1
|
De Luna JG, Gonzales SCB, Nuqui JJM, Capinding ES, Sacdalan CD. Docking-based computational analysis of guava ( Psidium guajava) leaves derived bioactive compounds as a coagulation factor IXa inhibitor. RSC Adv 2024; 14:25579-25585. [PMID: 39144371 PMCID: PMC11322807 DOI: 10.1039/d4ra04709e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Thrombotic disorders pose a global health threat, emphasizing the urgent need for effective management strategies. This study explores the potential of bioactive compounds derived from guava leaves in inhibiting coagulation factor IXa (CFIXa) using in silico methods. Using GC-MS, bioactive compounds extracted from guava leaf through ethanol maceration were identified. Pharmacokinetic properties were elucidated using SwissADME. Molecular docking with AutoDock Vina was used to investigate the interactions with CFIXa. CFIXa was modeled with pysimm/LAMMPS and analyzed with CastP for active site identification. The setup with a higher solvent concentration and lower surface area yielded the highest percent yield (78.541 g, 39.27%). Among the 28 identified bioactive compounds, predominantly terpenoids, only seven exhibited suitable pharmacokinetic properties for oral ingestion and drug development. Docking analysis revealed favorable binding of these compounds to CFIXa (-7.6:-5.3). This study shows inhibition of coagulation factor IXa, thus bridging the ambiguity surrounding the effect of guava leaves on hemostasis. These findings also reveal that guava leaf extract harbors bioactive compounds with potential as coagulation pathway inhibitors, promising novel avenues for thrombotic disorder management.
Collapse
Affiliation(s)
- Joseph G De Luna
- Department of Chemistry, Technological University of the Philippines Ayala Boulevard, Ermita Manila Philippines
| | | | - Jimuel Jan M Nuqui
- Department of Chemistry, Technological University of the Philippines Ayala Boulevard, Ermita Manila Philippines
| | - Evalyn S Capinding
- Department of Chemistry, Technological University of the Philippines Ayala Boulevard, Ermita Manila Philippines
| | - Corazon D Sacdalan
- Department of Chemistry, Technological University of the Philippines Ayala Boulevard, Ermita Manila Philippines
| |
Collapse
|
2
|
Kolyadko VN, Layzer JM, Perry K, Sullenger BA, Krishnaswamy S. An RNA aptamer exploits exosite-dependent allostery to achieve specific inhibition of coagulation factor IXa. Proc Natl Acad Sci U S A 2024; 121:e2401136121. [PMID: 38985762 PMCID: PMC11260126 DOI: 10.1073/pnas.2401136121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Hemostasis relies on a reaction network of serine proteases and their cofactors to form a blood clot. Coagulation factor IXa (protease) plays an essential role in hemostasis as evident from the bleeding disease associated with its absence. RNA aptamers specifically targeting individual coagulation factors have potential as anticoagulants and as probes of the relationship between structure and function. Here, we report X-ray structures of human factor IXa without a ligand bound to the active site either in the apo-form or in complex with an inhibitory aptamer specific for factor IXa. The aptamer binds to an exosite in the catalytic domain and allosterically distorts the active site. Our studies reveal a conformational ensemble of IXa states, wherein large movements of Trp215 near the active site drive functional transitions between the closed (aptamer-bound), latent (apo), and open (substrate-bound) states. The latent state of the apo-enzyme may bear on the uniquely poor catalytic activity of IXa compared to other coagulation proteases. The exosite, to which the aptamer binds, has been implicated in binding VIIIa and heparin, both of which regulate IXa function. Our findings reveal the importance of exosite-driven allosteric modulation of IXa function and new strategies to rebalance hemostasis for therapeutic gain.
Collapse
Affiliation(s)
- Vladimir N. Kolyadko
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | | | - Kay Perry
- Northeastern Collaborative Access Team, Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL60439
| | | | - Sriram Krishnaswamy
- Division of Hematology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
3
|
Coyle CW, Knight KA, Brown HC, George SN, Denning G, Branella GM, Childers KC, Spiegel PC, Spencer HT, Doering CB. Humanization and functional characterization of enhanced coagulation factor IX variants identified through ancestral sequence reconstruction. J Thromb Haemost 2024; 22:633-644. [PMID: 38016519 PMCID: PMC10922771 DOI: 10.1016/j.jtha.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Laboratory resurrection of ancient coagulation factor (F) IX variants generated through ancestral sequence reconstruction led to the discovery of a FIX variant, designated An96, which possesses enhanced specific activity independent of and additive to that provided by human p.Arg384Lys, referred to as FIX-Padua. OBJECTIVES The goal of the current study was to identify the amino acid substitution(s) responsible for the enhanced activity of An96 and create a humanized An96 FIX transgene for gene therapy application. METHODS Reductionist screening approaches, including domain swapping and scanning residue substitution, were used and guided by one-stage FIX activity assays. In vitro characterization of top candidates included recombinant high-purity preparation, specific activity determination, and enzyme kinetic analysis. Final candidates were packaged into adeno-associated viral (AAV) vectors and delivered to hemophilia B mice. RESULTS Five of 42 total amino acid substitutions in An96 appear sufficient to retain the enhanced activity of An96 in an otherwise human FIX variant. Additional substitution of the Padua variant further increased the specific activity 5-fold. This candidate, designated ET9, demonstrated 51-fold greater specific activity than hFIX. AAV2/8-ET9 treated hemophilia B mice produced plasma FIX activities equivalent to those observed previously for AAV2/8-An96-Padua, which were 10-fold higher than AAV2/8-hFIX-Padua. CONCLUSION Starting from computationally inferred ancient FIX sequences, novel amino acid substitutions conferring activity enhancement were identified and translated into an AAV-FIX gene therapy cassette demonstrating high potency. This ancestral sequence reconstruction discovery and sequence mapping refinement approach represents a promising platform for broader protein drug and gene therapy candidate optimization.
Collapse
Affiliation(s)
- Christopher W Coyle
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kristopher A Knight
- Molecular and Systems Pharmacology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | | | | - Gianna M Branella
- Cancer Biology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kenneth C Childers
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - P Clint Spiegel
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - H Trent Spencer
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA
| | - Christopher B Doering
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
4
|
Stojanovski BM, Mohammed BM, Di Cera E. The Prothrombin-Prothrombinase Interaction. Subcell Biochem 2024; 104:409-423. [PMID: 38963494 DOI: 10.1007/978-3-031-58843-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The hemostatic response to vascular injury entails a sequence of proteolytic events where several inactive zymogens of the trypsin family are converted to active proteases. The cascade starts with exposure of tissue factor from the damaged endothelium and culminates with conversion of prothrombin to thrombin in a reaction catalyzed by the prothrombinase complex composed of the enzyme factor Xa, cofactor Va, Ca2+, and phospholipids. This cofactor-dependent activation is paradigmatic of analogous reactions of the blood coagulation and complement cascades, which makes elucidation of its molecular mechanism of broad significance to the large class of trypsin-like zymogens to which prothrombin belongs. Because of its relevance as the most important reaction in the physiological response to vascular injury, as well as the main trigger of pathological thrombotic complications, the mechanism of prothrombin activation has been studied extensively. However, a molecular interpretation of this mechanism has become available only recently from important developments in structural biology. Here we review current knowledge on the prothrombin-prothrombinase interaction and outline future directions for the study of this key reaction of the coagulation cascade.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Bassem M Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Greisen PJ, Yi L, Zhou R, Zhou J, Johansson E, Dong T, Liu H, Johnsen LB, Lund S, Svensson LA, Zhu H, Thomas N, Yang Z, Østergaard H. Computational design of N-linked glycans for high throughput epitope profiling. Protein Sci 2023; 32:e4726. [PMID: 37421602 PMCID: PMC10521239 DOI: 10.1002/pro.4726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Efficient identification of epitopes is crucial for drug discovery and design as it enables the selection of optimal epitopes, expansion of lead antibody diversity, and verification of binding interface. Although high-resolution low throughput methods like x-ray crystallography can determine epitopes or protein-protein interactions accurately, they are time-consuming and can only be applied to a limited number of complexes. To overcome these limitations, we have developed a rapid computational method that incorporates N-linked glycans to mask epitopes or protein interaction surfaces, thereby providing a mapping of these regions. Using human coagulation factor IXa (fIXa) as a model system, we computationally screened 158 positions and expressed 98 variants to test experimentally for epitope mapping. We were able to delineate epitopes rapidly and reliably through the insertion of N-linked glycans that efficiently disrupted binding in a site-selective manner. To validate the efficacy of our method, we conducted ELISA experiments and high-throughput yeast surface display assays. Furthermore, x-ray crystallography was employed to verify the results, thereby recapitulating through the method of N-linked glycans a coarse-grained mapping of the epitope.
