• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4601653)   Today's Articles (5347)   Subscriber (49365)
For: Rizzi M, Bolognesi M, Coda A. A novel deamido-NAD+-binding site revealed by the trapped NAD-adenylate intermediate in the NAD+ synthetase structure. Structure 1998;6:1129-40. [PMID: 9753692 DOI: 10.1016/s0969-2126(98)00114-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Number Cited by Other Article(s)
1
The Role of CD38 in the Pathogenesis of Cardiorenal Metabolic Disease and Aging, an Approach from Basic Research. Cells 2023;12:cells12040595. [PMID: 36831262 PMCID: PMC9954496 DOI: 10.3390/cells12040595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023]  Open
2
Morevati M, Fang EF, Mace ML, Kanbay M, Gravesen E, Nordholm A, Egstrand S, Hornum M. Roles of NAD+ in Acute and Chronic Kidney Diseases. Int J Mol Sci 2022;24:ijms24010137. [PMID: 36613582 PMCID: PMC9820289 DOI: 10.3390/ijms24010137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]  Open
3
Sultana KN, Srivastava SK. Structural and molecular dynamics of ammonia transport in Staphylococcus aureus NH3-dependent NAD synthetase. Int J Biol Macromol 2022;203:593-600. [PMID: 35120937 DOI: 10.1016/j.ijbiomac.2022.01.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 11/05/2022]
4
Sultana KN, Kuldeep J, Siddiqi MI, Srivastava SK. Crystallographic and molecular dynamics simulation analysis of NAD synthetase from methicillin resistant Staphylococcus aureus (MRSA). Int J Biol Macromol 2020;165:2349-2362. [PMID: 33098904 DOI: 10.1016/j.ijbiomac.2020.10.096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
5
Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther 2020;5:227. [PMID: 33028824 PMCID: PMC7539288 DOI: 10.1038/s41392-020-00311-7] [Citation(s) in RCA: 345] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]  Open
6
Lux MC, Standke LC, Tan DS. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. J Antibiot (Tokyo) 2019;72:325-349. [PMID: 30982830 PMCID: PMC6594144 DOI: 10.1038/s41429-019-0171-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
7
Fellner M, Hausinger RP, Hu J. A structural perspective on the PP-loop ATP pyrophosphatase family. Crit Rev Biochem Mol Biol 2018;53:607-622. [DOI: 10.1080/10409238.2018.1516728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
8
Winkler M, Dokulil K, Weber H, Pavkov-Keller T, Wilding B. The Nitrile-Forming Enzyme 7-Cyano-7-Deazaguanine Synthase from Geobacillus kaustophilus: A Reverse Nitrilase? Chembiochem 2015;16:2373-8. [PMID: 26391327 DOI: 10.1002/cbic.201500335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Indexed: 11/06/2022]
9
Biogenesis and Homeostasis of Nicotinamide Adenine Dinucleotide Cofactor. EcoSal Plus 2015;3. [PMID: 26443758 DOI: 10.1128/ecosalplus.3.6.3.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
10
Marletta AS, Massarotti A, Orsomando G, Magni G, Rizzi M, Garavaglia S. Crystal structure of human nicotinic acid phosphoribosyltransferase. FEBS Open Bio 2015;5:419-28. [PMID: 26042198 PMCID: PMC4442680 DOI: 10.1016/j.fob.2015.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 01/04/2023]  Open
11
Mori V, Amici A, Mazzola F, Di Stefano M, Conforti L, Magni G, Ruggieri S, Raffaelli N, Orsomando G. Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues. PLoS One 2014;9:e113939. [PMID: 25423279 PMCID: PMC4244216 DOI: 10.1371/journal.pone.0113939] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/31/2014] [Indexed: 02/06/2023]  Open
12
Oliver JC, Linger RS, Chittur SV, Davisson VJ. Substrate activation and conformational dynamics of guanosine 5'-monophosphate synthetase. Biochemistry 2013;52:5225-35. [PMID: 23841499 DOI: 10.1021/bi3017075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
13
