binds to r6hTthS7 with the same affinity as homologous authentic ICR of str mRNA binds to r6hEcoS7; apparent dissociation constants are 89 +/- 43 and 50 +/- 24 nM, respectively.
Collapse
Affiliation(s)
- A V Surdina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | |
Collapse
|
11
|
Domingues S, Matos RG, Reis FP, Fialho AM, Barbas A, Arraiano CM. Biochemical characterization of the RNase II family of exoribonucleases from the human pathogens Salmonella typhimurium and Streptococcus pneumoniae. Biochemistry 2010; 48:11848-57. [PMID: 19863111 DOI: 10.1021/bi901105n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Maturation, turnover, and quality control of RNA are performed by many different classes of ribonucleases. Escherichia coli RNase II is the prototype of the RNase II family of ribonucleases, a ubiquitous family of hydrolytic, processive 3' --> 5' exonucleases crucial in RNA metabolism. RNase R is a member of this family that is modulated in response to stress and has been implicated in virulence. In this work, RNase II-like proteins were characterized in the human pathogens Salmonella typhimurium and Streptococcus pneumoniae. By sequence analysis, only one member of the RNase II family was identified in S. pneumoniae, while both RNase II and RNase R were found in Sa. typhimurium. These enzymes were cloned, expressed, purified, and characterized with regard to their biochemical features and modular architecture. The specificity of substrates and the final products generated by the enzymes were clearly demonstrated. Sa. typhimurium RNase II and RNase R behaved essentially as their respective E. coli counterparts. We have shown that the only hydrolytic RNase found in S. pneumoniae was able to degrade structured RNAs as is the case with E. coli RNase R. Our results further showed that there are differences with regard to the activity and ability to bind RNA from enzymes belonging to two distinct pneumococcal strains, and this may be related to a single amino acid substitution in the catalytic domain. Since ribonucleases have not been previously characterized in S. pneumoniae or Sa. typhimurium, this work provides an important first step in the understanding of post-transcriptional control in these pathogens.
Collapse
Affiliation(s)
- Susana Domingues
- Instituto de Tecnologia Quimica e Biologica/Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
12
|
Kurkcuoglu O, Doruker P, Sen TZ, Kloczkowski A, Jernigan RL. The ribosome structure controls and directs mRNA entry, translocation and exit dynamics. Phys Biol 2008; 5:046005. [PMID: 19029596 DOI: 10.1088/1478-3975/5/4/046005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The protein-synthesizing ribosome undergoes large motions to effect the translocation of tRNAs and mRNA; here, the domain motions of this system are explored with a coarse-grained elastic network model using normal mode analysis. Crystal structures are used to construct various model systems of the 70S complex with/without tRNA, elongation factor Tu and the ribosomal proteins. Computed motions reveal the well-known ratchet-like rotational motion of the large subunits, as well as the head rotation of the small subunit and the high flexibility of the L1 and L7/L12 stalks, even in the absence of ribosomal proteins. This result indicates that these experimentally observed motions during translocation are inherently controlled by the ribosomal shape and only partially dependent upon GTP hydrolysis. Normal mode analysis further reveals the mobility of A- and P-tRNAs to increase in the absence of the E-tRNA. In addition, the dynamics of the E-tRNA is affected by the absence of the ribosomal protein L1. The mRNA in the entrance tunnel interacts directly with helicase proteins S3 and S4, which constrain the mRNA in a clamp-like fashion, as well as with protein S5, which likely orients the mRNA to ensure correct translation. The ribosomal proteins S7, S11 and S18 may also be involved in assuring translation fidelity by constraining the mRNA at the exit site of the channel. The mRNA also interacts with the 16S 3' end forming the Shine-Dalgarno complex at the initiation step; the 3' end may act as a 'hook' to reel in the mRNA to facilitate its exit.
Collapse
Affiliation(s)
- Ozge Kurkcuoglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, 34342 Bebek, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
13
|
Woodson SA. RNA folding and ribosome assembly. Curr Opin Chem Biol 2008; 12:667-73. [PMID: 18935976 DOI: 10.1016/j.cbpa.2008.09.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/14/2008] [Accepted: 09/20/2008] [Indexed: 01/29/2023]
Abstract
Ribosome synthesis is a tightly regulated process that is crucial for cell survival. Chemical footprinting, mass spectrometry, and cryo-electron microscopy are revealing how these complex cellular machines are assembled. Rapid folding of the rRNA provides a platform for protein-induced assembly of the bacterial 30S ribosome. Multiple assembly pathways increase the flexibility of the assembly process, while accessory factors and modification enzymes chaperone the late stages of assembly and control the quality of the mature subunits.
Collapse
Affiliation(s)
- Sarah A Woodson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2685, USA.
| |
Collapse
|
14
|
Dutca LM, Culver GM. Assembly of the 5' and 3' minor domains of 16S ribosomal RNA as monitored by tethered probing from ribosomal protein S20. J Mol Biol 2007; 376:92-108. [PMID: 18155048 DOI: 10.1016/j.jmb.2007.10.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/04/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
Abstract
The ribosomal protein (r-protein) S20 is a primary binding protein. As such, it interacts directly and independently with the 5' domain as well as the 3' minor domain of 16S ribosomal RNA (rRNA) in minimal particles and the fully assembled 30S subunit. The interactions observed between r-protein S20 and the 5' domain of 16S rRNA are quite extensive, while those between r-protein S20 and the 3' minor domain are significantly more limited. In this study, directed hydroxyl radical probing mediated by Fe(II)-derivatized S20 proteins was used to monitor the folding of 16S rRNA during r-protein association and 30S subunit assembly. An analysis of the cleavage patterns in the minimal complexes [16S rRNA and Fe(II)-S20] and the fully assembled 30S subunit containing the same Fe(II)-derivatized proteins shows intriguing similarities and differences. These results suggest that the two domains, 5' and 3' minor, are organized relative to S20 at different stages of assembly. The 5' domain acquires, in a less complex ribonucleoprotein particle than the 3' minor domain, the same architecture as observed in mature subunits. These results are similar to what would be predicted of subunit assembly by the 5'-to-3' direction assembly model.
Collapse
Affiliation(s)
- Laura M Dutca
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
15
|
Dutcă LM, Jagannathan I, Grondek JF, Culver GM. Temperature-dependent RNP conformational rearrangements: analysis of binary complexes of primary binding proteins with 16 S rRNA. J Mol Biol 2007; 368:853-69. [PMID: 17376481 PMCID: PMC2265208 DOI: 10.1016/j.jmb.2007.02.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 01/31/2007] [Accepted: 02/17/2007] [Indexed: 11/27/2022]
Abstract
Ribonucleoprotein particles (RNPs) are important components of all living systems, and the assembly of these particles is an intricate, often multistep, process. The 30 S ribosomal subunit is composed of one large RNA (16 S rRNA) and 21 ribosomal proteins (r-proteins). In vitro studies have revealed that assembly of the 30 S subunit is a temperature-dependent process involving sequential binding of r-proteins and conformational changes of 16 S rRNA. Additionally, a temperature-dependent conformational rearrangement was reported for a complex of primary r-protein S4 and 16 S rRNA. Given these observations, a systematic study of the temperature-dependence of 16 S rRNA architecture in individual complexes with the other five primary binding proteins (S7, S8, S15, S17, and S20) was performed. While all primary binding r-proteins bind 16 S rRNA at low temperature, not all r-proteins/16 S rRNA complexes undergo temperature-dependent conformational rearrangements. Some RNPs achieve the same conformation regardless of temperature, others show minor adjustments in 16 S rRNA conformation upon heating and, finally, others undergo significant temperature-dependent changes. Some of the architectures achieved in these rearrangements are consistent with subsequent downstream assembly events such as assembly of the secondary and tertiary binding r-proteins. The differential interaction of 16 S rRNA with r-proteins illustrates a means for controlling the sequential assembly pathway for complex RNPs and may offer insights into aspects of RNP assembly in general.
Collapse
Affiliation(s)
- Laura-M. Dutcă
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Indu Jagannathan
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Joel F. Grondek
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Gloria M. Culver
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
16
|
Yanshina DD, Malygin AA, Karpova GG. Binding of human ribosomal protein S5 with 18S rRNA fragment 1203–1236/1521–1698. Mol Biol 2006. [DOI: 10.1134/s0026893306030071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
McLaughlin WA, Berman HM. Statistical models for discerning protein structures containing the DNA-binding helix-turn-helix motif. J Mol Biol 2003; 330:43-55. [PMID: 12818201 DOI: 10.1016/s0022-2836(03)00532-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method for discerning protein structures containing the DNA-binding helix-turn-helix (HTH) motif has been developed. The method uses statistical models based on geometrical measurements of the motif. With a decision tree model, key structural features required for DNA binding were identified. These include a high average solvent-accessibility of residues within the recognition helix and a conserved hydrophobic interaction between the recognition helix and the second alpha helix preceding it. The Protein Data Bank was searched using a more accurate model of the motif created using the Adaboost algorithm to identify structures that have a high probability of containing the motif, including those that had not been reported previously.
Collapse
Affiliation(s)
- William A McLaughlin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway 08854-8087, USA
| | | |
Collapse
|
18
|
Balandina A, Kamashev D, Rouviere-Yaniv J. The bacterial histone-like protein HU specifically recognizes similar structures in all nucleic acids. DNA, RNA, and their hybrids. J Biol Chem 2002; 277:27622-8. [PMID: 12006568 DOI: 10.1074/jbc.m201978200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HU, a major component of the bacterial nucleoid, shares properties with histones, high mobility group proteins (HMGs), and other eukaryotic proteins. HU, which participates in many major pathways of the bacterial cell, binds without sequence specificity to duplex DNA but recognizes with high affinity DNA repair intermediates. Here we demonstrate that HU binds to double-stranded DNA, double-stranded RNA, and linear DNA-RNA duplexes with a similar low affinity. In contrast to this nonspecific binding to total cellular RNA and to supercoiled DNA, HU specifically recognizes defined structures common to both DNA and RNA. In particular HU binds specifically to nicked or gapped DNA-RNA hybrids and to composite RNA molecules such as DsrA, a small non-coding RNA. HU, which modulates DNA architecture, may play additional key functions in the bacterial machinery via its RNA binding capacity. The simple, straightforward structure of its binding domain with two highly flexible beta-ribbon arms and an alpha-helical platform is an alternative model for the elaborate binding domains of the eukaryotic proteins that display dual DNA- and RNA-specific binding capacities.
Collapse
Affiliation(s)
- Anna Balandina
- Laboratoire de Physiologie Bactérienne, CNRS UPR 9073, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie CURIE, 75005 Paris, France
| | | | | |
Collapse
|
19
|
Brodersen DE, Clemons WM, Carter AP, Wimberly BT, Ramakrishnan V. Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. J Mol Biol 2002; 316:725-68. [PMID: 11866529 DOI: 10.1006/jmbi.2001.5359] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We present a detailed analysis of the protein structures in the 30 S ribosomal subunit from Thermus thermophilus, and their interactions with 16 S RNA based on a crystal structure at 3.05 A resolution. With 20 different polypeptide chains, the 30 S subunit adds significantly to our data base of RNA structure and protein-RNA interactions. In addition to globular domains, many of the proteins have long, extended regions, either in the termini or in internal loops, which make extensive contact to the RNA component and are involved in stabilizing RNA tertiary structure. Many ribosomal proteins share similar alpha+beta sandwich folds, but we show that the topology of this domain varies considerably, as do the ways in which the proteins interact with RNA. Analysis of the protein-RNA interactions in the context of ribosomal assembly shows that the primary binders are globular proteins that bind at RNA multihelix junctions, whereas proteins with long extensions assemble later. We attempt to correlate the structure with a large body of biochemical and genetic data on the 30 S subunit.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Crystallography, X-Ray
- Microscopy, Electron
- Models, Molecular
- Molecular Sequence Data
- Neutrons
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Subunits
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Scattering, Radiation
- Sequence Alignment
- Thermus thermophilus/chemistry
- Thermus thermophilus/genetics
Collapse
|
20
|
Al-Karadaghi S, Kristensen O, Liljas A. A decade of progress in understanding the structural basis of protein synthesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 73:167-93. [PMID: 10958930 DOI: 10.1016/s0079-6107(00)00005-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The key reaction of protein synthesis, peptidyl transfer, is catalysed in all living organisms by the ribosome - an advanced and highly efficient molecular machine. During the last decade extensive X-ray crystallographic and NMR studies of the three-dimensional structure of ribosomal proteins, ribosomal RNA components and their complexes with ribosomal proteins, and of several translation factors in different functional states have taken us to a new level of understanding of the mechanism of function of the protein synthesis machinery. Among the new remarkable features revealed by structural studies, is the mimicry of the tRNA molecule by elongation factor G, ribosomal recycling factor and the eukaryotic release factor 1. Several other translation factors, for which three-dimensional structures are not yet known, are also expected to show some form of tRNA mimicry. The efforts of several crystallographic and biochemical groups have resulted in the determination by X-ray crystallography of the structures of the 30S and 50S subunits at moderate resolution, and of the structure of the 70S subunit both by X-ray crystallography and cryo-electron microscopy (EM). In addition, low resolution cryo-EM models of the ribosome with different translation factors and tRNA have been obtained. The new ribosomal models allowed for the first time a clear identification of the functional centres of the ribosome and of the binding sites for tRNA and ribosomal proteins with known three-dimensional structure. The new structural data have opened a way for the design of new experiments aimed at deeper understanding at an atomic level of the dynamics of the system.
Collapse
Affiliation(s)
- S Al-Karadaghi
- Department of Molecular Biophysics, Lund University, Box 124, 221 00, Lund, Sweden.
| | | | | |
Collapse
|
21
|
Robert F, Brakier-Gingras L. Ribosomal protein S7 from Escherichia coli uses the same determinants to bind 16S ribosomal RNA and its messenger RNA. Nucleic Acids Res 2001; 29:677-82. [PMID: 11160889 PMCID: PMC30405 DOI: 10.1093/nar/29.3.677] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ribosomal protein S7 from Escherichia coli binds to the lower half of the 3' major domain of 16S rRNA and initiates its folding. It also binds to its own mRNA, the str mRNA, and represses its translation. Using filter binding assays, we show in this study that the same mutations that interfere with S7 binding to 16S rRNA also weaken its affinity for its mRNA. This suggests that the same protein regions are responsible for mRNA and rRNA binding affinities, and that S7 recognizes identical sequence elements within the two RNA targets, although they have dissimilar secondary structures. Overexpression of S7 is known to inhibit bacterial growth. This phenotypic growth defect was relieved in cells overexpressing S7 mutants that bind poorly the str mRNA, confirming that growth impairment is controlled by the binding of S7 to its mRNA. Interestingly, a mutant with a short deletion at the C-terminus of S7 was more detrimental to cell growth than wild-type S7. This suggests that the C-terminal portion of S7 plays an important role in ribosome function, which is perturbed by the deletion.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Binding, Competitive
- Cell Division/genetics
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Genotype
- Molecular Sequence Data
- Molecular Structure
- Mutation
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
Collapse
Affiliation(s)
- F Robert
- Département de Biochimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
22
|
Xu W, Wang S, Wang G, Wei H, He F, Yang X. Identification and characterization of differentially expressed genes in the early response phase during liver regeneration. Biochem Biophys Res Commun 2000; 278:318-25. [PMID: 11097837 DOI: 10.1006/bbrc.2000.3792] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has been suggested that the early response was a critical regulator of the remaining quiescent liver cells reentering the cell cycle after partial hepatectomy. The identification of genetic factors and function important in the early response phase during liver regeneration after partial hepatectomy will help in understanding the underlying molecular mechanisms of hepatic injuries. Through the application of complementary DNA representational difference analysis (RDA), we have identified genes that are up-regulated in early response phase during liver regeneration. Results from slot blot and Northern blot analysis confirmed that the RDA products were truly differentially expressed. In addition to well-characterized up-regulated genes during liver regeneration, including IGFBP-1, LRF-1, and metallothionein, we demonstrate the differential expression of at least 6 genes previously not known to be associated with liver regeneration. PC3 and TEC genes were identified as immediate-early response genes and were dramatically increased following partial hepatectomy. Ribosomal protein L6, ribosomal protein S7, chaperonin 10, and cytochrome oxidase I were identified to be up-regulated 4- to 5-fold after 70% partial hepatectomy. In addition to the known genes, 7 novel genes were isolated. Among them, two genes showed their up-regulation in liver regeneration by Northern blot analysis. One was exclusively expressed in liver, and no expression was observed in other tissues. Peak expression, 30-fold above baseline, occurred 60 min after 70% hepatectomy. Cycloheximide pretreatment could not suppress the induction of this gene, indicating that this gene as a novel immediate-early response gene following partial hepatectomy. The novel gene, which was represented three times in the differential clones, may be one of the highly up-expressed genes in regenerating liver. Its transcript is undetectable in normal liver; its level of mRNA increased by 0.5 h after 2/3 partial hepatectomy, reaching a maximum at 2 h. This gene is similar to human alpha-1-beta-glycoprotein (40%). These results suggest a role of these genes in the early response phase of liver regeneration.