Collapse
Affiliation(s)
| | - Li Yi
- Global Research TechnologiesNovo Nordisk A/SMaaloevDenmark
| | - Rong Zhou
- Discovery Technology China, Novo Nordisk Research CentreNovo Nordisk A/SBeijingChina
| | - Jian Zhou
- Discovery Technology China, Novo Nordisk Research CentreNovo Nordisk A/SBeijingChina
| | - Eva Johansson
- Global Research TechnologiesNovo Nordisk A/SMaaloevDenmark
| | - Tiantang Dong
- Discovery Technology China, Novo Nordisk Research CentreNovo Nordisk A/SBeijingChina
| | - Haimo Liu
- Discovery Technology China, Novo Nordisk Research CentreNovo Nordisk A/SBeijingChina
| | | | - Søren Lund
- Global Research TechnologiesNovo Nordisk A/SMaaloevDenmark
| | | | - Haisun Zhu
- Discovery Technology China, Novo Nordisk Research CentreNovo Nordisk A/SBeijingChina
| | - Nidhin Thomas
- Digital Science and InnovationNovo Nordisk A/SSeattleUSA
| | - Zhiru Yang
- Discovery Technology China, Novo Nordisk Research CentreNovo Nordisk A/SBeijingChina
| | | |
Collapse
|
6
|
Childers KC, Peters SC, Lollar P, Spencer HT, Doering CB, Spiegel PC. SAXS analysis of the intrinsic tenase complex bound to a lipid nanodisc highlights intermolecular contacts between factors VIIIa/IXa. Blood Adv 2022; 6:3240-3254. [PMID: 35255502 PMCID: PMC9198903 DOI: 10.1182/bloodadvances.2021005874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
The intrinsic tenase (Xase) complex, formed by factors (f) VIIIa and fIXa, forms on activated platelet surfaces and catalyzes the activation of factor X to Xa, stimulating thrombin production in the blood coagulation cascade. The structural organization of the membrane-bound Xase complex remains largely unknown, hindering our understanding of the structural underpinnings that guide Xase complex assembly. Here, we aimed to characterize the Xase complex bound to a lipid nanodisc with biolayer interferometry (BLI), Michaelis-Menten kinetics, and small-angle X-ray scattering (SAXS). Using immobilized lipid nanodiscs, we measured binding rates and nanomolar affinities for fVIIIa, fIXa, and the Xase complex. Enzyme kinetic measurements demonstrated the assembly of an active enzyme complex in the presence of lipid nanodiscs. An ab initio molecular envelope of the nanodisc-bound Xase complex allowed us to computationally model fVIIIa and fIXa docked onto a flexible lipid membrane and identify protein-protein interactions. Our results highlight multiple points of contact between fVIIIa and fIXa, including a novel interaction with fIXa at the fVIIIa A1-A3 domain interface. Lastly, we identified hemophilia A/B-related mutations with varying severities at the fVIIIa/fIXa interface that may regulate Xase complex assembly. Together, our results support the use of SAXS as an emergent tool to investigate the membrane-bound Xase complex and illustrate how mutations at the fVIIIa/fIXa dimer interface may disrupt or stabilize the activated enzyme complex.
Collapse
Affiliation(s)
- Kenneth C Childers
- Department of Chemistry, Western Washington University, Bellingham, WA; and
| | - Shaun C Peters
- Department of Chemistry, Western Washington University, Bellingham, WA; and
| | - Pete Lollar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Harold Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Christopher B Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Paul C Spiegel
- Department of Chemistry, Western Washington University, Bellingham, WA; and
| |
Collapse
|
7
|
Shen G, Gao M, Cao Q, Li W. The Molecular Basis of FIX Deficiency in Hemophilia B. Int J Mol Sci 2022; 23:2762. [PMID: 35269902 PMCID: PMC8911121 DOI: 10.3390/ijms23052762] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/15/2022] Open
Abstract
Coagulation factor IX (FIX) is a vitamin K dependent protein and its deficiency causes hemophilia B, an X-linked recessive bleeding disorder. More than 1000 mutations in the F9 gene have been identified in hemophilia B patients. Here, we systematically summarize the structural and functional characteristics of FIX and the pathogenic mechanisms of the mutations that have been identified to date. The mechanisms of FIX deficiency are diverse in these mutations. Deletions, insertions, duplications, and indels generally lead to severe hemophilia B. Those in the exon regions generate either frame shift or inframe mutations, and those in the introns usually cause aberrant splicing. Regarding point mutations, the bleeding phenotypes vary from severe to mild in hemophilia B patients. Generally speaking, point mutations in the F9 promoter region result in hemophilia B Leyden, and those in the introns cause aberrant splicing. Point mutations in the coding sequence can be missense, nonsense, or silent mutations. Nonsense mutations generate truncated FIX that usually loses function, causing severe hemophilia B. Silent mutations may lead to aberrant splicing or affect FIX translation. The mechanisms of missense mutation, however, have not been fully understood. They lead to FIX deficiency, often by affecting FIX's translation, protein folding, protein stability, posttranslational modifications, activation to FIXa, or the ability to form functional Xase complex. Understanding the molecular mechanisms of FIX deficiency will provide significant insight for patient diagnosis and treatment.
Collapse
Affiliation(s)
- Guomin Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang 471023, China; (M.G.); (Q.C.)
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang 471023, China
| | - Meng Gao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang 471023, China; (M.G.); (Q.C.)
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang 471023, China
| | - Qing Cao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang 471023, China; (M.G.); (Q.C.)
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang 471023, China
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Walvekar VA, Ramesh K, Jobichen C, Kannan M, Sivaraman J, Kini RM, Mok YK. Crystal structure of Aedes aegypti trypsin inhibitor in complex with μ-plasmin reveals role for scaffold stability in Kazal-type serine protease inhibitor. Protein Sci 2022; 31:470-484. [PMID: 34800067 PMCID: PMC8820117 DOI: 10.1002/pro.4245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 02/03/2023]
Abstract
Kazal-type protease inhibitor specificity is believed to be determined by sequence of the reactive-site loop that make most, if not all, contacts with the serine protease. Here, we determined the complex crystal structure of Aedes aegypti trypsin inhibitor (AaTI) with μ-plasmin, and compared its reactivities with other Kazal-type inhibitors, infestin-1 and infestin-4. We show that the shortened 99-loop of plasmin creates an S2 pocket, which is filled by phenylalanine at the P2 position of the reactive-site loop of infestin-4. In contrast, AaTI and infestin-1 retain a proline at P2, rendering the S2 pocket unfilled, which leads to lower plasmin inhibitions. Furthermore, the protein scaffold of AaTI is unstable, due to an elongated Cys-V to Cys-VI region leading to a less compact hydrophobic core. Chimeric study shows that the stability of the scaffold can be modified by swapping of this Cys-V to Cys-VI region between AaTI and infestin-4. The scaffold instability causes steric clashing of the bulky P2 residue, leading to significantly reduced inhibition of plasmin by AaTI or infestin-4 chimera. Our findings suggest that surface loops of protease and scaffold stability of Kazal-type inhibitor are both necessary for specific protease inhibition, in addition to reactive site loop sequence. PDB ID code: 7E50.
Collapse
Affiliation(s)
| | - Karthik Ramesh
- Department of Biological SciencesNational University of SingaporeSingapore,Present address:
Department of Biophysics and BiochemistryUT Southwestern Medical CentreDallasTXUSA
| | - Chacko Jobichen
- Department of Biological SciencesNational University of SingaporeSingapore
| | - Muthu Kannan
- Department of Biological SciencesNational University of SingaporeSingapore
| | - J. Sivaraman
- Department of Biological SciencesNational University of SingaporeSingapore
| | - R. Manjunatha Kini
- Department of Biological SciencesNational University of SingaporeSingapore,Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Yu Keung Mok
- Department of Biological SciencesNational University of SingaporeSingapore
| |
Collapse
|
9
|
Afosah DK, Ofori E, Mottamal M, Al-Horani RA. Factor IX(a) inhibitors: an updated patent review (2003-present). Expert Opin Ther Pat 2022; 32:381-400. [PMID: 34991418 DOI: 10.1080/13543776.2022.2026926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Anticoagulation with no bleeding complications is the current objective of drug discovery programs in the area of treating and/or preventing thromboembolism. Despite the promises of therapeutics targeting factors XI(a) and XII(a), none has been approved thus far. Clinically used thrombin- and/or factor Xa-based anticoagulants continue to be associated with a significant bleeding risk which limits their safe use in a broad range of thrombotic patients. Research findings in animals and humans indicate that it is possible to target factor IX(a) (FIX(a)) to achieve anticoagulation with a limited risk of bleeding. AREAS COVERED A review of patents literature has retrieved >35 patents on the development of molecules targeting FIX(a) since 2003. Small molecules, antibodies, and aptamers have been developed to target FIX(a) to potentially promote effective and safer anticoagulation. Most of these agents are in the pre-clinical development phase and few have been tested in clinical trials. EXPERT OPINION FIX(a) system is being considered to develop new anticoagulants with fewer bleeding complications. Our survey indicates that the number of FIX(a)-targeting agents is mediocre. The agents under development are diverse. Although additional development is essential, moving one or more of these agents to the clinic will facilitate achieving better clinical outcomes.
Collapse
Affiliation(s)
- Daniel K Afosah
- Department of Chemistry and Biochemistry, Washington and Lee University, Lexington, VA, USA
| | - Edward Ofori
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL, USA
| | - Madhusoodanan Mottamal
- Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA, USA
| | - Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| |
Collapse
|
10
|
Freato N, van Alphen FPJ, Boon‐Spijker M, van den Biggelaar M, Meijer AB, Mertens K, Ebberink EHTM. Probing activation-driven changes in coagulation factor IX by mass spectrometry. J Thromb Haemost 2021; 19:1447-1459. [PMID: 33687765 PMCID: PMC8252100 DOI: 10.1111/jth.15288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/21/2021] [Accepted: 02/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Activated factor IX (FIXa) is an inefficient enzyme that needs activated factor VIII (FVIII) for full activity. Recently, we identified a network of FVIII-driven changes in FIXa employing hydrogen-deuterium eXchange mass spectrometry (HDX-MS). Some changes also occurred in active-site inhibited FIXa, but others were not cofactor-driven, in particular those within the 220-loop (in chymotrypsin numbering). OBJECTIVE The aim of this work is to better understand the zymogen-to-enzyme transition in FIX, with specific focus on substrate-driven changes at the catalytic site. METHODS Footprinting mass spectrometry by HDX and Tandem-Mass Tags (TMT) labelling were used to explore changes occurring upon the conversion from FIX into FIXa. Mutagenesis and kinetic studies served to assess the role of the 220-loop. RESULTS HDX-MS displayed remarkably few differences between FIX and FIXa. In comparison with FIX, FIXa did exhibit decreased deuterium uptake at the N-terminus region. This was more prominent when the FIXa active site was occupied by an irreversible inhibitor. TMT-labelling showed that the N-terminus is largely protected from labelling, and that inhibitor binding increases protection to a minor extent. Occupation of the active site also reduced deuterium uptake within the 220-loop backbone. Mutagenesis within the 220-loop revealed that a putative H-bond network contributes to FIXa activity. TMT labeling of the N-terminus suggested that these 220-loop variants are more zymogen-like than wild-type FIXa. CONCLUSION In the absence of cofactor and substrate, FIXa is predominantly zymogen-like. Stabilization in its enzyme-like form involves, apart from FVIII-binding, also interplay between the 220-loop, N-terminus, and the substrate binding site.