Duckworth BP, Nelson KM, Aldrich CC. Adenylating enzymes in Mycobacterium tuberculosis as drug targets. Curr Top Med Chem 2012;12:766-96. [PMID: 22283817 DOI: 10.2174/156802612799984571] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/08/2011] [Indexed: 11/22/2022]
14
De Ingeniis J, Kazanov MD, Shatalin K, Gelfand MS, Osterman AL, Sorci L. Glutamine versus ammonia utilization in the NAD synthetase family. PLoS One 2012;7:e39115. [PMID: 22720044 PMCID: PMC3376133 DOI: 10.1371/journal.pone.0039115] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/16/2012] [Indexed: 11/18/2022]  Open
15
Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD+ synthetase. Biochem J 2012;443:417-26. [PMID: 22280445 DOI: 10.1042/bj20112210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
16
Meyer ME, Gutierrez JA, Raushel FM, Richards NGJ. A conserved glutamate controls the commitment to acyl-adenylate formation in asparagine synthetase. Biochemistry 2010;49:9391-401. [PMID: 20853825 PMCID: PMC2975022 DOI: 10.1021/bi1010688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
17
Okamura-Ikeda K, Hosaka H, Maita N, Fujiwara K, Yoshizawa AC, Nakagawa A, Taniguchi H. Crystal structure of aminomethyltransferase in complex with dihydrolipoyl-H-protein of the glycine cleavage system: implications for recognition of lipoyl protein substrate, disease-related mutations, and reaction mechanism. J Biol Chem 2010;285:18684-92. [PMID: 20375021 DOI: 10.1074/jbc.m110.110718] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
18
Almonacid DE, Yera ER, Mitchell JBO, Babbitt PC. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function. PLoS Comput Biol 2010;6:e1000700. [PMID: 20300652 PMCID: PMC2837397 DOI: 10.1371/journal.pcbi.1000700] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 02/02/2010] [Indexed: 11/19/2022]  Open
19
Mobley JA, Poliakov A. Detection of early unfolding events in a dimeric protein by amide proton exchange and native electrospray mass spectrometry. Protein Sci 2009;18:1620-7. [PMID: 19554628 DOI: 10.1002/pro.176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
20
Regulation of active site coupling in glutamine-dependent NAD(+) synthetase. Nat Struct Mol Biol 2009;16:421-9. [PMID: 19270703 DOI: 10.1038/nsmb.1567] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 01/27/2009] [Indexed: 11/08/2022]
21
Kuratani M, Yoshikawa Y, Bessho Y, Higashijima K, Ishii T, Shibata R, Takahashi S, Yutani K, Yokoyama S. Structural basis of the initial binding of tRNA(Ile) lysidine synthetase TilS with ATP and L-lysine. Structure 2008;15:1642-53. [PMID: 18073113 DOI: 10.1016/j.str.2007.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Revised: 09/06/2007] [Accepted: 09/25/2007] [Indexed: 11/25/2022]
22
Holliday GL, Almonacid DE, Mitchell JBO, Thornton JM. The chemistry of protein catalysis. J Mol Biol 2007;372:1261-77. [PMID: 17727879 DOI: 10.1016/j.jmb.2007.07.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 07/16/2007] [Accepted: 07/17/2007] [Indexed: 11/16/2022]
23
Wojcik M, Seidle HF, Bieganowski P, Brenner C. Glutamine-dependent NAD+ synthetase. How a two-domain, three-substrate enzyme avoids waste. J Biol Chem 2006;281:33395-402. [PMID: 16954203 DOI: 10.1074/jbc.m607111200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
24
Kang GB, Kim YS, Im YJ, Rho SH, Lee JH, Eom SH. Crystal structure of NH3-dependent NAD+ synthetase from Helicobacter pylori. Proteins 2006;58:985-8. [PMID: 15645437 DOI: 10.1002/prot.20377] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
25
Nakanishi K, Fukai S, Ikeuchi Y, Soma A, Sekine Y, Suzuki T, Nureki O. Structural basis for lysidine formation by ATP pyrophosphatase accompanied by a lysine-specific loop and a tRNA-recognition domain. Proc Natl Acad Sci U S A 2005;102:7487-92. [PMID: 15894617 PMCID: PMC1140429 DOI: 10.1073/pnas.0501003102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