Collapse
Affiliation(s)
- W Xu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | | | | | | | | | | |
Collapse
|
23
|
Wimberly BT, Brodersen DE, Clemons WM, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V. Structure of the 30S ribosomal subunit. Nature 2000; 407:327-39. [PMID: 11014182 DOI: 10.1038/35030006] [Citation(s) in RCA: 1431] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genetic information encoded in messenger RNA is translated into protein by the ribosome, which is a large nucleoprotein complex comprising two subunits, denoted 30S and 50S in bacteria. Here we report the crystal structure of the 30S subunit from Thermus thermophilus, refined to 3 A resolution. The final atomic model rationalizes over four decades of biochemical data on the ribosome, and provides a wealth of information about RNA and protein structure, protein-RNA interactions and ribosome assembly. It is also a structural basis for analysis of the functions of the 30S subunit, such as decoding, and for understanding the action of antibiotics. The structure will facilitate the interpretation in molecular terms of lower resolution structural data on several functional states of the ribosome from electron microscopy and crystallography.
Collapse
Affiliation(s)
- B T Wimberly
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Govinda S, Kutlow T, Bentivegna CS. Identification of a putative ribosomal protein mRNA in Chironomus riparius and its response to cadmium, heat shock, and actinomycin D. J Biochem Mol Toxicol 2000; 14:195-203. [PMID: 10789497 DOI: 10.1002/(sici)1099-0461(2000)14:4<195::aid-jbt3>3.0.co;2-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A putative ribosomal protein (rp) mRNA in Chironomus riparius has been found using differential display (DD). Its sequence has 84.8% identity with mosquito rp L8, Aedes albopictus, and is approximately 0.9 kb. Studies were undertaken in order to evaluate rp as a control for environmentally relevant genes. Responses of Drosophila heat shock 70 gene (hsp70) were used to establish heat shock temperatures and cadmium (Cd) concentrations for Chironomus experiments and to validate DD. Expression of hsp70 was induced over control by 28 degrees C at 30 minutes and 1 mM Cd at 24 hours (p< or =0.05). For Chironomus, DD, Northern blot, and nuclease sensitivity were used to measure responses to two stressors: heat shock for 30 minutes and Cd for 24 or 48 hours. Differential display and nuclease sensitivity assays found expression of rp mRNA at 37 degrees C and 16 mM Cd to be similar to controls. Northern blots indicated statistically significant effects for heat shock (p = 0.046) but not Cd (p = 0.406). However, mRNA levels at 37 degrees C were increased only 1.72-fold over controls. A concentration of 24 nM actinomycin D suppressed rp expression as measured by nuclease sensitivity assays. Stressors should not affect rp mRNA levels below their LC-50s.
Collapse
Affiliation(s)
- S Govinda
- Seton Hall University, South Orange, NJ 07079, USA
| | | | | |
Collapse
|
25
|
Fredrick K, Dunny GM, Noller HF. Tagging ribosomal protein S7 allows rapid identification of mutants defective in assembly and function of 30 S subunits. J Mol Biol 2000; 298:379-94. [PMID: 10772857 DOI: 10.1006/jmbi.2000.3563] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ribosomal protein S7 nucleates folding of the 16 S rRNA 3' major domain, which ultimately forms the head of the 30 S ribosomal subunit. Recent crystal structures indicate that S7 lies on the interface side of the 30 S subunit, near the tRNA binding sites of the ribosome. To map the functional surface of S7, we have tagged the protein with a Protein Kinase A recognition site and engineered alanine substitutions that target each exposed, conserved residue. We have also deleted conserved features of S7, using its structure to guide our design. By radiolabeling the tag sequence using Protein Kinase A, we are able to track the partitioning of each mutant protein into 30 S, 70 S, and polyribosome fractions in vivo. Overexpression of S7 confers a growth defect, and we observe a striking correlation between this phenotype and proficiency in 30 S subunit assembly among our collection of mutants. We find that the side chain of K35 is required for efficient assembly of S7 into 30 S subunits in vivo, whereas those of at least 17 other conserved exposed residues are not required. In addition, an S7 derivative lacking the N-terminal 17 residues causes ribosomes to accumulate on mRNA to abnormally high levels, indicating that our approach can yield interesting mutant ribosomes.
Collapse
Affiliation(s)
- K Fredrick
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
26
|
Gabashvili IS, Agrawal RK, Spahn CM, Grassucci RA, Svergun DI, Frank J, Penczek P. Solution structure of the E. coli 70S ribosome at 11.5 A resolution. Cell 2000; 100:537-49. [PMID: 10721991 DOI: 10.1016/s0092-8674(00)80690-x] [Citation(s) in RCA: 329] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over 73,000 projections of the E. coli ribosome bound with formyl-methionyl initiator tRNAf(Met) were used to obtain an 11.5 A cryo-electron microscopy map of the complex. This map allows identification of RNA helices, peripheral proteins, and intersubunit bridges. Comparison of double-stranded RNA regions and positions of proteins identified in both cryo-EM and X-ray maps indicates good overall agreement but points to rearrangements of ribosomal components required for the subunit association. Fitting of known components of the 50S stalk base region into the map defines the architecture of the GTPase-associated center and reveals a major change in the orientation of the alpha-sarcin-ricin loop. Analysis of the bridging connections between the subunits provides insight into the dynamic signaling mechanism between the ribosomal subunits.
Collapse
Affiliation(s)
- I S Gabashvili
- Howard Hughes Medical Institute, Health Research, Inc., Albany, New York 11201-0509, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Miyamoto A, Usui M, Yamasaki N, Yamada N, Kuwano E, Tanaka I, Kimura M. Role of the N-terminal region of ribosomal protein S7 in its interaction with 16S rRNA which binds to the concavity formed by the beta-ribbon arm and the alpha-helix. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:591-8. [PMID: 10561602 DOI: 10.1046/j.1432-1327.1999.00901.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ribosomal protein S7, a primary 16S rRNA-binding protein, plays an essential role in stabilizing the 3' major domain of 16S rRNA and also in feedback regulation of the str operon, as a translational repressor. We examined amino acid residues in ribosomal protein S7 from Bacillus stearothermophilus (BstS7) that are essential for 16S rRNA binding. Truncation of the N-terminal 10 residues of BstS7 abolished its binding to 16S rRNA, whereas removal of the C-terminal eight residues had no effect on the binding activity. Subsequently, we used site-directed mutagenesis to identify essential basic residues in the N-terminal region for 16S rRNA binding. Mutation of Arg3 and Lys8 significantly weakened the binding activity, and a smaller decrease in binding activity was observed with Arg2 and Arg9 mutations. These observations indicate that N-terminal basic residues, especially Arg3 and Lys8, play a crucial role as positively charged recognition groups for the negatively charged phosphate backbone of 16S rRNA. In addition, the mutagenesis study showed that Arg75, Arg78, Arg94, and Arg101, which are located in a concavity formed by the beta-ribbon arm and the alpha-helix (alpha4), individually make only a small contribution to 16S rRNA binding, but together probably form a positively charged binding site for 16S rRNA. With regard to aromatic residues, Tyr84 on the tip of the beta-ribbon arm was found to be involved in 16S rRNA binding, whereas the conserved aromatic residues Trp102 and Tyr106 in the concavity had little effect. We then probed the 16S rRNA-binding site(s) for the N-terminal region of S7 with iron tethered to the mutant of BstS7 containing a single cysteine residue at position 4. The N-terminal region of S7 is placed in close proximity to helix 43 in the 16S rRNA. Probing also revealed additional cleavages between nucleotides 1397 and 1438, near the P-site region in 16S rRNA. This finding is consistent with a three-dimensional model of 16S rRNA that shows close proximity of helix 43 to the P-site during three-dimensional folding.
Collapse
MESH Headings
- Arginine/chemistry
- Circular Dichroism
- Dose-Response Relationship, Drug
- Geobacillus stearothermophilus/metabolism
- Hydroxyl Radical
- Kinetics
- Lysine/chemistry
- Models, Genetic
- Mutagenesis, Site-Directed
- Mutation
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- Ribosomal Proteins/chemistry
- Spectrometry, Fluorescence
- Tryptophan/chemistry
- Tyrosine/chemistry
Collapse
Affiliation(s)
- A Miyamoto
- Laboratory of Biochemistry, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Spiridonova VA, Rozhdestvensky TS, Kopylov AM. A study of the thermophilic ribosomal protein S7 binding to the truncated S12-S7 intercistronic region provides more insight into the mechanism of regulation of the str operon of E. coli(1). FEBS Lett 1999; 460:353-6. [PMID: 10544263 DOI: 10.1016/s0014-5793(99)01351-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A study of the ability of His6-tagged ribosomal protein S7 of Thermus thermophilus to interact with the truncated S12-S7 intercistronic region of str mRNA of Escherichia coli has been described. A minimal S7 binding mRNA fragment is a part of the composite hairpin, with the termination codon of the S12 cistron on one side and the initiation codon of the next S7 cistron on the other. It has a length in the range of 63-103 nucleotides. The 63 nucleotide mRNA fragment, which corresponds to a putative S7 binding site, binds very poorly with S7. Tight RNA structure models, which behave as integral systems and link the S7 binding site with the translational regulation region of the hairpin, are suggested. This observation provides more insight into the mechanism of S7-directed autogenous control of translational coupling of str mRNA.
Collapse
Affiliation(s)
- V A Spiridonova
- A.N. Belozersky Institute of Physico Chemical Biology, Moscow State University, 119899, Moscow, Russia
| | | | | |
Collapse
|
29
|
Clemons WM, May JL, Wimberly BT, McCutcheon JP, Capel MS, Ramakrishnan V. Structure of a bacterial 30S ribosomal subunit at 5.5 A resolution. Nature 1999; 400:833-40. [PMID: 10476960 DOI: 10.1038/23631] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 30S ribosomal subunit binds messenger RNA and the anticodon stem-loop of transfer RNA during protein synthesis. A crystallographic analysis of the structure of the subunit from the bacterium Thermus thermophilus is presented. At a resolution of 5.5 A, the phosphate backbone of the ribosomal RNA is visible, as are the alpha-helices of the ribosomal proteins, enabling double-helical regions of RNA to be identified throughout the subunit, all seven of the small-subunit proteins of known crystal structure to be positioned in the electron density map, and the fold of the entire central domain of the small-subunit ribosomal RNA to be determined.
Collapse
Affiliation(s)
- W M Clemons
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84103, USA
| | | | | | | | | | | |
Collapse
|
30
|
Chen X, Court DL, Ji X. Crystal structure of ERA: a GTPase-dependent cell cycle regulator containing an RNA binding motif. Proc Natl Acad Sci U S A 1999; 96:8396-401. [PMID: 10411886 PMCID: PMC17527 DOI: 10.1073/pnas.96.15.8396] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ERA forms a unique family of GTPase. It is widely conserved and essential in bacteria. ERA functions in cell cycle control by coupling cell division with growth rate. ERA homologues also are found in eukaryotes. Here we report the crystal structure of ERA from Escherichia coli. The structure has been determined at 2.4-A resolution. It reveals a two-domain arrangement of the molecule: an N-terminal domain that resembles p21 Ras and a C-terminal domain that is unique. Structure-based topological search of the C domain fails to reveal any meaningful match, although sequence analysis suggests that it contains a KH domain. KH domains are RNA binding motifs that usually occur in tandem repeats and exhibit low sequence similarity except for the well-conserved segment VIGxxGxxIK. We have identified a betaalphaalphabeta fold that contains the VIGxxGxxIK sequence and is shared by the C domain of ERA and the KH domain. We propose that this betaalphaalphabeta fold is the RNA binding motif, the minimum structural requirement for RNA binding. ERA dimerizes in crystal. The dimer formation involves a significantly distorted switch II region, which may shed light on how ERA protein regulates downstream events.
Collapse
Affiliation(s)
- X Chen
- Biomolecular Structure Group, Advanced BioScience Laboratories-Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, P.O. Box B, Frederick, MD 21702, USA
| | | | | |
Collapse
|
31
|
Abstract
Structures of a number of ribosomal proteins have now been determined by crystallography and NMR, though the complete structure of a ribosomal protein-rRNA complex has yet to be solved. However, some ribosomal protein structures show strong similarity to well-known families of DNA or RNA binding proteins for which structures in complex with cognate nucleic acids are available. Comparison of the known nucleic acid binding mechanisms of these non-ribosomal proteins with the most highly conserved surfaces of similar ribosomal proteins suggests ways in which the ribosomal proteins may be binding RNA. Three binding motifs, found in four ribosomal proteins so far, are considered here: homeodomain-like alpha-helical proteins (L11), OB fold proteins (S1 and S17) and RNP consensus proteins (S6). These comparisons suggest that ribosomal proteins combine a small number of fundamental strategies to develop highly specific RNA recognition sites.
Collapse
Affiliation(s)
- D E Draper
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
32
|
Unge J, berg A, Al-Kharadaghi S, Nikulin A, Nikonov S, Davydova N, Nevskaya N, Garber M, Liljas A. The crystal structure of ribosomal protein L22 from Thermus thermophilus: insights into the mechanism of erythromycin resistance. Structure 1998; 6:1577-86. [PMID: 9862810 DOI: 10.1016/s0969-2126(98)00155-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND . The ribosomal protein L22 is one of five proteins necessary for the formation of an early folding intermediate of the 23S rRNA. L22 has been found on the cytoplasmic side of the 50S ribosomal subunit. It can also be labeled by an erythromycin derivative bound close to the peptidyl-transfer center at the interface side of the 50S subunit, and the amino acid sequence of an erythromycin-resistant mutant is known. Knowing the structure of the protein may resolve this apparent conflict regarding the location of L22 on the ribosome. RESULTS . The structure of Thermus thermophilus L22 was solved using X-ray crystallography. L22 consists of a small alpha+beta domain and a protruding beta hairpin that is 30 A long. A large part of the surface area of the protein has the potential to be involved in interactions with rRNA. A structural similarity to other RNA-binding proteins is found, possibly indicating a common evolutionary origin. CONCLUSIONS . The extensive surface area of L22 has the characteristics of an RNA-binding protein, consistent with its role in the folding of the 23S rRNA. The erythromycin-resistance conferring mutation is located in the protruding beta hairpin that is postulated to be important in L22-rRNA interactions. This region of the protein might be at the erythromycin-binding site close to the peptidyl transferase center, whereas the opposite end may be exposed to the cytoplasm.
Collapse
Affiliation(s)
- J Unge
- Molecular Biophysics, Lund University, PO Box 124 221 00 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Harada N, Maemura K, Yamasaki N, Kimura M. Identification by site-directed mutagenesis of amino acid residues in ribosomal protein L2 that are essential for binding to 23S ribosomal RNA. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1429:176-86. [PMID: 9920395 DOI: 10.1016/s0167-4838(98)00230-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ribosomal protein L2 (BstL2) from Bacillus stearothermophilus is a primary 23S rRNA binding protein. We made use of site-directed mutagenesis to identify essential basic and aromatic amino acid residues for 23S rRNA binding. Four mutants, R68Q, K70Q, R86Q, and R155Q, in which Arg-68, Lys-70, Arg-86, and Arg-155, respectively, are replaced by the Gln residue. showed reduced binding affinities as compared with that of the wild type BstL2 (a binding constant K=8.93 microM(-1)): K values of these mutants range between 0.24 and 1.86 microM(-1). As for aromatic amino acids, replacements of Phe-66, Tyr-95 or Tyr-102 by alanine significantly abolished the binding affinities. CD analysis of the mutant proteins indicated that the mutations of four basic residues (Arg-68, Lys-70, Arg-86 and Arg-155) did not affect protein structure, whereas those of aromatic residues (Phe-66, Tyr-95, and Tyr-102) appeared to cause slight structural perturbations. These results, together with sequence comparison of L2 family proteins, suggest that Arg-86 and Arg-155 in BstL2 may act as positively charged recognition groups for negatively charged phosphate backbone of the 23S rRNA, and that Phe-66, Tyr-95, and Tyr-102 may be candidate residues which stabilize the BstL2-23S rRNA interaction through intramolecular interactions.
Collapse
Affiliation(s)
- N Harada
- Laboratory of Biochemistry, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
34
|
Leontis NB, Westhof E. A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs. J Mol Biol 1998; 283:571-83. [PMID: 9784367 DOI: 10.1006/jmbi.1998.2106] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phylogenetic and chemical probing data indicate that a modular RNA motif, common to loop E of eucaryotic 5 S ribosomal RNA (rRNA) and the alpha-sarcin/ricin loop of 23 S rRNA, organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs. The motif occurs in the 3' domain of 16 S rRNA at positions 1345-1350/1372-1376 (Escherichia coli numbering), within the three-way junction loop, which binds ribosomal protein S7, and which contains nucleotides that help to form the binding site for P-site tRNA in the ribosome. The motif also helps to structure a three-way junction within domain I of 23 S, which contains many universally conserved bases and which lies close in the primary and secondary structure to the binding site of r-protein L24. Several other highly conserved hairpin, internal, and multi-helix loops in 16 S and 23 S rRNA contain the motif, including the core junction loop of 23 S and helix 27 in the core of 16 S rRNA. Sequence conservation and range of variation in bacteria, archaea, and eucaryotes as well as chemical probing and cross-linking data, provide support for the recurrent and autonomous existence of the motif in ribosomal RNAs. Besides its presence in the hairpin ribozyme, the loop E motif is also apparent in helix P10 of bacterial RNase P, in domain P7 of one sub-group of group I introns, and in domain 3 of one subgroup of group II introns.
Collapse
MESH Headings
- Catalysis
- Catalytic Domain
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Genes, rRNA/physiology
- Nucleic Acid Conformation
- Phylogeny
- RNA, Bacterial/chemistry
- RNA, Bacterial/classification
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/classification
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/classification
- RNA, Ribosomal, 23S/metabolism
Collapse
Affiliation(s)
- N B Leontis
- Chemistry Department, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | | |
Collapse
|
35
|
Thiede B, Urlaub H, Neubauer H, Grelle G, Wittmann-Liebold B. Precise determination of RNA-protein contact sites in the 50 S ribosomal subunit of Escherichia coli. Biochem J 1998; 334 ( Pt 1):39-42. [PMID: 9693099 PMCID: PMC1219658 DOI: 10.1042/bj3340039] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RNA-protein cross-linked complexes were isolated and purified to obtain precise data about RNA-protein contact sites in the 50 S ribosomal subunit of Escherichia coli. N-terminal microsequencing and matrix-assisted laser desorption ionization MS were used to identify the cross-linking sites at the amino acid and nucleotide levels. In this manner the following contact sites of five ribosomal proteins with the 23 S rRNA were established: Lys-67 of L2 to U-1963, Tyr-35 of L4 to U-615, Lys-97 of L21 to U-546, Lys-49 of L23 to U-139 or C-140 and Lys-71 and Lys-74 of L27 to U-2334.
Collapse
Affiliation(s)
- B Thiede
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| | | | | | | | | |
Collapse
|
36
|
Kawamura S, Abe Y, Ueda T, Masumoto K, Imoto T, Yamasaki N, Kimura M. Investigation of the structural basis for thermostability of DNA-binding protein HU from Bacillus stearothermophilus. J Biol Chem 1998; 273:19982-7. [PMID: 9685334 DOI: 10.1074/jbc.273.32.19982] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Site-directed mutagenesis was used to identify amino acid residues essential for the thermostability of the DNA-binding protein HU from the thermophile Bacillus stearothermophilus (BstHU). Two mutants, BstHU-A27S and BstHU-V42I, in which Ala27 and Val42 in BstHU were replaced by the corresponding amino acids Ser27 and Ile42, respectively, in the homologue from a mesophile B. subtilis (BsuHU), were less stable than the wild-type BstHU (63.9 degreesC), showing Tm values of 58.4 degreesC and 60.1 degreesC, respectively, as estimated by circular dichroism (CD) analysis at pH 7.0. The denaturation of two mutants was further characterized using differential scanning calorimetry; the Tm values obtained by calorimetric analysis were in good agreement with those estimated by CD analysis. The results suggest that Ala27 and Val42 are partly responsible for enhancing the thermostability of BstHU. When considered together with previous results, it is revealed that Gly15, Ala27, Glu34, Lys38, and Val42 are essential for the thermostability of thermophilic protein BstHU. Moreover, five thermostabilizing mutations were simultaneously introduced into BsuHU, which resulted in a quintuple mutant with a Tm value of 71.3 degreesC, which is higher than that of BstHU, and also resulted in insusceptibility to proteinase digestion.
Collapse
Affiliation(s)
- S Kawamura
- Laboratory of Biochemistry, Faculty of Agriculture, Kyushu University, Fukuoka 812-81, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Nikonov SV, Nevskaya NA, Fedorov RV, Khairullina AR, Tishchenko SV, Nikulin AD, Garber MB. Structural studies of ribosomal proteins. Biol Chem 1998; 379:795-805. [PMID: 9705143 DOI: 10.1515/bchm.1998.379.7.795] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Crystal and solution structures of fourteen ribosomal proteins from thermophilic bacteria have been determined during the last decade. This paper reviews structural studies of ribosomal proteins from Thermus thermophilus carried out at the Institute of Protein Research (Pushchino, Russia) in collaboration with the University of Lund (Lund, Sweden) and the Center of Structural Biochemistry (Karolinska Institute, Huddinge, Sweden). New experimental data on the crystal structure of the ribosomal protein L30 from T. thermophilus are also included.
Collapse
Affiliation(s)
- S V Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Moscow Region
| | | | | | | | | | | | | |
Collapse
|
38
|
Moore PB. The three-dimensional structure of the ribosome and its components. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1998; 27:35-58. [PMID: 9646861 DOI: 10.1146/annurev.biophys.27.1.35] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exciting progress has been made in the last decade by those who use physical methods to study the structure of the ribosome and its components. The structures of 10 ribosomal proteins and three isolated ribosomal protein domains are known, and the conformations of a significant number of rRNA sequences have been determined. Electron microscopists have made major advances in the analysis of images of ribosomes, and microscopically derived ribosome models at resolutions approaching 10A are likely quite soon. Furthermore, ribosome crystallographers are on the verge of phasing the diffraction patterns they have had for several years, and near-atomic resolution models for entire ribosomal subunits could emerge from this source at any time. The literature relevant to these developments is reviewed below.
Collapse
Affiliation(s)
- P B Moore
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| |
Collapse
|
39
|
Schumacher MA, Carter D, Scott DM, Roos DS, Ullman B, Brennan RG. Crystal structures of Toxoplasma gondii uracil phosphoribosyltransferase reveal the atomic basis of pyrimidine discrimination and prodrug binding. EMBO J 1998; 17:3219-32. [PMID: 9628859 PMCID: PMC1170660 DOI: 10.1093/emboj/17.12.3219] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Uracil phosphoribosyltransferase (UPRTase) catalyzes the transfer of a ribosyl phosphate group from alpha-D-5-phosphoribosyl-1-pyrophosphate to the N1 nitrogen of uracil. The UPRTase from the opportunistic pathogen Toxoplasma gondii is a rational target for antiparasitic drug design. To aid in structure-based drug design studies against toxoplasmosis, the crystal structures of the T.gondii apo UPRTase (1.93 A resolution), the UPRTase bound to its substrate, uracil (2.2 A resolution), its product, UMP (2.5 A resolution), and the prodrug, 5-fluorouracil (2.3 A resolution), have been determined. These structures reveal that UPRTase recognizes uracil through polypeptide backbone hydrogen bonds to the uracil exocyclic O2 and endocyclic N3 atoms and a backbone-water-exocyclic O4 oxygen hydrogen bond. This stereochemical arrangement and the architecture of the uracil-binding pocket reveal why cytosine and pyrimidines with exocyclic substituents at ring position 5 larger than fluorine, including thymine, cannot bind to the enzyme. Strikingly, the T. gondii UPRTase contains a 22 residue insertion within the conserved PRTase fold that forms an extended antiparallel beta-arm. Leu92, at the tip of this arm, functions to cap the active site of its dimer mate, thereby inhibiting the escape of the substrate-binding water molecule.
Collapse
Affiliation(s)
- M A Schumacher
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, OR 97201-3098, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Over the past two years, progress in X-ray crystallography, NMR spectroscopy and electron microscopy has begun to reveal the complex structure of the RNA within the ribosome. The structures of ribosomal proteins L11 and S15, among others, show how RNA-protein interactions organize the conformation of the junctions between ribosomal RNA helices. Genetic and biochemical methods have also identified a three base-pair switch within the 16S rRNA that is linked to mRNA decoding.
Collapse
Affiliation(s)
- S A Woodson
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742-2021, USA.
| | | |
Collapse
|
41
|
Ramakrishnan V, White SW. Ribosomal protein structures: insights into the architecture, machinery and evolution of the ribosome. Trends Biochem Sci 1998; 23:208-12. [PMID: 9644974 DOI: 10.1016/s0968-0004(98)01214-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Models of the bacterial ribosome based on recent structural analyses are beginning to provide new insights into the protein synthetic machinery. Central to evolving models are the high-resolution structures of individual ribosomal proteins, which represent detailed probes of their local RNA and protein environments. Ribosomal proteins are extremely ancient molecules; the structures therefore also provide a unique window into early protein evolution. Many of the proteins contain domains that are present in more recently evolved families of RNA- and DNA-binding proteins. Such structural homology can be used to predict mechanisms by which proteins interact with RNA in the ribosome.
Collapse
Affiliation(s)
- V Ramakrishnan
- Dept of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
42
|
Liljas A, al-Karadaghi S. Structural aspects of protein synthesis. NATURE STRUCTURAL BIOLOGY 1997; 4:767-71. [PMID: 9334736 DOI: 10.1038/nsb1097-767] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|