Collapse
Affiliation(s)
- Nadia Freato
- Department of Molecular and Cellular HemostasisSanquin ResearchAmsterdamThe Netherlands
| | | | - Mariëtte Boon‐Spijker
- Department of Molecular and Cellular HemostasisSanquin ResearchAmsterdamThe Netherlands
| | | | - Alexander B. Meijer
- Department of Molecular and Cellular HemostasisSanquin ResearchAmsterdamThe Netherlands
- Department of Biomolecular Mass Spectrometry and ProteomicsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUtrechtThe Netherlands
| | - Koen Mertens
- Department of Molecular and Cellular HemostasisSanquin ResearchAmsterdamThe Netherlands
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUtrechtThe Netherlands
| | | |
Collapse
|
11
|
Sheehan JP. Mapping the zymogen to protease transition in FIXa. J Thromb Haemost 2021; 19:1409-1411. [PMID: 34047009 DOI: 10.1111/jth.15286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 11/27/2022]
Affiliation(s)
- John P Sheehan
- Department of Medicine (Hematology/Oncology), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53792, USA
| |
Collapse
|
12
|
Factor VIII-driven changes in activated factor IX explored by hydrogen-deuterium exchange mass spectrometry. Blood 2021; 136:2703-2714. [PMID: 32678887 DOI: 10.1182/blood.2020005593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/29/2020] [Indexed: 11/20/2022] Open
Abstract
The assembly of the enzyme-activated factor IX (FIXa) with its cofactor, activated factor VIII (FVIIIa) is a crucial event in the coagulation cascade. The absence or dysfunction of either enzyme or cofactor severely compromises hemostasis and causes hemophilia. FIXa is a notoriously inefficient enzyme that needs FVIIIa to drive its hemostatic potential, by a mechanism that has remained largely elusive to date. In this study, we employed hydrogen-deuterium exchange-mass spectrometry (HDX-MS) to investigate how FIXa responds to assembly with FVIIIa in the presence of phospholipids. This revealed a complex pattern of changes that partially overlaps with those changes that occur upon occupation of the substrate-binding site by an active site-directed inhibitor. Among the changes driven by both cofactor and substrate, HDX-MS highlighted several surface loops that have been implicated in allosteric networks in related coagulation enzymes. Inspection of FVIIIa-specific changes indicated that 3 helices are involved in FIXa-FVIIIa assembly. These are part of a basic interface that is also known as exosite II. Mutagenesis of basic residues herein, followed by functional studies, identified this interface as an extended FVIIIa-interactive patch. HDX-MS was also applied to recombinant FIXa variants that are associated with severe hemophilia B. This revealed that single amino acid substitutions can silence the extended network of FVIIIa-driven allosteric changes. We conclude that HDX-MS has the potential to visualize the functional impact of disease-associated mutations on enzyme-cofactor complexes in the hemostatic system.
Collapse
|
13
|
Nichols TC, Levy H, Merricks EP, Raymer RA, Lee ML. Preclinical evaluation of a next-generation, subcutaneously administered, coagulation factor IX variant, dalcinonacog alfa. PLoS One 2020; 15:e0240896. [PMID: 33112889 PMCID: PMC7592742 DOI: 10.1371/journal.pone.0240896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/05/2020] [Indexed: 01/12/2023] Open
Abstract
Introduction The rapid clearance of factor IX necessitates frequent intravenous administrations to achieve effective prophylaxis for patients with hemophilia B. Subcutaneous administration has historically been limited by low bioavailability and potency. Dalcinonacog alfa was developed using a rational design approach to be a subcutaneously administered, next-generation coagulation prophylactic factor IX therapy. Aim This study aimed to investigate the pharmacokinetic, pharmacodynamic, and safety profile of dalcinonacog alfa administered subcutaneously in hemophilia B dogs. Methods Two hemophilia B dogs received single-dose daily subcutaneous dalcinonacog alfa injections for six days. Factor IX antigen and activity, whole blood clotting time, and activated partial thromboplastin time were measured at various time points. Additionally, safety assessments for clinical adverse events and evaluations of laboratory test results were conducted. Results There was an increase in plasma factor IX antigen with daily subcutaneous dalcinonacog alfa. Bioavailability of subcutaneous dalcinonacog alfa was 10.3% in hemophilia B dogs. Daily subcutaneous dosing of dalcinonacog alfa demonstrated the effects of bioavailability, time to maximal concentration, and half-life by reaching a steady-state activity sufficient to correct severe hemophilia to normal, after four days. Conclusion The increased potency of dalcinonacog alfa facilitated the initiation and completion of the Phase 1/2 subcutaneous dosing study in individuals with hemophilia B.
Collapse
Affiliation(s)
- Timothy C. Nichols
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Howard Levy
- Catalyst Biosciences, South San Francisco, California, United States of America
- * E-mail:
| | - Elizabeth P. Merricks
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robin A. Raymer
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Martin L. Lee
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, California, United States of America
| |
Collapse
|
14
|
Characterisation of recombinant factor IX before and after GlycoPEGylation. Int J Pharm 2020; 588:119654. [PMID: 32693290 DOI: 10.1016/j.ijpharm.2020.119654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
The effect of the GlycoPEGylation process used for prolonging the half-life of recombinant factor IX (rFIX) has no impact on the primary and higher order structure of activated factor IX. Characterisation work performed on recombinant factor IX and on the GlycoPEGylated form of rFIX (N9-GP), confirm that the primary structure as well as the post translational modifications (PTMs) (disulphide bonds, γ-carboxylation, β-hydroxylation, sulphation and O- and N-linked glycan structures) were comparable for rFIX and N9-GP. Three O-linked glycan sites were identified in the activation peptide (Thr159, Thr163 and Thr169), where Thr163 has not been reported previously. For N9-GP, the mono GlycoPEGylation is directed toward one of the two N-linked glycans present at Asn157 and Asn167 in the activation peptide in a one to one ratio. Spectroscopic techniques, such as far and near UV Circular Dichroism studies show comparable secondary and tertiary structures of rFIX and N9-GP. The thermally induced unfolding of rFIX and N9-GP shows that the unfolding temperature is approximately 1 °C higher for N9-GP than that of the rFIX. Furthermore, the pH dependent degradation was reduced due to the GlycoPEGylation of rFIX. GlycoPEGylated rFIX (N9-GP) is used for the manufacturing of Refixia® (nonacog beta pegol, Rebinyn®, Novo Nordisk A/S, Bagsvaerd, Denmark).
Collapse
|
15
|
Goettig P, Brandstetter H, Magdolen V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie 2019; 166:52-76. [PMID: 31505212 PMCID: PMC7615277 DOI: 10.1016/j.biochi.2019.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Trypsin and chymotrypsin-like serine proteases from family S1 (clan PA) constitute the largest protease group in humans and more generally in vertebrates. The prototypes chymotrypsin, trypsin and elastase represent simple digestive proteases in the gut, where they cleave nearly any protein. Multidomain trypsin-like proteases are key players in the tightly controlled blood coagulation and complement systems, as well as related proteases that are secreted from diverse immune cells. Some serine proteases are expressed in nearly all tissues and fluids of the human body, such as the human kallikreins and kallikrein-related peptidases with specialization for often unique substrates and accurate timing of activity. HtrA and membrane-anchored serine proteases fulfill important physiological tasks with emerging roles in cancer. The high diversity of all family members, which share the tandem β-barrel architecture of the chymotrypsin-fold in the catalytic domain, is conferred by the large differences of eight surface loops, surrounding the active site. The length of these loops alters with insertions and deletions, resulting in remarkably different three-dimensional arrangements. In addition, metal binding sites for Na+, Ca2+ and Zn2+ serve as regulatory elements, as do N-glycosylation sites. Depending on the individual tasks of the protease, the surface loops determine substrate specificity, control the turnover and allow regulation of activation, activity and degradation by other proteins, which are often serine proteases themselves. Most intriguingly, in some serine proteases, the surface loops interact as allosteric network, partially tuned by protein co-factors. Knowledge of these subtle and complicated molecular motions may allow nowadays for new and specific pharmaceutical or medical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria.
| | - Hans Brandstetter
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| |
Collapse
|
16
|
Vadivel K, Schreuder HA, Liesum A, Schmidt AE, Goldsmith G, Bajaj SP. Sodium-site in serine protease domain of human coagulation factor IXa: evidence from the crystal structure and molecular dynamics simulations study. J Thromb Haemost 2019; 17:574-584. [PMID: 30725510 PMCID: PMC6443445 DOI: 10.1111/jth.14401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/24/2019] [Indexed: 01/03/2023]
Abstract
Essentials Consensus sequence and biochemical data suggest a Na+ -site in the factor (F) IXa protease domain. X-ray structure of the FIXa EGF2/protease domain at 1.37 Å reveals a Na+ -site not observed earlier. Molecular dynamics simulations data support that Na+ ± Ca2+ promote FIXa protease domain stability. Sulfate ions found in the protease domain mimic heparin sulfate binding mode in FIXa. SUMMARY: Background Activated coagulation factor IX (FIXa) consists of a γ-carboxyglutamic acid domain, two epidermal growth factor-like (EGF) domains, and a C-terminal protease domain. Consensus sequence and biochemical data support the existence of a Na+ -site in the FIXa protease domain. However, soaking experiments or crystals grown in high concentration of ammonium sulfate did not reveal a Na+ -site in wild-type or mutant FIXa EGF2/protease domain structure. Objective Determine the structure of the FIXa EGF2/protease domain in the presence of Na+ ; perform molecular dynamics (MD) simulations to explore the role of Na+ in stabilizing FIXa structure. Methods Crystallography, MD simulations, and modeling heparin binding to FIXa. Results Crystal structure at 1.37-Å resolution revealed that Na+ is coordinated to carbonyl groups of residues 184A, 185, 221A, and 224 in the FIXa protease domain. The Na+ -site in FIXa is similar to that of FXa and is linked to the Asp189 S1-site. In MD simulations, Na+ reduced fluctuations in residues 217-225 (Na+ -loop) and 70-80 (Ca2+ -loop), whereas Ca2+ reduced fluctuations only in residues of the Ca2+ -loop. Ca2+ and Na+ together reduced fluctuations in residues of the Ca2+ -loop and Na+ -loop (residues 70-80, 183-194, and 217-225). Moreover, we observed four sulfate ions that make salt bridges with FIXa protease domain Arg/Lys residues, which have been implicated in heparin binding. Based upon locations of the sulfate ions, we modeled heparin binding to FIXa, which is similar to the heparin binding in thrombin. Conclusions The FIXa Na+ -site in association with Ca2+ contributes to stabilization of the FIXa protease domain. The heparin binding mode in FIXa is similar to that in thrombin.
Collapse
Affiliation(s)
- Kanagasabai Vadivel
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, USA
| | | | - Alexander Liesum
- Sanofi-Aventis Pharma Deutschland GmbH, Frankfurt am Main, Germany
| | - Amy E Schmidt
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, USA
| | | | - S Paul Bajaj
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Structural determinants of specificity and regulation of activity in the allosteric loop network of human KLK8/neuropsin. Sci Rep 2018; 8:10705. [PMID: 30013126 PMCID: PMC6048020 DOI: 10.1038/s41598-018-29058-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/27/2018] [Indexed: 11/12/2022] Open
Abstract
Human KLK8/neuropsin, a kallikrein-related serine peptidase, is mostly expressed in skin and the hippocampus regions of the brain, where it regulates memory formation by synaptic remodeling. Substrate profiles of recombinant KLK8 were analyzed with positional scanning using fluorogenic tetrapeptides and the proteomic PICS approach, which revealed the prime side specificity. Enzyme kinetics with optimized substrates showed stimulation by Ca2+ and inhibition by Zn2+, which are physiological regulators. Crystal structures of KLK8 with a ligand-free active site and with the inhibitor leupeptin explain the subsite specificity and display Ca2+ bound to the 75-loop. The variants D70K and H99A confirmed the antagonistic role of the cation binding sites. Molecular docking and dynamics calculations provided insights in substrate binding and the dual regulation of activity by Ca2+ and Zn2+, which are important in neuron and skin physiology. Both cations participate in the allosteric surface loop network present in related serine proteases. A comparison of the positional scanning data with substrates from brain suggests an adaptive recognition by KLK8, based on the tertiary structures of its targets. These combined findings provide a comprehensive picture of the molecular mechanisms underlying the enzyme activity of KLK8.
Collapse
|
18
|
Abstract
Hemophilia B is a hereditary bleeding disorder caused by the deficiency in coagulation factor IX. Understanding coagulation and the role of factor IX as well as patient population and diagnosis are all critical factors in developing treatment strategies and regimens for hemophilia B patients. Current treatment options rely on protein replacement therapy by intravenous injection, which have markedly improved patient lifespan and quality of life. However, issues with current options include lack of patient compliance due to needle-based administration, high expenses, and potential other complications (e.g., surgical procedures, inhibitor formation). As a result, these treatment options are also limited to developed countries. Recent advantages in hemophilia B treatment have focused on addressing these pain points. Emerging commercial products based on modified factor IX aim to reduce injection frequency. Exploratory research efforts have focused on novel drug delivery systems for orally administered treatment and gene therapy as a potential cure. Such alternative treatment methods are promising options for hemophilia B patients worldwide.
Collapse
|
19
|
Plautz WE, Sekhar Pilli VS, Cooley BC, Chattopadhyay R, Westmark PR, Getz T, Paul D, Bergmeier W, Sheehan JP, Majumder R. Anticoagulant Protein S Targets the Factor IXa Heparin-Binding Exosite to Prevent Thrombosis. Arterioscler Thromb Vasc Biol 2018; 38:816-828. [PMID: 29419409 DOI: 10.1161/atvbaha.117.310588] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/16/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVE PS (protein S) is a plasma protein that directly inhibits the coagulation FIXa (factor IXa) in vitro. Because elevated FIXa is associated with increased risk of venous thromboembolism, it is important to establish how PS inhibits FIXa function in vivo. The goal of this study is to confirm direct binding of PS with FIXa in vivo, identify FIXa amino acid residues required for binding PS in vivo, and use an enzymatically active FIXa mutant that is unable to bind PS to measure the significance of PS-FIXa interaction in hemostasis. APPROACH AND RESULTS We demonstrate that PS inhibits FIXa in vivo by associating with the FIXa heparin-binding exosite. We used fluorescence tagging, immunohistochemistry, and protein-protein crosslinking to show in vivo interaction between FIXa and PS. Importantly, platelet colocalization required a direct interaction between the 2 proteins. FIXa and PS also coimmunoprecipitated from plasma, substantiating their interaction in a physiological milieu. PS binding to FIXa and PS inhibition of the intrinsic Xase complex required residues K132, K126, and R170 in the FIXa heparin-binding exosite. A double mutant, K132A/R170A, retained full activity but could not bind to PS. Crucially, Hemophilia B mice infused with FIXa K132A/R170A displayed an accelerated rate of fibrin clot formation compared with wild-type FIXa. CONCLUSIONS Our findings establish PS as an important in vivo inhibitor of FIXa. Disruption of the interaction between PS and FIXa causes an increased rate of thrombus formation in mice. This newly discovered function of PS implies an unexploited target for antithrombotic therapeutics.
Collapse
Affiliation(s)
- William E Plautz
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - Vijaya Satish Sekhar Pilli
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - Brian C Cooley
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - Rima Chattopadhyay
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - Pamela R Westmark
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - Todd Getz
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - David Paul
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - Wolfgang Bergmeier
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - John P Sheehan
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.)
| | - Rinku Majumder
- From the Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans (W.E.P., V.S.S.P., R.C., R.M.); Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (B.C.C., T.G., D.P., W.B.); and Department of Medicine/Hematology-Oncology, University of Wisconsin School of Medicine and Public Health, Madison (P.R.W., J.P.S.).
| |
Collapse
|
20
|
Tanratana P, Ellery P, Westmark P, Mast AE, Sheehan JP. Elevated Plasma Factor IXa Activity in Premenopausal Women on Hormonal Contraception. Arterioscler Thromb Vasc Biol 2017; 38:266-274. [PMID: 29097362 DOI: 10.1161/atvbaha.117.309919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/12/2017] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Combined oral contraceptives induce a reversible hypercoagulable state with an enhanced risk of venous thromboembolism, but the underlying mechanism(s) remain unclear. Subjects on combined oral contraceptives also demonstrate a characteristic resistance to APC (activated protein C) in the thrombin generation assay. Here, we report the potential role of plasma factor IXa (FIXa) as a mechanism for hormone-induced systemic hypercoagulability. APPROACH AND RESULTS A novel assay was used to determine FIXa activity in plasma samples from volunteer blood donors. Plasma from 36 premenopausal females on hormonal contraception and 35 not on hormonal contraception, 35 postmenopausal females, and 10 males were analyzed for FIXa activity, total PS (protein S), total tissue factor pathway inhibitor (TFPI), and TFPI-α antigen. Premenopausal females on hormonal contraception demonstrated significantly increased FIXa activity and decreased TFPI-α compared with the other groups. Remarkably, FIXa values were not normally distributed in the hormonal contraception group, but skewed toward the high end. Plasma FIXa activity inversely correlated with both TFPI-α and total PS antigen. Ex vivo determination of TF-dependent FIX activation in FV-deficient plasma demonstrated that inhibitory anti-TFPI antibodies enhanced FIXa generation by 2- to 3-fold, whereas addition of 75 nmol/L PS reduced FIXa generation by ≈2-fold. Further, increasing FIXa concentration enhanced APC resistance during TF-triggered plasma thrombin generation. CONCLUSIONS Elevation of plasma FIXa activity in association with reductions in TFPI-α and PS is a potential mechanism for systemic hypercoagulability and resistance to APC in premenopausal females on hormonal contraception.
Collapse
Affiliation(s)
- Pansakorn Tanratana
- From the Department of Pathology and Laboratory Medicine (P.T.), Department of Medicine/Hematology-Oncology (P.W., J.P.S.), University of Wisconsin School of Medicine and Public Health, Madison; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand (P.T.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (P.E., A.E.M.); and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia (P.E.)
| | - Paul Ellery
- From the Department of Pathology and Laboratory Medicine (P.T.), Department of Medicine/Hematology-Oncology (P.W., J.P.S.), University of Wisconsin School of Medicine and Public Health, Madison; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand (P.T.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (P.E., A.E.M.); and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia (P.E.)
| | - Pamela Westmark
- From the Department of Pathology and Laboratory Medicine (P.T.), Department of Medicine/Hematology-Oncology (P.W., J.P.S.), University of Wisconsin School of Medicine and Public Health, Madison; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand (P.T.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (P.E., A.E.M.); and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia (P.E.)
| | - Alan E Mast
- From the Department of Pathology and Laboratory Medicine (P.T.), Department of Medicine/Hematology-Oncology (P.W., J.P.S.), University of Wisconsin School of Medicine and Public Health, Madison; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand (P.T.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (P.E., A.E.M.); and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia (P.E.)
| | - John P Sheehan
- From the Department of Pathology and Laboratory Medicine (P.T.), Department of Medicine/Hematology-Oncology (P.W., J.P.S.), University of Wisconsin School of Medicine and Public Health, Madison; Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand (P.T.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (P.E., A.E.M.); and School of Biomedical Sciences, Curtin University, Perth, Western Australia, Australia (P.E.).
| |
Collapse
|
21
|
Fischer PM. Design of Small-Molecule Active-Site Inhibitors of the S1A Family Proteases as Procoagulant and Anticoagulant Drugs. J Med Chem 2017; 61:3799-3822. [DOI: 10.1021/acs.jmedchem.7b00772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peter M. Fischer
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
22
|
Engineered factor Xa variants retain procoagulant activity independent of direct factor Xa inhibitors. Nat Commun 2017; 8:528. [PMID: 28904343 PMCID: PMC5597622 DOI: 10.1038/s41467-017-00647-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/17/2017] [Indexed: 01/02/2023] Open
Abstract
The absence of an adequate reversal strategy to prevent and stop potential life-threatening bleeding complications is a major drawback to the clinical use of the direct oral inhibitors of blood coagulation factor Xa. Here we show that specific modifications of the substrate-binding aromatic S4 subpocket within the factor Xa active site disrupt high-affinity engagement of the direct factor Xa inhibitors. These modifications either entail amino-acid substitution of S4 subsite residues Tyr99 and/or Phe174 (chymotrypsinogen numbering), or extension of the 99-loop that borders the S4 subsite. The latter modifications led to the engineering of a factor Xa variant that is able to support coagulation in human plasma spiked with (supra-)physiological concentrations of direct factor Xa inhibitors. As such, this factor Xa variant has the potential to be employed to bypass the direct factor Xa inhibitor-mediated anticoagulation in patients that require restoration of blood coagulation. A major drawback in the clinical use of the oral anticoagulants that directly inhibit factor Xa in order to prevent blood clot formation is the potential for life threatening bleeding events. Here the authors describe factor Xa variants that are refractory to inhibition by these anticoagulants and could serve as rescue agents in treated patients.
Collapse
|
23
|
Discovery of a novel conformational equilibrium in urokinase-type plasminogen activator. Sci Rep 2017; 7:3385. [PMID: 28611361 PMCID: PMC5469797 DOI: 10.1038/s41598-017-03457-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/27/2017] [Indexed: 01/15/2023] Open
Abstract
Although trypsin-like serine proteases have flexible surface-exposed loops and are known to adopt higher and lower activity conformations, structural determinants for the different conformations have remained largely obscure. The trypsin-like serine protease, urokinase-type plasminogen activator (uPA), is central in tissue remodeling processes and also strongly implicated in tumor metastasis. We solved five X-ray crystal structures of murine uPA (muPA) in the absence and presence of allosteric molecules and/or substrate-like molecules. The structure of unbound muPA revealed an unsuspected non-chymotrypsin-like protease conformation in which two β-strands in the core of the protease domain undergoes a major antiparallel-to-parallel conformational transition. We next isolated two anti-muPA nanobodies; an active-site binding nanobody and an allosteric nanobody. Crystal structures of the muPA:nanobody complexes and hydrogen-deuterium exchange mass spectrometry revealed molecular insights about molecular factors controlling the antiparallel-to-parallel equilibrium in muPA. Together with muPA activity assays, the data provide valuable insights into regulatory mechanisms and conformational flexibility of uPA and trypsin-like serine proteases in general.
Collapse
|
24
|
Choudhari PB, Bhatia MS, Jadhav SD, Kumbhar SS, Ingale KB, Gaikwad VL. Design and development of potent and selective factor IXa inhibitors. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.09.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Releasing the brakes in coagulation Factor IXa by co-operative maturation of the substrate-binding site. Biochem J 2016; 473:2395-411. [DOI: 10.1042/bcj20160336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/19/2016] [Indexed: 01/27/2023]
Abstract
Coagulation Factor IX is positioned at the merging point of the intrinsic and extrinsic blood coagulation cascades. Factor IXa (activated Factor IX) serves as the trigger for amplification of coagulation through formation of the so-called Xase complex, which is a ternary complex of Factor IXa, its substrate Factor X and the cofactor Factor VIIIa on the surface of activated platelets. Within the Xase complex the substrate turnover by Factor IXa is enhanced 200000-fold; however, the mechanistic and structural basis for this dramatic enhancement remains only partly understood. A multifaceted approach using enzymatic, biophysical and crystallographic methods to evaluate a key set of activity-enhanced Factor IXa variants has demonstrated a delicately balanced bidirectional network. Essential molecular interactions across multiple regions of the Factor IXa molecule co-operate in the maturation of the active site. This maturation is specifically facilitated by long-range communication through the Ile212–Ile213 motif unique to Factor IXa and a flexibility of the 170-loop that is further dependent on the conformation in the Cys168–Cys182 disulfide bond. Ultimately, the network consists of compensatory brakes (Val16 and Ile213) and accelerators (Tyr99 and Phe174) that together allow for a subtle fine-tuning of enzymatic activity.
Collapse
|
26
|
Lu Q, Yang L, Manithody C, Wang X, Rezaie AR. Expression and Characterization of Gly-317 Variants of Factor IX Causing Variable Bleeding in Hemophilia B Patients. Biochemistry 2015; 54:3814-21. [PMID: 26023895 DOI: 10.1021/acs.biochem.5b00270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We recently identified two hemophilia B patients who carried Gly-317 to Arg (FIX-G317R) or Gly-317 to Glu (FIX-G317E) substitutions in their FIX gene. The former mutation caused severe and the latter moderate bleeding in afflicted patients. To understand the molecular basis for the variable clinical manifestation of Gly-317 mutations, we prepared recombinant G317R and G317E derivatives of FIX and compared their kinetic properties to those of recombinant wild-type FIX in appropriate assay systems. Both physiological activators, factor XIa and extrinsic Tenase (factor VIIa-tissue factor), activated both zymogen variants with an ∼1.5-fold elevated K(m); however, extrinsic Tenase activated FIX-G317E with an ∼2-fold improved k(cat). By contrast to zymogen activation, the catalytic activities of both FIXa-G317R and FIXa-G317E enzymes toward the natural substrate, factor X, were dramatically (>4 orders of magnitude) impaired, but their apparent affinity for interaction with factor VIIIa was only slightly (<2-fold) decreased. Further studies revealed that the reactivity of FIXa-G317R and FIXa-G317E with antithrombin has been impaired 10- and 13-fold, respectively, in the absence and 166- and 500-fold, respectively, in the presence of pentasaccharide. As expected, the clotting activities of FIX variants could not be measured by the aPTT assay. These results implicate a critical role for Gly-317 in maintaining normal catalytic function for FIX/FIXa in the clotting cascade. The results further suggest that improved k(cat) of FIX-G317E activation in the extrinsic pathway together with dramatically impaired reactivity of FIXa-G317E with antithrombin may account for the less severe bleeding phenotype of a hemophilia B patient carrying the FIX-G317E mutation.
Collapse
Affiliation(s)
- Qiuya Lu
- †Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Likui Yang
- ‡Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Chandrashekhara Manithody
- ‡Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Xuefeng Wang
- †Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Alireza R Rezaie
- ‡Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, United States
| |
Collapse
|
27
|
Westmark PR, Tanratana P, Sheehan JP. Selective disruption of heparin and antithrombin-mediated regulation of human factor IX. J Thromb Haemost 2015; 13:1053-63. [PMID: 25851619 DOI: 10.1111/jth.12960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/24/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND Interaction with antithrombin and heparin regulates distribution, activity, and clearance of factor IXa (FIXa). Hemophilia B prophylaxis targets plasma FIX levels > 1% but neglects extravascular FIX, which colocalizes with antithrombin-heparan sulfate. OBJECTIVE Combined mutagenesis of FIX was undertaken to selectively disrupt heparin- and antithrombin-mediated regulation of the protease. METHODS Human FIX alanine substitutions in the heparin (K126A and K132A) and antithrombin (R150A) exosites were characterized with regard to coagulant activity, plasma thrombin generation, antithrombin inhibition, and plasma half-life. RESULTS Single or combined (K126A/R150A or K132A/R150A) exosite mutations variably reduced coagulant activity relative to wild-type (WT) for FIX (27-91%) and FIXa (25-91%). Double mutation in the heparin exosite (K126A/K132A and K126A/K132A/R150A) markedly reduced coagulant activity (7-21%) and plasma TG. In contrast to coagulant activity, FIX K126A (1.8-fold), R150 (1.6-fold), and K132A/R150A (1.3-fold) supported increased tissue factor-initiated plasma TG, while FIX K132A and K126A/R150A were similar to WT. FIXa K126A/R150A and K132A/R150A (1.5-fold) demonstrated significantly increased FIXa-initiated TG, while FIXa K132A, R150A, and K126A (0.8-0.9-fold) were similar to WT. Dual mutations in the heparin exosite or combined mutations in both exosites synergistically reduced the inhibition rate for antithrombin-heparin. The half-life of FIXa WT in FIX-deficient plasma was remarkably lengthy (40.9 ±1.4 min) and further prolonged for FIXa R150A, K126A/R150A, and K132A/R150A (> 2 h). CONCLUSION Selective disruption of exosite-mediated regulation by heparin and antithrombin can be achieved with preserved or enhanced thrombin generation capacity. These proteins should demonstrate enhanced therapeutic efficacy for hemophilia B.
Collapse
Affiliation(s)
- P R Westmark
- Department of Medicine/Hematology-Oncology, University of Wisconsin-Madison, Madison, WI, USA
| | - P Tanratana
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - J P Sheehan
- Department of Medicine/Hematology-Oncology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
28
|
Quade-Lyssy P, Abriss D, Milanov P, Ungerer C, Königs C, Seifried E, Schüttrumpf J. Next generation FIX muteins with FVIII-independent activity for alternative treatment of hemophilia A. J Thromb Haemost 2014; 12:1861-73. [PMID: 25224783 DOI: 10.1111/jth.12731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 08/06/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND FVIII neutralizing antibodies are the main complication of substitution therapy in hemophilia A (HA); auto-antibodies against FVIII causing acquired HA can also occur. Treatment of inhibitor patients remains challenging because prophylactic treatment with existing FVIII bypassing agents, all based on constitutively active coagulation factors, is difficult due to their short half-life. OBJECTIVES To generate zymogenic FIX variants with FVIII-independent activity for gene- and protein-based therapy for HA. METHODS Modifications were introduced into FIX based on current knowledge of FIX structure and FVIII-independent function followed by random screening. Activity, thrombin generation and FX activation by FIX mutants were characterized in the presence and absence of FVIII. Phenotype correction of promising candidates was assessed by the tail-clip assay in FVIII-knockout mice. RESULTS About 1600 clones were screened and three mutations (L6F, S102N and E185D) identified, which improved FVIII-independent activity in combination with our previously described variant FIX-ITV. By systematic combination of all mutations, six FIX mutants with the desired bypassing activity were designed. Candidate mutants FIX-IDAV and FIX-FIAV demonstrated the most efficient thrombin generation in FVIII-deficient plasma and had considerably increased activities towards FX in the absence of FVIII, in that they showed an up to 5-fold increase in catalytic efficiency. Expression of FIX-IDAV in FVIII knockout mice reduced blood loss after the tail-clip assay, even in the presence of neutralizing FVIII antibodies. CONCLUSION Activatable bioengineered FIX molecules (as opposed to pre-activated coagulation factors) with FVIII-independent activity might be a promising tool for improving HA treatment, especially for patients with inhibitors.
Collapse
Affiliation(s)
- P Quade-Lyssy
- German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Institute of Transfusion Medicine and Immunohematology of the Goethe University Clinics, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Abdel-Azeim S, Oliva R, Chermak E, De Cristofaro R, Cavallo L. Molecular Dynamics Characterization of Five Pathogenic Factor X Mutants Associated with Decreased Catalytic Activity. Biochemistry 2014; 53:6992-7001. [DOI: 10.1021/bi500770p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Safwat Abdel-Azeim
- Kaust
Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department
of Sciences and Technologies, University “Parthenope” of Naples, Centro Direzionale Isola C4, 80133 Naples, Italy
| | - Edrisse Chermak
- Kaust
Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Raimondo De Cristofaro
- Hemostasis
Research Centre, Institute of Internal Medicine and Geriatrics, Catholic University School of Medicine, Rome, Italy
| | - Luigi Cavallo
- Kaust
Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Dipartimento
di Chimica e Biologia, University of Salerno, Via Papa Giovanni Paolo II, I-84084 Fisciano, Italy
| |
Collapse
|
30
|
Skala W, Utzschneider DT, Magdolen V, Debela M, Guo S, Craik CS, Brandstetter H, Goettig P. Structure-function analyses of human kallikrein-related peptidase 2 establish the 99-loop as master regulator of activity. J Biol Chem 2014; 289:34267-83. [PMID: 25326387 PMCID: PMC4256358 DOI: 10.1074/jbc.m114.598201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Human kallikrein-related peptidase 2 (KLK2) is a tryptic serine protease predominantly expressed in prostatic tissue and secreted into prostatic fluid, a major component of seminal fluid. Most likely it activates and complements chymotryptic KLK3 (prostate-specific antigen) in cleaving seminal clotting proteins, resulting in sperm liquefaction. KLK2 belongs to the “classical” KLKs 1–3, which share an extended 99- or kallikrein loop near their non-primed substrate binding site. Here, we report the 1.9 Å crystal structures of two KLK2-small molecule inhibitor complexes. In both structures discontinuous electron density for the 99-loop indicates that this loop is largely disordered. We provide evidence that the 99-loop is responsible for two biochemical peculiarities of KLK2, i.e. reversible inhibition by micromolar Zn2+ concentrations and permanent inactivation by autocatalytic cleavage. Indeed, several 99-loop mutants of KLK2 displayed an altered susceptibility to Zn2+, which located the Zn2+ binding site at the 99-loop/active site interface. In addition, we identified an autolysis site between residues 95e and 95f in the 99-loop, whose elimination prevented the mature enzyme from limited autolysis and irreversible inactivation. An exhaustive comparison of KLK2 with related structures revealed that in the KLK family the 99-, 148-, and 220-loop exist in open and closed conformations, allowing or preventing substrate access, which extends the concept of conformational selection in trypsin-related proteases. Taken together, our novel biochemical and structural data on KLK2 identify its 99-loop as a key player in activity regulation.
Collapse
Affiliation(s)
- Wolfgang Skala
- From the Division of Structural Biology, Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria
| | - Daniel T Utzschneider
- Klinische Forschergruppe der Frauenklinik, Klinikum rechts der Isar der TU München, D-81675 Munich, Germany
| | - Viktor Magdolen
- Klinische Forschergruppe der Frauenklinik, Klinikum rechts der Isar der TU München, D-81675 Munich, Germany
| | - Mekdes Debela
- Max-Planck-Institut for Biochemistry, Proteinase Research Group, D-82152 Martinsried, Germany, and
| | - Shihui Guo
- From the Division of Structural Biology, Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143
| | - Hans Brandstetter
- From the Division of Structural Biology, Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria
| | - Peter Goettig
- From the Division of Structural Biology, Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria,
| |
Collapse
|
31
|
Promising coagulation factor VIII bypassing strategies for patients with haemophilia A. Blood Coagul Fibrinolysis 2014; 25:539-52. [DOI: 10.1097/mbc.0000000000000098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Brooks AR, Sim D, Gritzan U, Patel C, Blasko E, Feldman RI, Tang L, Ho E, Zhao XY, Apeler H, Murphy JE. Glycoengineered factor IX variants with improved pharmacokinetics and subcutaneous efficacy. J Thromb Haemost 2013; 11:1699-706. [PMID: 23692404 DOI: 10.1111/jth.12300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/14/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND The rapid clearance of factor IX (FIX) necessitates frequent intravenous administration to achieve effective prophylaxis for patients with hemophilia B. Subcutaneous administration would be a preferred route of administration but is limited by bioavailability. OBJECTIVES To improve the pharmacokinetics (PK) and bioavailability of FIX, a screen was performed to identify positions for the introduction of novel glycosylation sites with maximal effect on PK and maintenance of coagulation activity. METHODS Two hundred fifty-one variants, each containing one additional N-linked glycosylation site, were screened in vitro, and the PK profiles of selected variants mapping to spatially distinct regions of FIX were evaluated in mice. Optimal variants were combined, and their PK and efficacy were determined in mice with hemophilia B. RESULTS Variants that mapped to spatially distinct regions of the FIX structure exhibited different degrees of improved PK and enabled selection of optimized sites while minimizing the loss of FIX activity. Combining the most effective N-glycan sites in the same FIX molecule resulted in further improvements in PK. An optimized variant containing three novel N-glycan sites (at amino acids 103, 151, and 228), and the activity enhancing 338A variant had double the specific activity of wild-type FIX, exhibited 4.5-fold reduced clearance and 2.4-fold increased subcutaneous bioavailability, and was efficacious at a fivefold lower mass dose than wild-type FIX after subcutaneous injection in a bleeding model in mice with hemophilia B. CONCLUSIONS Glycoengineering was used to significantly improve the subcutaneous PK and efficacy of FIX and may have advantages for subcutaneous dosing.
Collapse
Affiliation(s)
- A R Brooks
- Biologics Research, Bayer Healthcare Pharmaceuticals, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rallapalli PM, Kemball-Cook G, Tuddenham EG, Gomez K, Perkins SJ. An interactive mutation database for human coagulation factor IX provides novel insights into the phenotypes and genetics of hemophilia B. J Thromb Haemost 2013; 11:1329-40. [PMID: 23617593 DOI: 10.1111/jth.12276] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/18/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Factor IX (FIX) is important in the coagulation cascade, being activated to FIXa on cleavage. Defects in the human F9 gene frequently lead to hemophilia B. OBJECTIVE To assess 1113 unique F9 mutations corresponding to 3721 patient entries in a new and up-to-date interactive web database alongside the FIXa protein structure. METHODS The mutations database was built using MySQL and structural analyses were based on a homology model for the human FIXa structure based on closely-related crystal structures. RESULTS Mutations have been found in 336 (73%) out of 461 residues in FIX. There were 812 unique point mutations, 182 deletions, 54 polymorphisms, 39 insertions and 26 others that together comprise a total of 1113 unique variants. The 64 unique mild severity mutations in the mature protein with known circulating protein phenotypes include 15 (23%) quantitative type I mutations and 41 (64%) predominantly qualitative type II mutations. Inhibitors were described in 59 reports (1.6%) corresponding to 25 unique mutations. CONCLUSION The interactive database provides insights into mechanisms of hemophilia B. Type II mutations are deduced to disrupt predominantly those structural regions involved with functional interactions. The interactive features of the database will assist in making judgments about patient management.
Collapse
Affiliation(s)
- P M Rallapalli
- Division of Biosciences, Research Department of Structural and Molecular Biology, University College London, London, UK
| | | | | | | | | |
Collapse
|
34
|
Genheden S. Are homology models sufficiently good for free-energy simulations? J Chem Inf Model 2012; 52:3013-21. [PMID: 23113602 DOI: 10.1021/ci300349s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this paper, I evaluate the usefulness of protein homology models in rigorous free-energy simulations to determine ligand affinities. Two templates were used to create models of the factor Xa protein and one template was used for dihydrofolate reductase from Plasmodium falciparum. Then, the relative free energies for several pairs of ligands were estimated using thermodynamic integration with the homology models as starting point of the simulation. These binding affinities were compared to affinities obtained when using published crystal structures as starting point of the simulations. Encouragingly, the differences between the affinities obtained when starting from either homology models or crystal structure were not statistical significant for a majority of the considered pairs of ligands. Differences between 1 and 2 kJ/mol were observed for the dihydrofolate reductase ligands and differences between 0 and 8 kJ/mol were observed for the factor Xa ligands. The largest difference for factor Xa was caused by an erroneous modeling of a loop region close to two of the ligands, and it was only observed when using one of the templates. Therefore, it is advisible to always use more than one template when creating homology models if they should be used in free-energy simulations.
Collapse
Affiliation(s)
- Samuel Genheden
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
35
|
Shen DK, Xu XL, Zhang Y, Song JJ, Yan XC, Guo MC. Ca(2+) -induced binding of anticoagulation factor II from the venom of Agkistrodon acutus with factor IX. Biopolymers 2012; 97:818-24. [PMID: 22806501 DOI: 10.1002/bip.22078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anticoagulation factor II (ACF II), a coagulation factor X- binding protein from the venom of Agkistrodon acutus has both anticoagulant and hypotensive activities. Previous studies show that ACF II binds specifically with activated factor X (FXa) in a Ca(2+) -dependent manner and inhibits intrinsic coagulation pathway. In this study, the inhibition of extrinsic coagulation pathway by ACF II was measured in vivo by prothrombin time assay and the binding of ACF II to factor IX (FIX) was investigated by native polyacrylamide gel electrophoresis and surface plasmon resonance (SPR). The results indicate that ACF II also inhibits extrinsic coagulation pathway, but does not inhibit thrombin activity. ACF II also binds with FIX with high binding affinity in a Ca(2+) -dependent manner and their maximal binding occurs at about 0.1 mM Ca(2+) . ACF II has similar binding affinity to FIX and FX as determined by SPR. Ca(2+) has a slight effect on the secondary structure of FIX as determined by circular dichroism spectroscopy. Ca(2+) ions are required to maintain in vivo function of FIX Gla domain for its recognition of ACF II. However, Ca(2+) at high concentrations (>0.1 mM) inhibits the binding of ACF II to FIX. Ca(2+) functions as a switch for the binding between ACF II and FIX. ACF II extends activated partial thromboplastin time more strongly than prothrombin time, suggesting that the binding of ACF II with FIX may play a dominant role in the anticoagulation of ACF II in vivo.
Collapse
Affiliation(s)
- Deng-Ke Shen
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | | | | | | | | | | |
Collapse
|
36
|
Vadivel K, Bajaj SP. Structural biology of factor VIIa/tissue factor initiated coagulation. Front Biosci (Landmark Ed) 2012; 17:2476-94. [PMID: 22652793 DOI: 10.2741/4066] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Factor VII (FVII) consists of an N-terminal gamma-carboxyglutamic acid domain followed by two epidermal growth factor-like (EGF1 and EGF2) domains and the C-terminal protease domain. Activation of FVII results in a two-chain FVIIa molecule consisting of a light chain (Gla-EGF1-EGF2 domains) and a heavy chain (protease domain) held together by a single disulfide bond. During coagulation, the complex of tissue factor (TF, a transmembrane glycoprotein) and FVIIa activates factor IX (FIX) and factor X (FX). FVIIa is structurally "zymogen-like" and when bound to TF, it is more "active enzyme-like." FIX and FX share structural homology with FVII. Three structural biology aspects of FVIIa/TF are presented in this review. One, regions in soluble TF (sTF) that interact with FVIIa as well as mapping of Ca2+, Mg2+, Na+ and Zn2+ sites in FVIIa and their functions; two, modeled interactive regions of Gla and EGF1 domains of FXa and FIXa with FVIIa/sTF; and three, incompletely formed oxyanion hole in FVIIa/sTF and its induction by substrate/inhibitor. Finally, an overview of the recognition elements in TF pathway inhibitor is provided.
Collapse
Affiliation(s)
- Kanagasabai Vadivel
- Protein Science Laboratory, UCLA/Orthopaedic Hospital, Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095-1795, USA
| | | |
Collapse
|
37
|
Application of pocket modeling and k-nearest neighbor molecular field analysis (kNN-MFA) for designing of some anticoagulants: potential factor IXa inhibitors. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0091-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Doss C GP. In silico profiling of deleterious amino acid substitutions of potential pathological importance in haemophlia A and haemophlia B. J Biomed Sci 2012; 19:30. [PMID: 22423892 PMCID: PMC3361463 DOI: 10.1186/1423-0127-19-30] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 03/16/2012] [Indexed: 01/08/2023] Open
Abstract
Background In this study, instead of current biochemical methods, the effects of deleterious amino acid substitutions in F8 and F9 gene upon protein structure and function were assayed by means of computational methods and information from the databases. Deleterious substitutions of F8 and F9 are responsible for Haemophilia A and Haemophilia B which is the most common genetic disease of coagulation disorders in blood. Yet, distinguishing deleterious variants of F8 and F9 from the massive amount of nonfunctional variants that occur within a single genome is a significant challenge. Methods We performed an in silico analysis of deleterious mutations and their protein structure changes in order to analyze the correlation between mutation and disease. Deleterious nsSNPs were categorized based on empirical based and support vector machine based methods to predict the impact on protein functions. Furthermore, we modeled mutant proteins and compared them with the native protein for analysis of protein structure stability. Results Out of 510 nsSNPs in F8, 378 nsSNPs (74%) were predicted to be 'intolerant' by SIFT, 371 nsSNPs (73%) were predicted to be 'damaging' by PolyPhen and 445 nsSNPs (87%) as 'less stable' by I-Mutant2.0. In F9, 129 nsSNPs (78%) were predicted to be intolerant by SIFT, 131 nsSNPs (79%) were predicted to be damaging by PolyPhen and 150 nsSNPs (90%) as less stable by I-Mutant2.0. Overall, we found that I-Mutant which emphasizes support vector machine based method outperformed SIFT and PolyPhen in prediction of deleterious nsSNPs in both F8 and F9. Conclusions The models built in this work would be appropriate for predicting the deleterious amino acid substitutions and their functions in gene regulation which would be useful for further genotype-phenotype researches as well as the pharmacogenetics studies. These in silico tools, despite being helpful in providing information about the nature of mutations, may also function as a first-pass filter to determine the substitutions worth pursuing for further experimental research in other coagulation disorder causing genes.
Collapse
Affiliation(s)
- George Priya Doss C
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
39
|
Neuenschwander PF, Deadmond KJ, Zepeda K, Rutland J. Correlation of factor IXa subsite modulations with effects on substrate discrimination. J Thromb Haemost 2012; 10:382-9. [PMID: 22212890 PMCID: PMC3291813 DOI: 10.1111/j.1538-7836.2011.04605.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND A key feature of factor IXa is its allosteric transformation from an enzymatically latent form into a potent procoagulant. Although several small molecules have been found to be capable of partially affecting FIXa function (i.e. ethylene glycol, Ca(2+), and low molecular weight heparin [LMWH]), the resulting modest changes in peptidolytic activity have made the study of their mechanisms of action challenging. As these effects provide hints about potential regulatory forces that may be operational in the full expression of FIXa coagulant activity, their description remains of great interest. Studies of crystal structures have yielded insights into the structural changes induced by these effectors, but there remains a paucity of information to correlate any given structural change with specific consequences for FIXa function. OBJECTIVES To correlate structural changes induced by these modulators with defined consequences for FIXa substrate discrimination and function. METHODS A peptidomics-based mass spectrometry (MS) approach was used to examine the patterns of hydrolysis of four combinatorial chemistry-derived pentapeptide libraries by FIXa under various conditions in a soluble, active enzyme system. RESULTS Ethylene glycol specifically altered the S3 subsite of FIXa to render it more tolerant to side chains at the P3 substrate position, whereas Ca(2+) enhanced tolerance at the S2 subsite. In contrast, LMWH altered both the S2 and S1' subsites. CONCLUSIONS These results demonstrate the role of plasticity in regulating FIXa function with respect to discrimination of extended substrate sequences, as well as providing crucial insights into active site modulations that may be capitalized on by various physiologic cofactors of FIXa and in future drug design.
Collapse
Affiliation(s)
- P F Neuenschwander
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA.
| | | | | | | |
Collapse
|
40
|
Cui S, Wang J, Fan T, Qin B, Guo L, Lei X, Wang J, Wang M, Jin Q. Crystal structure of human enterovirus 71 3C protease. J Mol Biol 2011; 408:449-61. [PMID: 21396941 PMCID: PMC7094522 DOI: 10.1016/j.jmb.2011.03.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/03/2011] [Accepted: 03/03/2011] [Indexed: 12/03/2022]
Abstract
Human enterovirus 71 (EV71) is the major pathogen that causes hand, foot and mouth disease that particularly affects young children. Growing hand, foot and mouth disease outbreaks were observed worldwide in recent years and caused devastating losses both economically and politically. However, vaccines or effective drugs are unavailable to date. The genome of EV71 consists of a positive sense, single-stranded RNA of ∼7400 bp, encoding a large precursor polyprotein that requires proteolytic processing to generate mature viral proteins. The proteolytic processing mainly depends on EV71 3C protease (3C(pro)) that possesses both proteolysis and RNA binding activities, which enable the protease to perform multiple tasks in viral replication and pathogen-host interactions. The central roles played by EV71 3C(pro) make it an appealing target for antiviral drug development. We determined the first crystal structure of EV71 3C(pro) and analyzed its enzymatic activity. The crystal structure shows that EV71 3C(pro) has a typical chymotrypsin-like fold that is common in picornaviral 3C(pro). Strikingly, we found an important surface loop, also denoted as β-ribbon, which adopts a novel open conformation in EV71 3C(pro). We identified two important residues located at the base of the β-ribbon, Gly123 and His133, which form hinges that govern the intrinsic flexibility of the ribbon. Structure-guided mutagenesis studies revealed that the hinge residues are important to EV71 3C(pro) proteolytic activities. In summary, our work provides the first structural insight into EV71 3C(pro), including a mobile β-ribbon, which is relevant to the proteolytic mechanism. Our data also provides a framework for structure-guided inhibitor design against EV71 3C(pro).
Collapse
Key Words
- ev71, human enterovirus 71
- hfmd, hand, foot and mouth disease
- 3cpro, 3c protease
- fmdv, foot-and-mouth disease virus
- hav, hepatitis a virus
- pv, poliovirus
- hrv, human rhinovirus
- cvb, coxsackievirus b
- asu, asymmetric unit
- sars-cov, severe acute respiratory syndrome-coronavirus
- wt, wild-type
- pdb, protein data bank
- sls, swiss light source
- chymotrypsin-like fold
- β-ribbon
- picornaviral 3c
- hfmd
- crystallography
Collapse
Affiliation(s)
- Sheng Cui
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Jing Wang
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Tingting Fan
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Bo Qin
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Li Guo
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Xiaobo Lei
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Jianwei Wang
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Meitian Wang
- Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Qi Jin
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| |
Collapse
|
41
|
Li Q, Li X, Li C, Chen L, Song J, Tang Y, Xu X. A network-based multi-target computational estimation scheme for anticoagulant activities of compounds. PLoS One 2011; 6:e14774. [PMID: 21445339 PMCID: PMC3062543 DOI: 10.1371/journal.pone.0014774] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 02/19/2011] [Indexed: 12/26/2022] Open
Abstract
Background Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. Methodology We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. Conclusions This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by combining network efficiency analysis with scoring function from molecular docking.
Collapse
Affiliation(s)
- Qian Li
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Material Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, People's Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xudong Li
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Material Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Canghai Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Lirong Chen
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Material Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
- * E-mail: (LC); (YT); (XX)
| | - Jun Song
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (LC); (YT); (XX)
| | - Xiaojie Xu
- Beijing National Laboratory for Molecular Sciences, State Key Lab of Rare Earth Material Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
- * E-mail: (LC); (YT); (XX)
| |
Collapse
|
42
|
Hao M, Li Y, Zhang SW, Yang W. Investigation on the binding mode of benzothiophene analogues as potent factor IXa (FIXa) inhibitors in thrombosis by CoMFA, docking and molecular dynamic studies. J Enzyme Inhib Med Chem 2011; 26:792-804. [DOI: 10.3109/14756366.2011.554414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ming Hao
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yan Li
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Shu-Wei Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Wei Yang
- Center of Bioinformatics, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
43
|
Complex assemblies of factors IX and X regulate the initiation, maintenance, and shutdown of blood coagulation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:51-103. [PMID: 21238934 DOI: 10.1016/b978-0-12-385504-6.00002-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Blood hemostasis is accomplished by a complex network of (anti-)coagulatory and fibrinolytic processes. These physiological processes are implemented by the assembly of multiprotein complexes involving both humoral and cellular components. Coagulation factor X, and particularly, factor IX, exemplify the dramatic enhancement that is obtained by the synergistic interaction of cell surface, inorganic and protein cofactors, protease, and substrate. With a focus on structure-function relationship, we review the current knowledge of activity modulation principles in the coagulation proteases factors IX and X and indicate future challenges for hemostasis research. This chapter is organized by describing the principles of hierarchical activation of blood coagulation proteases, including endogenous and exogenous protease activators, cofactor binding, substrate specificities, and protein inhibitors. We conclude by outlining pharmaceutical opportunities for unmet needs in hemophilia and thrombosis.
Collapse
|
44
|
Yang L, Manithody C, Qureshi SH, Rezaie AR. Role of the residues of the 39-loop in determining the substrate and inhibitor specificity of factor IXa. J Biol Chem 2010; 285:28488-95. [PMID: 20628058 DOI: 10.1074/jbc.m110.143321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation of antithrombin (AT) by heparin facilitates the exosite-dependent interaction of the serpin with factors IXa (FIXa) and Xa (FXa), thereby improving the rate of reactions by 300- to 500-fold. Relative to FXa, AT inhibits FIXa with approximately 40-fold slower rate constant. Structural data suggest that differences in the residues of the 39-loop (residues 31-41) may partly be responsible for the differential reactivity of the two proteases with AT. This loop is highly acidic in FXa, containing three Glu residues at positions 36, 37, and 39. By contrast, the loop is shorter by one residue in FIXa (residue 37 is missing), and it contains a Lys and an Asp at positions 36 and 39, respectively. To determine whether differences in the residues of this loop contribute to the slower reactivity of FIXa with AT, we prepared an FIXa/FXa chimera in which the 39-loop of the protease was replaced with the corresponding loop of FXa. The chimeric mutant cleaved a FIXa-specific chromogenic substrate with normal catalytic efficiency, however, the mutant exhibited approximately 5-fold enhanced reactivity with AT specifically in the absence of the cofactor, heparin. Further studies revealed that the FIXa mutant activates factor X with approximately 4-fold decreased k(cat) and approximately 2-fold decreased K(m), although the mutant interacted normally with factor VIIIa. Based on these results we conclude that residues of the 39-loop regulate the cofactor-independent interaction of FIXa with its physiological inhibitor AT and substrate factor X.
Collapse
Affiliation(s)
- Likui Yang
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | |
Collapse
|
45
|
Eigenbrot C, Ganesan R, Kirchhofer D. Hepatocyte growth factor activator (HGFA): molecular structure and interactions with HGFA inhibitor-1 (HAI-1). FEBS J 2010; 277:2215-22. [DOI: 10.1111/j.1742-4658.2010.07638.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
A structural network associated with the kallikrein-kinin and renin-angiotensin systems. Biol Chem 2010; 391:443-54. [DOI: 10.1515/bc.2010.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
The kallikrein-kinin and renin-angiotensin (KKS-RAS) systems represent two highly regulated proteolytic systems that are involved in several physiological and pathological processes. Although their protein-protein interactions can be studied using experimental approaches, it is difficult to differentiate between direct physical interactions and functional associations, which do not involve direct atomic contacts between macromolecules. This information can be obtained from an atomic-resolution characterization of the protein interfaces. As a result of this, various three-dimensional-based protein-protein interaction databases have become available. To gain insight into the multilayered interaction of the KKS-RAS systems, we present a protein network that is built up on three-dimensional domain-domain interactions. The essential domains that link these systems are as follows: Cystatin, Peptidase_C1, Thyroglobulin_1, Insulin, CIMR (Cation-independent mannose-6-phosphate receptor repeat), fn2 (Fibronectin type II domain), fn1 (Fibronectin type I domain), EGF, Trypsin, and Serpin. We found that the CIMR domain is located at the core of the network, thus connecting both systems. From the latter, all domain interactors up to level 4 were retrieved, thus displaying a more comprehensive representation of the KKS-RAS structural network.
Collapse
|
47
|
Ganesan R, Eigenbrot C, Wu Y, Liang WC, Shia S, Lipari MT, Kirchhofer D. Unraveling the allosteric mechanism of serine protease inhibition by an antibody. Structure 2010; 17:1614-1624. [PMID: 20004165 DOI: 10.1016/j.str.2009.09.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/17/2009] [Accepted: 09/18/2009] [Indexed: 11/29/2022]
Abstract
Recent structural studies have outlined the mechanism of protease inhibition by active site-directed antibodies. However, the molecular basis of allosteric inhibition by antibodies has been elusive. Here we report the 2.35 A resolution structure of the trypsin-like serine protease hepatocyte growth factor activator (HGFA) in complex with the allosteric antibody Ab40, a potent inhibitor of HGFA catalytic activity. The antibody binds at the periphery of the substrate binding cleft and imposes a conformational change on the entire 99-loop (chymotrypsinogen numbering). The altered conformation of the 99-loop is incompatible with substrate binding due to the partial collapse of subsite S2 and the reorganization of subsite S4. Remarkably, a single residue deletion of Ab40 abolished inhibition of HGFA activity, commensurate with the reversal of the 99-loop conformation to its "competent" state. The results define an "allosteric switch" mechanism as the basis of protease inhibition by an allosteric antibody.
Collapse
Affiliation(s)
- Rajkumar Ganesan
- Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Charles Eigenbrot
- Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080, USA; Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Yan Wu
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Wei-Ching Liang
- Department of Antibody Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Steven Shia
- Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Michael T Lipari
- Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Daniel Kirchhofer
- Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
48
|
Wang S, Beck R, Burd A, Blench T, Marlin F, Ayele T, Buxton S, Dagostin C, Malic M, Joshi R, Barry J, Sajad M, Cheung C, Shaikh S, Chahwala S, Chander C, Baumgartner C, Holthoff HP, Murray E, Blackney M, Giddings A. Structure based drug design: development of potent and selective factor IXa (FIXa) inhibitors. J Med Chem 2010; 53:1473-82. [PMID: 20121197 DOI: 10.1021/jm901476x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
On the basis of our understanding on the binding interactions of the benzothiophene template within the FIXa active site by X-ray crystallography and molecular modeling studies, we developed our SAR strategy by targeting the 4-position of the template to access the S1 beta and S2-S4 sites. A number of highly selective and potent factor Xa (FXa) and FIXa inhibitors were identified by simple switch of functional groups with conformational changes toward the S2-S4 sites.
Collapse
Affiliation(s)
- Shouming Wang
- Department of Medicinal Chemistry, Trigen Ltd., Emmanuel Kaye Building, 1B Manresa Road,London SW3 6LR, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang S, Beck R, Blench T, Burd A, Buxton S, Malic M, Ayele T, Shaikh S, Chahwala S, Chander C, Holland R, Merette S, Zhao L, Blackney M, Watts A. Studies of Benzothiophene Template as Potent Factor IXa (FIXa) Inhibitors in Thrombosis. J Med Chem 2010; 53:1465-72. [DOI: 10.1021/jm901475e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Agniswamy J, Fang B, Weber IT. Conformational similarity in the activation of caspase-3 and -7 revealed by the unliganded and inhibited structures of caspase-7. Apoptosis 2010; 14:1135-44. [PMID: 19655253 DOI: 10.1007/s10495-009-0388-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Caspase-mediated apoptosis has important roles in normal cell differentiation and aging and in many diseases including cancer, neuromuscular disorders and neurodegenerative diseases. Therefore, modulation of caspase activity and conformational states is of therapeutic importance. We report crystal structures of a new unliganded conformation of caspase-7 and the inhibited caspase-7 with the tetrapeptide Ac-YVAD-Cho. Different conformational states and mechanisms for substrate recognition have been proposed based on unliganded structures of the redundant apoptotic executioner caspase-3 and -7. The current study shows that the executioner caspase-3 and -7 have similar conformations for the unliganded active site as well as the inhibitor-bound active site. The new unliganded caspase-7 structure exhibits the tyrosine flipping mechanism in which the Tyr230 has rotated to block entry to the S2 binding site similar to the active site conformation of unliganded caspase-3. The inhibited structure of caspase-7/YVAD shows that the P4 Tyr binds the S4 region specific to polar residues at the expense of a main chain hydrogen bond between the P4 amide and carbonyl oxygen of caspase-7 Gln 276, which is similar to the caspase-3 complex. This new knowledge of the structures and conformational states of unliganded and inhibited caspases will be important for the design of drugs to modulate caspase activity and apoptosis.
Collapse
Affiliation(s)
- Johnson Agniswamy
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | |
Collapse
|