26
Jauch R, Humm A, Huber R, Wahl MC. Structures of Escherichia coli NAD synthetase with substrates and products reveal mechanistic rearrangements. J Biol Chem 2005;280:15131-40. [PMID: 15699042 DOI: 10.1074/jbc.m413195200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
27
Yang ZW, Tendian SW, Carson WM, Brouillette WJ, Delucas LJ, Brouillette CG. Dimethyl sulfoxide at 2.5% (v/v) alters the structural cooperativity and unfolding mechanism of dimeric bacterial NAD+ synthetase. Protein Sci 2004;13:830-41. [PMID: 14978314 PMCID: PMC2286739 DOI: 10.1110/ps.03330104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
28
Bieganowski P, Pace HC, Brenner C. Eukaryotic NAD+ synthetase Qns1 contains an essential, obligate intramolecular thiol glutamine amidotransferase domain related to nitrilase. J Biol Chem 2003;278:33049-55. [PMID: 12771147 DOI: 10.1074/jbc.m302257200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
29
Goto M, Omi R, Miyahara I, Sugahara M, Hirotsu K. Structures of argininosuccinate synthetase in enzyme-ATP substrates and enzyme-AMP product forms: stereochemistry of the catalytic reaction. J Biol Chem 2003;278:22964-71. [PMID: 12684518 DOI: 10.1074/jbc.m213198200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
30
Schnizer HG, Boehlein SK, Stewart JD, Richards NGJ, Schuster SM. gamma-Glutamyl thioester intermediate in glutaminase reaction catalyzed by Escherichia coli asparagine synthetase B. Methods Enzymol 2003;354:260-71. [PMID: 12418233 DOI: 10.1016/s0076-6879(02)54022-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
31
Goto M, Nakajima Y, Hirotsu K. Crystal structure of argininosuccinate synthetase from Thermus thermophilus HB8. Structural basis for the catalytic action. J Biol Chem 2002;277:15890-6. [PMID: 11844799 DOI: 10.1074/jbc.m112430200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
32
Lemke CT, Howell PL. Substrate induced conformational changes in argininosuccinate synthetase. J Biol Chem 2002;277:13074-81. [PMID: 11809762 DOI: 10.1074/jbc.m112436200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
33
Pang YP, Zheng XE, Weinshilboum RM. Theoretical 3D model of histamine N-methyltransferase: insights into the effects of a genetic polymorphism on enzymatic activity and thermal stability. Biochem Biophys Res Commun 2001;287:204-8. [PMID: 11549275 DOI: 10.1006/bbrc.2001.5570] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
34
Begley TP, Kinsland C, Mehl RA, Osterman A, Dorrestein P. The biosynthesis of nicotinamide adenine dinucleotides in bacteria. VITAMINS AND HORMONES 2001;61:103-19. [PMID: 11153263 DOI: 10.1016/s0083-6729(01)61003-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
35
D'Angelo I, Raffaelli N, Dabusti V, Lorenzi T, Magni G, Rizzi M. Structure of nicotinamide mononucleotide adenylyltransferase: a key enzyme in NAD(+) biosynthesis. Structure 2000;8:993-1004. [PMID: 10986466 DOI: 10.1016/s0969-2126(00)00190-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
36
Ozment C, Barchue J, DeLucas LJ, Chattopadhyay D. Structural study of Escherichia coli NAD synthetase: overexpression, purification, crystallization, and preliminary crystallographic analysis. J Struct Biol 1999;127:279-82. [PMID: 10544053 DOI: 10.1006/jsbi.1999.4152] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
37
Mattevi A, Tedeschi G, Bacchella L, Coda A, Negri A, Ronchi S. Structure of L-aspartate oxidase: implications for the succinate dehydrogenase/fumarate reductase oxidoreductase family. Structure 1999;7:745-56. [PMID: 10425677 DOI: 10.1016/s0969-2126(99)80099-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA