1
|
Bijata M, Wirth A, Wlodarczyk J, Ponimaskin E. The interplay of serotonin 5-HT1A and 5-HT7 receptors in chronic stress. J Cell Sci 2024; 137:jcs262219. [PMID: 39279505 PMCID: PMC11491811 DOI: 10.1242/jcs.262219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024] Open
Abstract
Serotonin regulates multiple physiological and pathological processes in the brain, including mood and cognition. The serotonin receptors 5-HT1AR (also known as HTR1A) and 5-HT7R (also known as HTR7) have emerged as key players in stress-related disorders, particularly depression. These receptors can form heterodimers, which influence their functions. Here, we explored the developmental dynamics of 5-HT1AR and 5-HT7R expression and validated heterodimerization levels in the brain of control and stressed mice. In control animals, we found that there was an increase in 5-HT1AR expression over 5-HT7R in the prefrontal cortex (PFC) and hippocampus during development. Using a chronic unpredictable stress as a depression model, we found an increase in 5-HT7R expression exclusively in the PFC of resilient animals, whereas no changes in 5-HT1AR expression between control and anhedonic mice were obtained. Quantitative in situ analysis of heterodimerization revealed the PFC as the region exhibiting the highest abundance of 5-HT1AR-5-HT7R heterodimers. More importantly, upon chronic stress, the amount of heterodimers was significantly reduced only in PFC of anhedonic mice, whereas it was not affected in resilient animals. These results suggest an important role of brain-region-specific 5-HT1AR-5-HT7R heterodimerization for establishing depressive-like behaviour and for development of resiliency.
Collapse
Affiliation(s)
- Monika Bijata
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Alexander Wirth
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Jakub Wlodarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
2
|
Li YM, Shen CY, Jiang JG. Sedative and hypnotic effects of the saponins from a traditional edible plant Liriope spicata Lour. in PCPA-induced insomnia mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118049. [PMID: 38484954 DOI: 10.1016/j.jep.2024.118049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liriope spicata Lour., a species listed in the catalogue of 'Medicinal and Edible Homologous Species', is traditionally used for the treatment of fatigue, restlessness, insomnia and constipation. AIM OF THE STUDY This study is aimed to evaluate the sedative and hypnotic effect of the saponins from a natural plant L. spicata Lour. in vivo. MATERIALS AND METHODS The total saponin (LSTS) and purified saponin (LSPS) were extracted from L. spicata, followed by a thorough analysis of their major components using the HPLC-MS. Subsequently, the therapeutic efficacy of LSTS and LSPS was evaluated by the improvement of anxiety and depression behaviors of the PCPA-induced mice. RESULTS LSTS and LSPS exhibited similar saponin compositions but differ in their composition ratios, with liriopesides-type saponins accounting for a larger proportion in LSTS. Studies demonstrated that both LSTS and LSPS can extend sleep duration and immobility time, while reducing sleep latency in PCPA-induced mice. However, there was no significant difference in weight change among the various mice groups. Elisa results indicated that the LSTS and LSPS could decrease levels of NE, DA, IL-6, and elevate the levels of 5-HT, NO, PGD2 and TNF-α in mice plasma. LSTS enhanced the expression of neurotransmitter receptors, while LSPS exhibited a more pronounced effect in regulating the expression of inflammatory factors. In conclusion, the saponins derived from L. spicata might hold promise as ingredients for developing health foods with sedative and hypnotic effects, potentially related to the modulation of serotonergic and GABAAergic neuron expression, as well as immunomodulatory process.
Collapse
Affiliation(s)
- Yi-Meng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chun-Yan Shen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Southern Medical University, School of Traditional Chinese Medicine, Guangzhou, 510515, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
3
|
Hori Y, Mimura K, Nagai Y, Hori Y, Kumata K, Zhang MR, Suhara T, Higuchi M, Minamimoto T. Reduced serotonergic transmission alters sensitivity to cost and reward via 5-HT1A and 5-HT1B receptors in monkeys. PLoS Biol 2024; 22:e3002445. [PMID: 38163325 PMCID: PMC10758260 DOI: 10.1371/journal.pbio.3002445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
Serotonin (5-HT) deficiency is a core biological pathology underlying depression and other psychiatric disorders whose key symptoms include decreased motivation. However, the exact role of 5-HT in motivation remains controversial and elusive. Here, we pharmacologically manipulated the 5-HT system in macaque monkeys and quantified the effects on motivation for goal-directed actions in terms of incentives and costs. Reversible inhibition of 5-HT synthesis increased errors and reaction times on goal-directed tasks, indicating reduced motivation. Analysis found incentive-dependent and cost-dependent components of this reduction. To identify the receptor subtypes that mediate cost and incentive, we systemically administered antagonists specific to 4 major 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4. Positron emission tomography (PET) visualized the unique distribution of each subtype in limbic brain regions and determined the systemic dosage for antagonists that would achieve approximately 30% occupancy. Only blockade of 5-HT1A decreased motivation through changes in both expected cost and incentive; sensitivity to future workload and time delay to reward increased (cost) and reward value decreased (incentive). Blocking the 5-HT1B receptor also reduced motivation through decreased incentive, although it did not affect expected cost. These results suggest that 5-HT deficiency disrupts 2 processes, the subjective valuation of costs and rewards, via 5-HT1A and 5-HT1B receptors, thus leading to reduced motivation.
Collapse
Affiliation(s)
- Yukiko Hori
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Koki Mimura
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
- Research Center for Medical and Health Data Science, The Institute of Statistical Mathematics, Tokyo, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuki Hori
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
4
|
Wakeford A, Nye JA, Grieb ZA, Voisin DA, Mun J, Huhman KL, Albers E, Michopoulos V. Sex influences the effects of social status on socioemotional behavior and serotonin neurochemistry in rhesus monkeys. Biol Sex Differ 2023; 14:75. [PMID: 37898775 PMCID: PMC10613371 DOI: 10.1186/s13293-023-00562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Despite observed sex differences in the prevalence of stress-related psychiatric conditions, most preclinical and translational studies have only included male subjects. Therefore, it has not been possible to effectively assess how sex interacts with other psychosocial risk factors to impact the etiology and maintenance of stress-related psychopathology. One psychosocial factor that interacts with sex to impact risk for stress-related behavioral and physiological deficits is social dominance. The current study was designed to assess sex differences in the effects of social status on socioemotional behavior and serotonin neurochemistry in socially housed rhesus monkeys. We hypothesized that sex and social status interact to influence socioemotional behaviors as well as serotonin 1A receptor binding potential (5HT1AR-BP) in regions of interest (ROIs) implicated in socioemotional behavior. METHODS Behavioral observations were conducted in gonadally intact adult female (n = 14) and male (n = 13) rhesus monkeys. 5HT1AR-BP was assessed via positron emission tomography using 4-(2'-Methoxyphenyl)-1-[2'-(N-2"-pyridinyl)-p[18F]fluorobenzamido]ethylpiperazine ([18F]MPPF). RESULTS Aggression emitted was greater in dominant compared to subordinate animals, regardless of sex. Submission emitted was significantly greater in subordinate versus dominant animals and greater in females than males. Affiliative behaviors emitted were not impacted by sex, status, or their interaction. Anxiety-like behavior emitted was significantly greater in females than in males regardless of social status. Hypothalamic 5HT1AR-BP was significantly greater in females than in males, regardless of social status. 5HT1AR-BP in the dentate gyrus of the hippocampus was significantly impacted by a sex by status interaction whereby 5HT1AR-BP in the dentate gyrus was greater in dominant compared to subordinate females but was not different between dominant and subordinate males. There were no effects of sex, status, or their interaction on 5HT1AR-BP in the DRN and in the regions of the PFC studied. CONCLUSIONS These data have important implications for the treatment of stress-related behavioral health outcomes, as they suggest that sex and social status are important factors to consider in the context of serotonergic drug efficacy.
Collapse
Affiliation(s)
- Alison Wakeford
- Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Jonathon A Nye
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Zachary A Grieb
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Dené A Voisin
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Jiyoung Mun
- Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Atlanta, GA, USA
| | - Vasiliki Michopoulos
- Emory National Primate Research Center, Atlanta, GA, 30322, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Melhem NM, Zhong Y, Miller JM, Zanderigo F, Ogden RT, Sublette ME, Newell M, Burke A, Keilp JG, Lesanpezeshki M, Bartlett E, Brent DA, Mann JJ. Brain 5-HT1A Receptor PET Binding, Cortisol Responses to Stress, and the Familial Transmission of Suicidal Behavior. Int J Neuropsychopharmacol 2021; 25:36-45. [PMID: 34555145 PMCID: PMC8756092 DOI: 10.1093/ijnp/pyab060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/22/2021] [Accepted: 10/04/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The serotonin 1A (5-HT1A) receptor has been implicated in depression and suicidal behavior. Lower resting cortisol levels are associated with higher 5-HT1A receptor binding, and both differentiate suicide attempters with depression. However, it is not clear whether 5-HT1A receptor binding and cortisol responses to stress are related to familial risk and resilience for suicidal behavior. METHODS [11C]CUMI-101 positron emission tomography imaging to quantify regional brain 5-HT1A receptor binding was conducted in individuals considered to be at high risk for mood disorder or suicidal behavior on the basis of having a first- or second-degree relative(s) with an early onset mood disorder and history of suicidal behavior. These high-risk individuals were subdivided into the following groups: high risk resilient having no mood disorder or suicidal behavior (n = 29); high risk with mood disorder and no suicidal behavior history (n = 31); and high risk with mood disorder and suicidal behavior (n = 25). Groups were compared with healthy volunteers without a family history of mood disorder or suicidal behavior (n = 34). Participants underwent the Trier Social Stress Task (TSST). All participants were free from psychotropic medications at the time of the TSST and PET scanning. RESULTS We observed no group differences in 5-HT1A receptor binding considering all regions simultaneously, nor did we observe heterogeneity of the effect of group across regions. These results were similar across outcome measures (BPND for all participants and BPp in a subset of the sample) and definitions of regions of interest (ROIs; standard or serotonin system-specific ROIs). We also found no group differences on TSST outcomes. Within the high risk with mood disorder and suicidal behavior group, lower BPp binding (β = -0.084, SE = 0.038, P = .048) and higher cortisol reactivity to stress (β = 9.25, 95% CI [3.27,15.23], P = .004) were associated with higher lethality attempts. There were no significant relationships between 5-HT1A binding and cortisol outcomes. CONCLUSIONS 5-HT1A receptor binding in ROIs was not linked to familial risk or resilience protecting against suicidal behavior or mood disorder although it may be related to lethality of suicide attempt. Future studies are needed to better understand the biological mechanisms implicated in familial risk for suicidal behavior and how hypothalamic-pituitary-adrenal axis function influences such risk.
Collapse
Affiliation(s)
- Nadine M Melhem
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Correspondence: Nadine Melhem, PhD, 3811 O’Hara Street, Pittsburgh, PA 15213, USA ()
| | - Yongqi Zhong
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Graduate School of Public Health, University of Pittsburgh
| | - Jeffrey M Miller
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, New York, United States
- Department of Psychiatry, Columbia University, New York, New York, United States
| | - Francesca Zanderigo
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, New York, United States
- Department of Psychiatry, Columbia University, New York, New York, United States
| | - R Todd Ogden
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, New York, United States
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, United States
| | - M Elizabeth Sublette
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, New York, United States
- Department of Psychiatry, Columbia University, New York, New York, United States
| | - Madison Newell
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, New York, United States
| | - Ainsley Burke
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, New York, United States
- Department of Psychiatry, Columbia University, New York, New York, United States
| | - John G Keilp
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, New York, United States
- Department of Psychiatry, Columbia University, New York, New York, United States
| | - Mohammad Lesanpezeshki
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, New York, United States
- Department of Psychiatry, Columbia University, New York, New York, United States
| | - Elizabeth Bartlett
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, New York, United States
- Department of Psychiatry, Columbia University, New York, New York, United States
| | - David A Brent
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - J John Mann
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, New York, United States
- Department of Psychiatry, Columbia University, New York, New York, United States
| |
Collapse
|
6
|
Luft C, Haute GV, Wearick-Silva LE, Antunes KH, da Costa MS, de Oliveira JR, Donadio MVF. Prenatal stress and KCl-induced depolarization modulate cell death, hypothalamic-pituitary-adrenal axis genes, oxidative and inflammatory response in primary cortical neurons. Neurochem Int 2021; 147:105053. [PMID: 33961947 DOI: 10.1016/j.neuint.2021.105053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022]
Abstract
Maternal stress has been described as an important component in the offspring's cerebral development, altering the susceptibility to diseases in later life. Moreover, the postnatal period is essential for the development and integration of several peripheral and central systems related to the control of homeostasis. Thus, this study aimed to evaluate the effects of prenatal stress on the activation of cortical neurons, by performing experiments both under basal conditions and after KCl-induced depolarization. Female mice were divided in two groups: control and prenatal restraint stress. Cortical neurons from the offspring were obtained at gestational day 18. The effects of prenatal stress and KCl stimulations on cellular mortality, autophagy, gene expression, oxidative stress, and inflammation were evaluated. We found that neurons from PNS mice have decreased necrosis and autophagy after depolarization. Moreover, prenatal stress modulated the HPA axis, as observed by the increased GR and decreased 5HTr1 mRNA expression. The BDNF is an important factor for neuronal function and results demonstrated that KCl-induced depolarization increased the gene expression of BDNF I, BDNF IV, and TRκB. Furthermore, prenatal stress and KCl treatment induced significant alterations in oxidative and inflammatory markers. In conclusion, prenatal stress and stimulation with KCl may influence several markers related to neurodevelopment in cortical neurons from neonate mice, supporting the well-known long-term effects of maternal stress.
Collapse
Affiliation(s)
- Carolina Luft
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gabriela Viegas Haute
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luís Eduardo Wearick-Silva
- Exercise, Behavior and Cognition Research Group, Psychology Department, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Krist Helen Antunes
- Laboratory of Clinical and Experimental Immunology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Mariana Severo da Costa
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratory of Pediatric Physical Activity, Infant Center, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Laboratory of Cellular Biophysics and Inflammation, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| |
Collapse
|
7
|
Amigo J, Garro-Martinez E, Vidal Casado R, Compan V, Pilar-Cuéllar F, Pazos A, Díaz A, Castro E. 5-HT 4 Receptors Are Not Involved in the Effects of Fluoxetine in the Corticosterone Model of Depression. ACS Chem Neurosci 2021; 12:2036-2044. [PMID: 33974408 PMCID: PMC8459452 DOI: 10.1021/acschemneuro.1c00158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
![]()
Clinical
and preclinical studies report the implication of 5-hydroxytryptamine
4 receptors (5-HT4Rs) in depression and anxiety. Here,
we tested whether the absence of 5-HT4Rs influences the response to
the antidepressant fluoxetine in mice subjected to chronic corticosterone
administration, an animal model of depression and anxiety. Therefore,
the effects of chronic administration of fluoxetine in corticosterone-treated
wild-type (WT) and 5-HT4R knockout (KO) mice were evaluated
in the open-field and novelty suppressed feeding tests. As 5-HT1A receptor (5-HT1AR) and brain-derived neurotrophic
factor (BDNF) are critically involved in depression and anxiety, we
further evaluated 5-HT1A receptor functionality by [35S]GTPγS autoradiography and BDNF mRNA expression by in situ hybridization techniques. We found that 5-HT4R KO and WT mice displayed anxiety- and depressive-like behavior
following chronic administration of corticosterone, as evidenced in
the open-field and novelty suppressed feeding tests. In the open-field,
a decreased central activity was observed in naïve and
corticosterone-treated mice of both genotypes following chronic fluoxetine
administration. In the novelty suppressed feeding test, a predictive
paradigm of antidepressant activity, chronic treatment with fluoxetine
reverted the latency to eat in both genotypes. The antidepressant
also potentiated the corticosterone-induced desensitization of the
5-HT1AR in the dorsal raphe nucleus. Further, chronic fluoxetine
increased BDNF mRNA expression in the dentate gyrus of the hippocampus
in corticosterone-treated mice of both genotypes. Therefore, our findings
indicate that the behavioral effects of fluoxetine in the corticosterone
model of depression and anxiety appear not to be dependent on 5-HT4Rs.
Collapse
Affiliation(s)
- Josep Amigo
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Emilio Garro-Martinez
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rebeca Vidal Casado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Fuencisla Pilar-Cuéllar
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angel Pazos
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alvaro Díaz
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena Castro
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Sałaciak K, Głuch-Lutwin M, Siwek A, Szafarz M, Kazek G, Bednarski M, Nowiński L, Mitchell E, Jastrzębska-Więsek M, Partyka A, Wesołowska A, Kołaczkowski M, Szkaradek N, Marona H, Sapa J, Pytka K. The antidepressant-like activity of chiral xanthone derivatives may be mediated by 5-HT1A receptor and β-arrestin signalling. J Psychopharmacol 2020; 34:1431-1442. [PMID: 33103555 DOI: 10.1177/0269881120959605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Our previous studies showed that xanthone derivatives with N-(2-methoxyphenyl)piperazine fragment have an affinity to the 5-HT1A receptor and show antidepressant-like properties in rodents. In this study, we tested three xanthone derivatives, HBK-1 (R, S) and its enantiomers, in which we increased the distance between the piperazine and xanthone fragments by using a hydroxypropoxy linker. We hypothesized that this would increase the binding to the 5-HT1A receptor and consequently, pharmacological activity. AIMS We aimed to assess the in vitro and in vivo pharmacological activity of the xanthone derivatives. METHODS We evaluated the in vitro affinity for serotonin 5-HT1A and 5-HT2A receptors and serotonin transporter. We also determined the intrinsic activity at the 5-HT1A receptor. We investigated the antidepressant-like properties and safety after acute administration (dose range: 1.25-20 mg/kg) using the forced swim, tail suspension, locomotor activity, rotarod and chimney tests in mice. We also evaluated the basic pharmacokinetic parameters. RESULTS Our results indicated that the compounds showed a high affinity for the 5-HT1A receptor but very weak antagonistic properties in the Ca2+ mobilization assay; however, they showed significant agonistic properties in the β-arrestin recruitment assay. In both behavioural tests the studied xanthone derivatives showed antidepressant-like activity. Pre-treatment with p-chlorophenylalanine or WAY-100635 abolished their antidepressant-like activity. None of the compounds caused motor impairments at antidepressant-like doses. The racemate penetrated the blood-brain barrier and had a relatively high bioavailability after intraperitoneal administration. CONCLUSIONS Xanthone derivatives with N-(2-methoxyphenyl)piperazine fragment and hydroxypropoxy linker show increased binding to the 5-HT1A receptor and may represent an attractive putative treatment candidate for depression.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kazek
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| | - Marek Bednarski
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| | - Leszek Nowiński
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| | - Emma Mitchell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College Kraków, Kraków, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College Kraków, Kraków, Poland
| | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College Kraków, Kraków, Poland
| | - Natalia Szkaradek
- Department of Bioorganic Chemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Sapa
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
9
|
Zhu H, Tao Y, Wang T, Zhou J, Yang Y, Cheng L, Zhu H, Zhang W, Huang F, Wu X. Long-term stability and characteristics of behavioral, biochemical, and molecular markers of three different rodent models for depression. Brain Behav 2020; 10:e01508. [PMID: 31867894 PMCID: PMC7010584 DOI: 10.1002/brb3.1508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/22/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The present study was designed to explore the long-term differences between three mouse models for depression. METHOD In the present study, the unpredictable chronic mild stress (UCMS) model, the glucocorticoid/corticosterone model, and the olfactory bulbectomy model were compared at two, three, and five weeks after model induction. Behavioral testing performed included forced-swimming, tail suspension, open-field and elevated plus-maze tests. In addition, 5-hydroxytryptamine (5-HT) and dopamine levels, and mRNA and protein expressions related to 5-HT synthesis, transport, and signaling were analyzed in the hippocampus of tested animals. RESULTS Our results revealed that each model demonstrated a specific profile of markers, whereas the stability of them differed over testing time. CONCLUSIONS Each model provided a unique set of advantages that can be considered depending on the context and aims of each study. Among the three models, the UCMS model was mostly stable and appeared to the best model for testing long-term depression-like state.
Collapse
Affiliation(s)
- Han Zhu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingwen Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Cheng
- Center for Counseling and Development, Department of Student Affairs, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Zhu
- Center for Counseling and Development, Department of Student Affairs, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiqi Zhang
- Department of Psychiatry, Laboratory of Molecular Psychiatry, University of Münster, Münster, Germany
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Abstract
Psychiatric illnesses, including depression and anxiety, are highly comorbid with epilepsy (for review see Josephson and Jetté (Int Rev Psychiatry 29:409-424, 2017), Salpekar and Mula (Epilepsy Behav 98:293-297, 2019)). Psychiatric comorbidities negatively impact the quality of life of patients (Johnson et al., Epilepsia 45:544-550, 2004; Cramer et al., Epilepsy Behav 4:515-521, 2003) and present a significant challenge to treating patients with epilepsy (Hitiris et al., Epilepsy Res 75:192-196, 2007; Petrovski et al., Neurology 75:1015-1021, 2010; Fazel et al., Lancet 382:1646-1654, 2013) (for review see Kanner (Seizure 49:79-82, 2017)). It has long been acknowledged that there is an association between psychiatric illnesses and epilepsy. Hippocrates, in the fourth-fifth century B.C., considered epilepsy and melancholia to be closely related in which he writes that "melancholics ordinarily become epileptics, and epileptics, melancholics" (Lewis, J Ment Sci 80:1-42, 1934). The Babylonians also recognized the frequency of psychosis in patients with epilepsy (Reynolds and Kinnier Wilson, Epilepsia 49:1488-1490, 2008). Despite the fact that the relationship between psychiatric comorbidities and epilepsy has been recognized for thousands of years, psychiatric illnesses in people with epilepsy still commonly go undiagnosed and untreated (Hermann et al., Epilepsia 41(Suppl 2):S31-S41, 2000) and systematic research in this area is still lacking (Devinsky, Epilepsy Behav 4(Suppl 4):S2-S10, 2003). Thus, although it is clear that these are not new issues, there is a need for improvements in the screening and management of patients with psychiatric comorbidities in epilepsy (Lopez et al., Epilepsy Behav 98:302-305, 2019) and progress is needed to understand the underlying neurobiology contributing to these comorbid conditions. To that end, this chapter will raise awareness regarding the scope of the problem as it relates to comorbid psychiatric illnesses and epilepsy and review our current understanding of the potential mechanisms contributing to these comorbidities, focusing on both basic science and clinical research findings.
Collapse
|
11
|
Transcription Factor CEBPB Inhibits the Expression of the Human HTR1A by Binding to 5' Regulatory Region in Vitro. Genes (Basel) 2019; 10:genes10100802. [PMID: 31614865 PMCID: PMC6827163 DOI: 10.3390/genes10100802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 01/21/2023] Open
Abstract
This study identified a transcription factor that might bind to the 5′ regulatory region of the HTR1A and explored the potential effect on 5-HT1A receptor expression. Based on JASPAR predictions, the binding of the transcription factor was demonstrated using the electrophoretic mobility shift assay (EMSA). Vectors over-expressing the transcription factor were co-transfected into HEK-293 and SK-N-SH cells with the recombinant pGL3 vector, and relative fluorescence intensity was measured to determine regulatory activity. Additionally, the qRT-PCR and Western blot were also used to identify whether the transcription factor modulated the endogenous expression of 5-HT1A receptor. The results suggest that the transcription factor CCAA/T enhancer binding protein beta (CEBPB) likely binds to the −1219 to −1209 bp (ATG+1) region of the HTR1A. Two sequences located in the −722 to −372 bp and −119 to +99 bp were also identified. Although the effect of CEBPB on endogenous 5-HT1A receptor expression was not significant, it exhibited the strong inhibition on the relative fluorescence intensity and the mRNA level of HTR1A. CEBPB inhibited the human HTR1A expression by binding to the sequence −1219–−1209 bp. This is useful and informative for ascertaining the regulation of 5-HT1A receptor and mental diseases.
Collapse
|
12
|
Attenuated palmitoylation of serotonin receptor 5-HT1A affects receptor function and contributes to depression-like behaviors. Nat Commun 2019; 10:3924. [PMID: 31477731 PMCID: PMC6718429 DOI: 10.1038/s41467-019-11876-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
The serotonergic system and in particular serotonin 1A receptor (5-HT1AR) are implicated in major depressive disorder (MDD). Here we demonstrated that 5-HT1AR is palmitoylated in human and rodent brains, and identified ZDHHC21 as a major palmitoyl acyltransferase, whose depletion reduced palmitoylation and consequently signaling functions of 5-HT1AR. Two rodent models for depression-like behavior show reduced brain ZDHHC21 expression and attenuated 5-HT1AR palmitoylation. Moreover, selective knock-down of ZDHHC21 in the murine forebrain induced depression-like behavior. We also identified the microRNA miR-30e as a negative regulator of Zdhhc21 expression. Through analysis of the post-mortem brain samples in individuals with MDD that died by suicide we find that miR-30e expression is increased, while ZDHHC21 expression, as well as palmitoylation of 5-HT1AR, are reduced within the prefrontal cortex. Our study suggests that downregulation of 5-HT1AR palmitoylation is a mechanism involved in depression, making the restoration of 5-HT1AR palmitoylation a promising clinical strategy for the treatment of MDD. Palmitoylation is a post translational modification that regulates GPCR activity. Here the authors show that palmitoylation of 5-HT1AR by the palmitoyltransferase enzyme ZDHHC21 contributes to depression-like behaviour in rodents and might be implicated in major depressive disorder.
Collapse
|
13
|
Albert PR, Vahid-Ansari F. The 5-HT1A receptor: Signaling to behavior. Biochimie 2019; 161:34-45. [DOI: 10.1016/j.biochi.2018.10.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023]
|
14
|
Erfani M, Malek H, Sadat Ebrahimi SE, Hassanzadeh L. New99mTc(CO)3-radiolabeled arylpiperazine pharmacophore as potent 5HT1Aserotonin receptor radiotracer: Docking studies, chemical synthesis, radiolabeling, and biological evaluation. J Labelled Comp Radiopharm 2019; 62:166-177. [DOI: 10.1002/jlcr.3709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/14/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Mostafa Erfani
- Radiation Application Research School; Nuclear Science and Technology Research Institute (NSTRI); Tehran Iran
| | - Hadi Malek
- Department of Nuclear Medicine and Molecular Imaging, Rajaie Cardiovascular, Medical, and Research Center; Iran University of Medical Sciences; Tehran Iran
| | | | - Leila Hassanzadeh
- Department of Nuclear Medicine, School of Medicine, Rajaie Cardiovascular, Medical & Research Center; Iran University of Medical Sciences; Tehran Iran
- Department of Medicinal Chemistry, School of Pharmacy-International Campus; Iran University of Medical Sciences; Tehran Iran
| |
Collapse
|
15
|
Babb JA, Linnros SE, Commons KG. Evidence for intact 5-HT 1A receptor-mediated feedback inhibition following sustained antidepressant treatment in a rat model of depression. Neuropharmacology 2018; 141:139-147. [PMID: 30170082 DOI: 10.1016/j.neuropharm.2018.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/06/2018] [Accepted: 08/25/2018] [Indexed: 01/12/2023]
Abstract
Serotonin (5-HT) neurons are strongly implicated in mood disorders such as depression and are importantly regulated by feedback inhibition mediated by 5-HT1A receptors. These receptors may play a role, albeit a poorly understood one, in the generation of mood disorders, treatment response to antidepressants and delayed therapeutic efficacy. Here we sought to gain insight into the role of 5-HT1A receptor-mediated feedback inhibition in these processes by studying Fos protein expression within serotonin neurons in a rat model of stress-related mood disorder, early life maternal separation (MS), combined with two-week treatment with the antidepressant fluoxetine (FLX) in adulthood. We gauged 5-HT1A receptor-mediated feedback inhibition by the ability of the antagonist, WAY-100635 (WAY), to disinhibit Fos expression in 5-HT neurons. We found that two-week FLX treatment dramatically inhibited Fos expression in serotonin neurons and that this effect was reversed by blocking 5-HT1A receptors with WAY. Together these observations reveal that after prolonged exposure to SSRIs, endogenous 5-HT1A receptors continue to exert feedback inhibition of serotonin neurons. Furthermore we found unique effects of pharmacological treatments after MS in that the WAY effect was greatest in MS rats treated with FLX, a phenomenon selective to the rostral 2/3 of the dorsal raphe nucleus (B7). These results indicate that the balance between activation and feedback inhibition of serotonin neurons in B7 is altered and uniquely sensitive to FLX after early-life stress.
Collapse
Affiliation(s)
- Jessica A Babb
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA; Department of Anesthesia, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| | - Sofia E Linnros
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA; Department of Pharmaceutical Biosciences, Uppsala University, 751 05 Uppsala, Sweden.
| | - Kathryn G Commons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA; Department of Anesthesia, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Effects of hypothyroidism on serotonin 1A receptors in the rat brain. Psychopharmacology (Berl) 2018; 235:729-736. [PMID: 29209734 DOI: 10.1007/s00213-017-4799-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE We investigated the effects of hypothyroidism on serotonin 1A receptors in the rat brain in vivo. METHODS Five surgically thyroidectomized male Sprague-Dawley (SD) rats and five hypophysectomized SD rats were used as animal models of hypothyroidism; the same number of sham-operated SD rats served as age-matched controls. After hypothyroidism was confirmed by thyroid function tests, serotonin positron emission tomography (PET) was performed for 120 min. All PET data were spatially normalized to T2-weighted magnetic resonance imaging templates; then, time-activity curves of the hippocampus, septum, and cerebellum were extracted using predefined volume-of-interest templates. Non-displaceable binding values in the hippocampus and septum were calculated using a multilinear reference tissue model and parametric maps were constructed. Both volume-of-interest and voxel-based analyses showed higher brain uptake in the thyroidectomized and hypophysectomized rats compared to the respective sham-operated rats. RESULTS Time-activity curves showed that the brain uptake values for the thyroidectomized and hypophysectomized groups were 21-52% higher than were those in the respective control groups. In the thyroidectomized group, the binding potential values for the hippocampus and septum were 20-26% higher than were those in the sham-thyroidectomized group. In the hypophysectomized group, the binding value for the hippocampus was 23% higher than was that in the sham-hypophysectomized group, whereas the septal binding was not significantly different from that in the sham-hypophysectomized group. Parametric maps for the hypothyroidism also showed significantly higher binding values than did those for the controls. CONCLUSION Our results demonstrate that hypothyroidism elevates serotonin 1A receptor binding in the limbic system.
Collapse
|
17
|
Dale E, Grunnet M, Pehrson AL, Frederiksen K, Larsen PH, Nielsen J, Stensbøl TB, Ebert B, Yin H, Lu D, Liu H, Jensen TN, Yang CR, Sanchez C. The multimodal antidepressant vortioxetine may facilitate pyramidal cell firing by inhibition of 5-HT 3 receptor expressing interneurons: An in vitro study in rat hippocampus slices. Brain Res 2017; 1689:1-11. [PMID: 29274875 DOI: 10.1016/j.brainres.2017.12.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/28/2017] [Accepted: 12/19/2017] [Indexed: 01/07/2023]
Abstract
The multimodal antidepressant vortioxetine is thought to mediate its pharmacological effects via 5-HT1A receptor agonism, 5-HT1B receptor partial agonism, 5-HT1D, 5-HT3, 5-HT7 receptor antagonism and 5-HT transporter inhibition. Here we studied vortioxetine's functional effects across species (canine, mouse, rat, guinea pig and human) in cellular assays with heterologous expression of 5-HT3A receptors (in Xenopus oocytes and HEK-293 cells) and in mouse neuroblastoma N1E-115 cells with endogenous expression of 5-HT3A receptors. Furthermore, we studied the effects of vortioxetine on activity of CA1 Stratum Radiatum interneurons in rat hippocampus slices using current- and voltage-clamping methods. The patched neurons were subsequently filled with biocytin for confirmation of 5-HT3 receptor mRNA expression by in situ hybridization. Whereas, both vortioxetine and the 5-HT3 receptor antagonist ondansetron potently antagonized 5-HT-induced currents in the cellular assays, vortioxetine had a slower off-rate than ondansetron in oocytes expressing 5-HT3A receptors. Furthermore, vortioxetine's but not ondansetron's 5-HT3 receptor antagonistic potency varied considerably across species. Vortioxetine had the highest potency at rat and the lowest potency at guinea pig 5-HT3A receptors. Finally, in 5-HT3 receptor-expressing GABAergic interneurons from the CA1 stratum radiatum, vortioxetine and ondansetron blocked depolarizations induced by superfusion of either 5-HT or the 5-HT3 receptor agonist mCPBG. Taken together, these data add to a growing literature supporting the idea that vortioxetine may inhibit GABAergic neurotransmission in some brain regions via a 5-HT3 receptor antagonism-dependent mechanism and thereby disinhibit pyramidal neurons and enhance glutamatergic signaling.
Collapse
Affiliation(s)
- Elena Dale
- Brintellix Science Team, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Morten Grunnet
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Alan L Pehrson
- Brintellix Science Team, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Kristen Frederiksen
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Peter H Larsen
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Jacob Nielsen
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Tine B Stensbøl
- Brintellix Science Team, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Bjarke Ebert
- Brintellix Science Team, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Haolan Yin
- ChemPartner Co. Ltd, 998 Halei Road, Zhangjiang Hi-Tech Park, Shanghai 201203, PR China
| | - Dunguo Lu
- ChemPartner Co. Ltd, 998 Halei Road, Zhangjiang Hi-Tech Park, Shanghai 201203, PR China
| | - Huiquing Liu
- ChemPartner Co. Ltd, 998 Halei Road, Zhangjiang Hi-Tech Park, Shanghai 201203, PR China
| | - Thomas N Jensen
- Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark
| | - Charles R Yang
- ChemPartner Co. Ltd, 998 Halei Road, Zhangjiang Hi-Tech Park, Shanghai 201203, PR China
| | - Connie Sanchez
- Brintellix Science Team, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Copenhagen, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Skovagervej 2, DK-8240 Risskov, Denmark.
| |
Collapse
|
18
|
The variation of the 5-hydroxytryptamine system between chronic unpredictable mild stress rats and chronic fatigue syndrome rats induced by forced treadmill running. Neuroreport 2017; 28:630-637. [DOI: 10.1097/wnr.0000000000000797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Wirth A, Holst K, Ponimaskin E. How serotonin receptors regulate morphogenic signalling in neurons. Prog Neurobiol 2017; 151:35-56. [DOI: 10.1016/j.pneurobio.2016.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/09/2016] [Accepted: 03/19/2016] [Indexed: 11/25/2022]
|
20
|
Alterations in the neuropeptide galanin system in major depressive disorder involve levels of transcripts, methylation, and peptide. Proc Natl Acad Sci U S A 2016; 113:E8472-E8481. [PMID: 27940914 DOI: 10.1073/pnas.1617824113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Major depressive disorder (MDD) is a substantial burden to patients, families, and society, but many patients cannot be treated adequately. Rodent experiments suggest that the neuropeptide galanin (GAL) and its three G protein-coupled receptors, GAL1-3, are involved in mood regulation. To explore the translational potential of these results, we assessed the transcript levels (by quantitative PCR), DNA methylation status (by bisulfite pyrosequencing), and GAL peptide by RIA of the GAL system in postmortem brains from depressed persons who had committed suicide and controls. Transcripts for all four members were detected and showed marked regional variations, GAL and galanin receptor 1 (GALR1) being most abundant. Striking increases in GAL and GALR3 mRNA levels, especially in the noradrenergic locus coeruleus and the dorsal raphe nucleus, in parallel with decreased DNA methylation, were found in both male and female suicide subjects as compared with controls. In contrast, GAL and GALR3 transcript levels were decreased, GALR1 was increased, and DNA methylation was increased in the dorsolateral prefrontal cortex of male suicide subjects, however, there were no changes in the anterior cingulate cortex. Thus, GAL and its receptor GALR3 are differentially methylated and expressed in brains of MDD subjects in a region- and sex-specific manner. Such an epigenetic modification in GALR3, a hyperpolarizing receptor, might contribute to the dysregulation of noradrenergic and serotonergic neurons implicated in the pathogenesis of MDD. Thus, one may speculate that a GAL3 antagonist could have antidepressant properties by disinhibiting the firing of these neurons, resulting in increased release of noradrenaline and serotonin in forebrain areas involved in mood regulation.
Collapse
|
21
|
The absence of 5-HT 4 receptors modulates depression- and anxiety-like responses and influences the response of fluoxetine in olfactory bulbectomised mice: Adaptive changes in hippocampal neuroplasticity markers and 5-HT 1A autoreceptor. Neuropharmacology 2016; 111:47-58. [PMID: 27586007 DOI: 10.1016/j.neuropharm.2016.08.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/15/2016] [Accepted: 08/27/2016] [Indexed: 02/08/2023]
Abstract
Preclinical studies support a critical role of 5-HT4 receptors (5-HT4Rs) in depression and anxiety, but their influence in depression- and anxiety-like behaviours and the effects of antidepressants remain partly unknown. We evaluated 5-HT4R knockout (KO) mice in different anxiety and depression paradigms and mRNA expression of some neuroplasticity markers (BDNF, trkB and Arc) and the functionality of 5-HT1AR. Moreover, the implication of 5-HT4Rs in the behavioural and molecular effects of chronically administered fluoxetine was assessed in naïve and olfactory bulbectomized mice (OBX) of both genotypes. 5-HT4R KO mice displayed few specific behavioural impairments including reduced central activity in the open-field (anxiety), and decreased sucrose consumption and nesting behaviour (anhedonia). In these mice, we measured increased levels of BDNF and Arc mRNA and reduced levels of trkB mRNA in the hippocampus, and a desensitization of 5-HT1A autoreceptors. Chronic administration of fluoxetine elicited similar behavioural effects in WT and 5-HT4R KO mice on anxiety-and depression-related tests. Following OBX, locomotor hyperactivity and anxiety were similar in both genotypes. Interestingly, chronic fluoxetine failed to reverse this OBX-induced syndrome in 5-HT4R KO mice, a response associated with differential effects in hippocampal neuroplasticity biomarkers. Fluoxetine reduced hippocampal Arc and BDNF mRNA expressions in WT but not 5-HT4R KO mice subjected to OBX. These results demonstrate that the absence of 5-HT4Rs triggers adaptive changes that could maintain emotional states, and that the behavioural and molecular effects of fluoxetine under pathological depression appear to be critically dependent on 5-HT4Rs.
Collapse
|
22
|
Lakehayli S, Said N, El Khachibi M, El Ouahli M, Nadifi S, Hakkou F, Tazi A. Prenatal stress alters diazepam withdrawal syndrome and 5HT1A receptor expression in the raphe nuclei of adult rats. Neuroscience 2016; 330:50-6. [DOI: 10.1016/j.neuroscience.2016.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
|
23
|
Belmer A, Patkar OL, Pitman KM, Bartlett SE. Serotonergic Neuroplasticity in Alcohol Addiction. Brain Plast 2016; 1:177-206. [PMID: 29765841 PMCID: PMC5928559 DOI: 10.3233/bpl-150022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alcohol addiction is a debilitating disorder producing maladaptive changes in the brain, leading drinkers to become more sensitive to stress and anxiety. These changes are key factors contributing to alcohol craving and maintaining a persistent vulnerability to relapse. Serotonin (5-Hydroxytryptamine, 5-HT) is a monoamine neurotransmitter widely expressed in the central nervous system where it plays an important role in the regulation of mood. The serotonin system has been extensively implicated in the regulation of stress and anxiety, as well as the reinforcing properties of all of the major classes of drugs of abuse, including alcohol. Dysregulation within the 5-HT system has been postulated to underlie the negative mood states associated with alcohol use disorders. This review will describe the serotonergic (5-HTergic) neuroplastic changes observed in animal models throughout the alcohol addiction cycle, from prenatal to adulthood exposure. The first section will focus on alcohol-induced 5-HTergic neuroadaptations in offspring prenatally exposed to alcohol and the consequences on the regulation of stress/anxiety. The second section will compare alterations in 5-HT signalling induced by acute or chronic alcohol exposure during adulthood and following alcohol withdrawal, highlighting the impact on the regulation of stress/anxiety signalling pathways. The third section will outline 5-HTergic neuroadaptations observed in various genetically-selected ethanol preferring rat lines. Finally, we will discuss the pharmacological manipulation of the 5-HTergic system on ethanol- and anxiety/stress-related behaviours demonstrated by clinical trials, with an emphasis on current and potential treatments.
Collapse
Affiliation(s)
- Arnauld Belmer
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Omkar L Patkar
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Kim M Pitman
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Selena E Bartlett
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
24
|
Kaufman J, DeLorenzo C, Choudhury S, Parsey RV. The 5-HT1A receptor in Major Depressive Disorder. Eur Neuropsychopharmacol 2016; 26:397-410. [PMID: 26851834 PMCID: PMC5192019 DOI: 10.1016/j.euroneuro.2015.12.039] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 02/07/2023]
Abstract
Major Depressive Disorder (MDD) is a highly prevalent psychiatric diagnosis that is associated with a high degree of morbidity and mortality. This debilitating disorder is currently one of the leading causes of disability nationwide and is predicted to be the leading cause of disease burden by the year 2030. A large body of previous research has theorized that serotonergic dysfunction, specifically of the serotonin (5-HT) 1A receptor, plays a key role in the development of MDD. The purpose of this review is to describe the evolution of our current understanding of the serotonin 1A (5-HT1A) receptor and its role in the pathophysiology MDD through the discussion of animal, post-mortem, positron emission tomography (PET), pharmacologic and genetic studies.
Collapse
Affiliation(s)
- Joshua Kaufman
- Stony Brook University, Stony Brook, NY 11794, United States.
| | | | - Sunia Choudhury
- Stony Brook University, Stony Brook, NY 11794, United States
| | - Ramin V Parsey
- Stony Brook University, Stony Brook, NY 11794, United States
| |
Collapse
|
25
|
Galanin (1-15) enhances the antidepressant effects of the 5-HT1A receptor agonist 8-OH-DPAT: involvement of the raphe-hippocampal 5-HT neuron system. Brain Struct Funct 2016; 221:4491-4504. [PMID: 26792005 DOI: 10.1007/s00429-015-1180-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
Galanin N-terminal fragment (1-15) [GAL(1-15)] is associated with depression-related and anxiogenic-like effects in rats. In this study, we analyzed the ability of GAL(1-15) to modulate 5-HT1A receptors (5-HT1AR), a key receptor in depression. GAL(1-15) enhanced the antidepressant effects induced by the 5-HT1AR agonist 8-OH-DPAT in the forced swimming test. These effects were stronger than the ones induced by Galanin (GAL). This action involved interactions at receptor level since GAL(1-15) affected the binding characteristics and the mRNA levels of 5-HT1AR in the dorsal hippocampus and dorsal raphe. The involvement of the GALR2 was demonstrated with the GALR2 antagonist M871. Proximity ligation assay experiments indicated that 5-HT1AR are in close proximity with GALR1 and GALR2 in both regions and in raphe RN33B cells. The current results indicate that GAL(1-15) enhances the antidepressant effects induced by 8-OH-DPAT acting on 5-HT1AR operating as postjunctional or as autoreceptors. These results may give the basis for the development of drugs targeting potential GALR1-GALR2-5-HT1AR heteroreceptor complexes linked to the raphe-hippocampal 5-HT neurons for the treatment of depression.
Collapse
|
26
|
Altered taste preference and loss of limbic-projecting serotonergic neurons in the dorsal raphe nucleus of chronically epileptic rats. Behav Brain Res 2016; 297:28-36. [DOI: 10.1016/j.bbr.2015.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 12/12/2022]
|
27
|
Hazari PP, Prakash S, Meena VK, Singh N, Chuttani K, Chadha N, Singh P, Kukreti S, Mishra AK. Synthesis, preclinical evaluation and molecular modelling of macrocyclic appended 1-(2-methoxyphenyl)piperazine for 5-HT1A neuroreceptor imaging. RSC Adv 2016. [DOI: 10.1039/c5ra13432c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient approach in the design and synthesis of a multi-functional chelating agent based on 1-(2-methoxyphenyl)piperazine for targeting 5-HT1A receptors in brain was envisaged.
Collapse
Affiliation(s)
- Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi-110054
- India
| | - Surbhi Prakash
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi-110054
- India
- Department of Chemistry
| | - Virendra Kumar Meena
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi-110054
- India
- Department of Chemistry
| | - Niraj Singh
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi-110054
- India
| | - Krishna Chuttani
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi-110054
- India
| | - Nidhi Chadha
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi-110054
- India
| | - Pooja Singh
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi-110054
- India
- Department of Chemistry
| | | | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Delhi-110054
- India
| |
Collapse
|
28
|
Kraehenmann R, Preller KH, Scheidegger M, Pokorny T, Bosch OG, Seifritz E, Vollenweider FX. Psilocybin-Induced Decrease in Amygdala Reactivity Correlates with Enhanced Positive Mood in Healthy Volunteers. Biol Psychiatry 2015; 78:572-81. [PMID: 24882567 DOI: 10.1016/j.biopsych.2014.04.010] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND The amygdala is a key structure in serotonergic emotion-processing circuits. In healthy volunteers, acute administration of the serotonin 1A/2A/2C receptor agonist psilocybin reduces neural responses to negative stimuli and induces mood changes toward positive states. However, it is little-known whether psilocybin reduces amygdala reactivity to negative stimuli and whether any change in amygdala reactivity is related to mood change. METHODS This study assessed the effects of acute administration of the hallucinogen psilocybin (.16 mg/kg) versus placebo on amygdala reactivity to negative stimuli in 25 healthy volunteers using blood oxygen level-dependent functional magnetic resonance imaging. Mood changes were assessed using the Positive and Negative Affect Schedule and the state portion of the State-Trait Anxiety Inventory. A double-blind, randomized, cross-over design was used with volunteers counterbalanced to receive psilocybin and placebo in two separate sessions at least 14 days apart. RESULTS Amygdala reactivity to negative and neutral stimuli was lower after psilocybin administration than after placebo administration. The psilocybin-induced attenuation of right amygdala reactivity in response to negative stimuli was related to the psilocybin-induced increase in positive mood state. CONCLUSIONS These results demonstrate that acute treatment with psilocybin decreased amygdala reactivity during emotion processing and that this was associated with an increase of positive mood in healthy volunteers. These findings may be relevant to the normalization of amygdala hyperactivity and negative mood states in patients with major depression.
Collapse
Affiliation(s)
- Rainer Kraehenmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland; Department of Neuropsychopharmacology and Brain Imaging, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland.
| | - Katrin H Preller
- Department of Neuropsychopharmacology and Brain Imaging, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland; Department of Neuropsychopharmacology and Brain Imaging, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich; and Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Thomas Pokorny
- Department of Neuropsychopharmacology and Brain Imaging, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Franz X Vollenweider
- Department of Neuropsychopharmacology and Brain Imaging, University of Zurich and Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
29
|
Naumenko VS, Popova NK, Lacivita E, Leopoldo M, Ponimaskin EG. Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders. CNS Neurosci Ther 2015; 20:582-90. [PMID: 24935787 DOI: 10.1111/cns.12247] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 11/26/2022] Open
Abstract
Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter regulating a wide range of physiological and pathological functions via activation of heterogeneously expressed 5-HT receptors. Besides the important role of 5-HT receptors in the pathogenesis of depressive disorders and in their clinical medications, underlying mechanisms are far from being completely understood. This review focuses on possible cross talk between two serotonin receptors, 5-HT1A and the 5-HT7 . Although these receptors are highly co-expressed in brain regions implicated in depression, and most agonists developed for the 5-HT1A or 5-HT7 receptors have cross-reactivity, their functional interaction has not been yet established. It has been recently shown that 5-HT1A and 5-HT7 receptors form homo- and heterodimers both in vitro and in vivo. From the functional point of view, heterodimerization has been shown to play an important role in regulation of receptor-mediated signaling and internalization, suggesting the implication of heterodimerization in the development and maintenance of depression. Interaction between these receptors is also of clinical interest, because both receptors represent an important pharmacological target for the treatment of depression and anxiety.
Collapse
Affiliation(s)
- Vladimir S Naumenko
- Department of Behavioral Neurogenomics, Institute of Cytology and Genetics, Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
30
|
Albert PR, Fiori LM. Transcriptional dys-regulation in anxiety and major depression: 5-HT1A gene promoter architecture as a therapeutic opportunity. Curr Pharm Des 2015; 20:3738-50. [PMID: 24180393 DOI: 10.2174/13816128113196660740] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/23/2013] [Indexed: 12/31/2022]
Abstract
The etiology of major depression remains unclear, but reduced activity of the serotonin (5-HT) system remains implicated and treatments that increase 5-HT neurotransmission can ameliorate depressive symptoms. 5-HT1A receptors are critical regulators of the 5- HT system. They are expressed as both presynaptic autoreceptors that negatively regulate 5-HT neurons, and as post-synaptic heteroreceptors on non-serotonergic neurons in the hippocampus, cortex, and limbic system that are critical to mediate the antidepressant actions of 5-HT. Thus, 5-HT1A auto- and heteroreceptors have opposite actions on serotonergic neurotransmission. Because most 5-HT1A ligands target both auto- and heteroreceptors their efficacy has been limited, resulting in weak or unclear responses. We propose that by understanding the transcriptional regulation of the 5-HT1A receptor it may be possible to regulate its expression differentially in raphe and projection regions. Here we review the transcriptional architecture of the 5-HT1A gene (HTR1A) with a focus on specific DNA elements and transcription factors that have been shown to regulate 5-HT1A receptor expression in the brain. Association studies with the functional HTR1A promoter polymorphism rs6295 suggest a new model for the role of the 5-HT1A receptor in susceptibility to depression involving early deficits in cognitive, fear and stress reactivity as stressors that may ultimately lead to depression. We present evidence that by targeting specific transcription factors it may be possible to oppositely regulate 5-HT1A auto- and heteroreceptor expression, synergistically increasing serotonergic neurotransmission for the treatment of depression.
Collapse
Affiliation(s)
| | - Laura M Fiori
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H-8M5.
| |
Collapse
|
31
|
Garcia-Garcia A, Tancredi AN, Leonardo ED. 5-HT(1A) [corrected] receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology (Berl) 2014; 231:623-36. [PMID: 24337875 PMCID: PMC3927969 DOI: 10.1007/s00213-013-3389-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
Abstract
RATIONALE Serotonin (5-HT) neurotransmission is intimately linked to anxiety and depression and a diverse body of evidence supports the involvement of the main inhibitory serotonergic receptor, the serotonin-1A (5-HT(1A)) subtype, in both disorders. OBJECTIVES In this review, we examine the function of 5-HT(1A) receptor subpopulations and re-interpret our understanding of their role in mental illness in light of new data, separating both spatial (autoreceptor versus heteroreceptor) and the temporal (developmental versus adult) roles of the endogenous 5-HT(1A) receptors, emphasizing their distinct actions in mediating anxiety and depression-like behaviors. RESULTS It is difficult to unambiguously distinguish the effects of different populations of the 5-HT(1A) receptors with traditional genetic animal models and pharmacological approaches. However, with the advent of novel genetic systems and subpopulation-selective pharmacological agents, direct evidence for the distinct roles of these populations in governing emotion-related behavior is emerging. CONCLUSIONS There is strong and growing evidence for a functional dissociation between auto- and heteroreceptor populations in mediating anxiety and depressive-like behaviors, respectively. Furthermore, while it is well established that 5-HT(1A) receptors act developmentally to establish normal anxiety-like behaviors, the developmental role of 5-HT(1A) heteroreceptors is less clear, and the specific mechanisms underlying the developmental role of each subpopulation are likely to be key elements determining mood control in adult subjects.
Collapse
Affiliation(s)
- Alvaro Garcia-Garcia
- Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032
- Correspondence should be addressed to either AGG at or EDL at , Telephone: (001) 212-543-5266, Fax: (001) 212-543-5129
| | | | - E. David Leonardo
- Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, 1051 Riverside Dr. Box 87, New York, NY 10032
- Correspondence should be addressed to either AGG at or EDL at , Telephone: (001) 212-543-5266, Fax: (001) 212-543-5129
| |
Collapse
|
32
|
Limón-Morales O, Soria-Fregozo C, Arteaga-Silva M, Vázquez-Palacios G, Bonilla-Jaime H. Altered expression of 5-HT1A receptors in adult rats induced by neonatal treatment with clomipramine. Physiol Behav 2014; 124:37-44. [DOI: 10.1016/j.physbeh.2013.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 12/14/2012] [Accepted: 10/22/2013] [Indexed: 01/16/2023]
|
33
|
Baldinger P, Hahn A, Mitterhauser M, Kranz GS, Friedl M, Wadsak W, Kraus C, Ungersböck J, Hartmann A, Giegling I, Rujescu D, Kasper S, Lanzenberger R. Impact of COMT genotype on serotonin-1A receptor binding investigated with PET. Brain Struct Funct 2013; 219:2017-28. [PMID: 23928748 DOI: 10.1007/s00429-013-0621-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 07/27/2013] [Indexed: 12/15/2022]
Abstract
Alterations of the inhibitory serotonin-1A receptor (5-HT1A) constitute a solid finding in neuropsychiatric research, particularly in the field of mood and anxiety disorders. Manifold factors influencing the density of this receptor have been identified, e.g., steroid hormones, sunlight exposure and genetic variants of serotonin-related genes. Given the close interactions between serotonergic and dopaminergic neurotransmission, we investigated whether a common single-nucleotide-polymorphism of the catechol-O-methyltransferase (COMT) gene (VAL158MET or rs4680) coding for a key enzyme of the dopamine network that is associated with the pathogenesis of mood disorders and antidepressant treatment response, directly affects 5-HT1A receptor binding potential. Fifty-two healthy individuals (38 female, mean age ± standard deviation = 40.48 ± 14.87) were measured via positron emission tomography using the radioligand [carbonyl-(11)C]WAY-100635. Genotyping for rs4680 was performed using DNA isolated from whole blood with the MassARRAY platform of the software SEQUENOM(®). Whole brain voxel-wise ANOVA resulted in a main effect of genotype on 5-HT1A binding. Compared to A carriers (AA + AG) of rs4680, homozygote G subjects showed higher 5-HT1A binding potential in the posterior cingulate cortex (F (2,49) = 17.7, p = 0.05, FWE corrected), the orbitofrontal cortex, the anterior cingulate cortex, the insula, the amygdala and the hippocampus (voxel-level: p < 0.01 uncorrected, t > 2.4; cluster-level: p < 0.05 FWE corrected). In light of the frequently reported alterations of 5-HT1A binding in anxiety and mood disorders, this study proposes a potential implication of the COMT genotype, more specifically the VAL158MET polymorphism, via modulation of the serotonergic neurotransmission.
Collapse
Affiliation(s)
- Pia Baldinger
- Functional, Molecular and Translational Neuroimaging Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
In response to queries about whether brain imaging technology has reached the point where it is useful for making a clinical diagnosis and for helping to guide treatment selection, the American Psychiatric Association (APA) has recently written a position paper on the Clinical Application of Brain Imaging in Psychiatry. The following perspective piece is based on our contribution to this APA position paper, which specifically emphasized the application of neuroimaging in mood disorders. We present an introductory overview of the challenges faced by researchers in developing valid and reliable biomarkers for psychiatric disorders, followed by a synopsis of the extant neuroimaging findings in mood disorders, and an evidence-based review of the current research on brain imaging biomarkers in adult mood disorders. Although there are a number of promising results, by the standards proposed below, we argue that there are currently no brain imaging biomarkers that are clinically useful for establishing diagnosis or predicting treatment outcome in mood disorders.
Collapse
|
35
|
Savitz JB, Drevets WC. Neuroreceptor imaging in depression. Neurobiol Dis 2013; 52:49-65. [DOI: 10.1016/j.nbd.2012.06.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 05/21/2012] [Accepted: 06/02/2012] [Indexed: 02/08/2023] Open
|
36
|
Bailey CR, Cordell E, Sobin SM, Neumeister A. Recent progress in understanding the pathophysiology of post-traumatic stress disorder: implications for targeted pharmacological treatment. CNS Drugs 2013; 27:221-32. [PMID: 23483368 PMCID: PMC3629370 DOI: 10.1007/s40263-013-0051-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a common and chronic anxiety disorder that can result after exposure to a traumatic event. Though our understanding of the aetiology of PTSD is incomplete, several neurobiological systems have been implicated in the pathophysiology and vulnerability towards developing PTSD after trauma exposure. We aimed to provide a concise review of benchmark findings in important neurobiological systems related to the aetiology and maintenance of PTSD symptomology. Specifically, we discuss functional aetiologies in the noradrenergic, serotonergic, endogenous cannabinoid and opioid systems as well as the hypothalamic-pituitary adrenal (HPA) axis. This article provides a succinct framework to appreciate the current understanding of neurobiological mechanisms related to the pathophysiology of PTSD and how these findings may impact the development of future, targeted pharmacological treatments for this debilitating disorder.
Collapse
|
37
|
Antoniadis D, Samakouri M, Livaditis M. The association of bipolar spectrum disorders and borderline personality disorder. Psychiatr Q 2012; 83:449-65. [PMID: 22392448 DOI: 10.1007/s11126-012-9214-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bipolar disorder (BD) and borderline personality disorder (BPD) are two different entities sharing a variety of common features in a number of fields and, thus, presenting difficulties in their differential diagnosis. The aim of the review is to identify similarities and differences between BD and BPD concerning the symptomatology, causes, course and treatment of the two disorders. A systematic electronic search of Pubmed (Medline) was conducted in order to identify all relevant scientific articles published between 1990 and 2010. The main common clinical features of BD and BPD are affective instability and impulsivity, which, however, present with quality differences in each disorder. In the field of neuroanatomy, BD and BPD demonstrate similarities such as alterations in the limbic system, as well as specific differences, such as the increase in size of the amygdala in BD and the decrease in BPD. Both disorders appear to have a significant percentage of heritability, but environmental factors seem to hold an important role in BPD, in particular. Both BD and BPD are affected by alterations in the dopaminergic and serotonergic system. Fuctionability and prognosis are slightly worse for BPD. Concerning medication treatment, antidepressants are considered effective in BPD, whereas mood stabilizers are the main treatment of choice in BD. The effectiveness of a variety of psychotherapeutic methods is still under research for both disorders. Despite the similarities and differences already being traced in clinical and biological fields, the relationship of the two disorders has not yet been thoroughly defined.
Collapse
Affiliation(s)
- Diomidis Antoniadis
- Department of Psychiatry, School of Medicine, Democritus University of Thrace, Alexandroupoli, Greece.
| | | | | |
Collapse
|
38
|
Maller JJ, Thomson RHS, Pannek K, Rose SE, Bailey N, Lewis PM, Fitzgerald PB. The (Eigen)value of diffusion tensor imaging to investigate depression after traumatic brain injury. Hum Brain Mapp 2012; 35:227-37. [PMID: 23008175 DOI: 10.1002/hbm.22171] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 06/21/2012] [Accepted: 07/10/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Many people with a traumatic brain injury (TBI), even mild to moderate, will develop major depression (MD). Recent studies of patients with MD suggest reduced fractional anisotropy (FA) in dorsolateral prefrontal cortex (DLPFC), temporal lobe tracts, midline, and capsule regions. Some of these pathways have also been found to have reduced FA in patients with TBI. It is unknown whether the pathways implicated in MD after TBI are similar to those with MD without TBI. This study sought to investigate whether there were specific pathways unique to TBI patients who develop MD. METHODS A sample of TBI-MD subjects (N = 14), TBI-no-MD subjects (N = 12), MD-no-TBI (N = 26), and control subjects (no TBI or MD, N = 23), using a strict measurement protocol underwent psychiatric assessments and diffusion tensor brain Magnetic Resonance Imaging (MRI). RESULTS The findings of this study indicate that (1) TBI patients who develop MD have reduced axial diffusivity in DLPFC, corpus callosum (CC), and nucleus accumbens white matter tracts compared to TBI patients who do not develop MD and (2) MD patients without a history of TBI have reduced FA along the CC. We also found that more severe MD relates to altered radial diffusivity. CONCLUSIONS These findings suggest that compromise to specific white matter pathways, including both axonal and myelination aspects, after a mild TBI underlie the susceptibility of these patients developing MD.
Collapse
Affiliation(s)
- Jerome J Maller
- Monash Alfred Psychiatry Research Centre, The Alfred & Monash University School of Psychology and Psychiatry, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
Jabeen Haleem D. Raphe-Hippocampal Serotonin Neurotransmission In The Sex Related Differences of Adaptation to Stress: Focus on Serotonin-1A Receptor. Curr Neuropharmacol 2012; 9:512-21. [PMID: 22379463 PMCID: PMC3151603 DOI: 10.2174/157015911796558019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 05/07/2010] [Accepted: 10/29/2010] [Indexed: 12/24/2022] Open
Abstract
Stress is the major predisposing and precipitating factor in the onset of depression which is the most significant mental health risk for women. Behavioral studies in animal models show that female sex though less affected by an acute stressor; exposure to repeated stressors induces coping deficits to impair adaptation in them. A decrease in the function of 5-hydroxytryptamine (5-HT; serotonin) in the hippocampus and an increased function of the 5-HT-1A receptor in the raphe nucleus coexist in depression. Pharmacological and neurochemical data are relevant that facilitation of serotonin neurotransmission via hippocampus due to desensitization of somatodendritic 5-HT1A receptors may lead to adaptation to stress. The present article reviews research on sex related differences of raphe-hippocampal serotonin neurotransmission to find a possible answer that may account for the sex differences of adaptation to stress reported in preclinical research and greater incidence of depression in women than men.
Collapse
Affiliation(s)
- Darakhshan Jabeen Haleem
- Department of Biochemistry, Neurochemistry and Biochemical Neuropharmacology Research Unit, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
40
|
Hassanzadeh L, Erfani M, Sadat Ebrahimi SE. 2-Amino-3-(1-(4-(4-(2-methoxyphenyl) piperazine-1-yl)butyl)-1H-1,2,3-triazol-4-yl) propanoic acid: synthesized,99mTc-tricarbonyl labeled, and bioevaluated as a potential 5HT1Areceptor ligand. J Labelled Comp Radiopharm 2012. [DOI: 10.1002/jlcr.2953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Leila Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy; Tehran University of Medical Sciences; PO Box 6446-14155; Tehran; Iran
| | - Mostafa Erfani
- Nuclear Science Research School, Nuclear Science & Technology Research Institute (NSTRI); Atomic Energy Organization of Iran (AEOI); Karegar Avenue, PO Box 11365-3486; Tehran; Iran
| | - Seyed Esmaeil Sadat Ebrahimi
- Department of Medicinal Chemistry, Faculty of Pharmacy; Tehran University of Medical Sciences; PO Box 6446-14155; Tehran; Iran
| |
Collapse
|
41
|
Kanner AM, Schachter SC, Barry JJ, Hesdorffer DC, Mula M, Trimble M, Hermann B, Ettinger AE, Dunn D, Caplan R, Ryvlin P, Gilliam F, LaFrance WC. Depression and epilepsy: epidemiologic and neurobiologic perspectives that may explain their high comorbid occurrence. Epilepsy Behav 2012; 24:156-68. [PMID: 22632406 DOI: 10.1016/j.yebeh.2012.01.007] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2012] [Indexed: 12/25/2022]
Abstract
Depression is the most frequent psychiatric comorbidity in people with epilepsy (PWE) with lifetime prevalence rates ranging between 30 and 35%. Multifactorial variables play a pathogenic role in the high comorbid occurrence of these two disorders. These variables were critically examined during an international symposium held in Chicago in September 2010, the results of which are presented in two companion manuscripts. The first manuscript summarizes new epidemiologic data highlighting the bidirectional relation between depression and epilepsy and related methodological issues in studying this relationship. An examination of the neurobiologic aspects of primary mood disorders, mood disorders in PWE and pathogenic mechanisms of epilepsy derived from studies in animal models and humans is allowing a better understanding of the complex relation between the two conditions. In the first manuscript, we review data from animal models of epilepsy in which equivalent symptoms of depression and anxiety disorders develop and, conversely, animal models of depression in which the kindling process is facilitated. Data from structural and functional neuroimaging studies in humans provide a further understanding of potential common pathogenic mechanisms operant in depression and epilepsy that may explain their high comorbidity. The negative impact of depression on the control of seizure disorders has been documented in various studies. In this manuscript, these data are reviewed and potential mechanisms explaining this phenomenon are proposed.
Collapse
Affiliation(s)
- Andres M Kanner
- Department of Neurological Sciences, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nikolaus S, Hautzel H, Heinzel A, Müller HW. Key players in major and bipolar depression--a retrospective analysis of in vivo imaging studies. Behav Brain Res 2012; 232:358-90. [PMID: 22483788 DOI: 10.1016/j.bbr.2012.03.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/13/2012] [Accepted: 03/17/2012] [Indexed: 11/30/2022]
Abstract
In the present study, we evaluated the contribution of the individual synaptic constituents of all assessed neurotransmitter systems by subjecting all available in vivo imaging studies on patients with unipolar major depressive disorder (MDD) and bipolar depression (BD) to a retrospective analysis. In acute MDD, findings revealed significant increases of prefrontal and frontal DA synthesis, decreases of thalamic and midbrain SERT, increases of insular SERT, decreases of midbrain 5-HT(1A) receptors and decreases of prefrontal, frontal, occipital and cingulate 5-HT(2A) receptors, whereas, in remission, decreases of striatal D₂ receptors, midbrain SERT, frontal, parietal, temporal, occipital and cingulate 5-HT(1A) receptors and parietal 5-HT(2A) receptors were observed. In BD, findings indicated a trend towards increased striatal D₂ receptors in depression and mania, decreased striatal DA synthesis in remission and decreased frontal D₁ receptors in all three conditions. Additionally, there is some evidence that ventrostriatal and hippocampal SERT may be decreased in depression, whereas in remission and mania elevations of thalamic and midbrain SERT, respectively, were observed. Moreover, in depression, limbic 5-HT(1A) receptors were elevated, whereas in mania a decrease of both cortical and limbic 5-HT(2A) receptor binding was observed. Furthermore, in depression, prefrontal, frontal, occipital and cingulate M2 receptor binding was found to be reduced. From this, a complex pattern of dysregulations within and between neurotransmitter systems may be derived, which is likely to be causally linked not only with the subtype and duration of disease but also with the predominance of individual symptoms and with the kind and duration of pharmacological treatment(s).
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
43
|
Valverde O, Torrens M. CB1 receptor-deficient mice as a model for depression. Neuroscience 2012; 204:193-206. [DOI: 10.1016/j.neuroscience.2011.09.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/31/2011] [Accepted: 09/13/2011] [Indexed: 12/20/2022]
|
44
|
Haleem DJ. Behavioral deficits and exaggerated feedback control over raphe-hippocampal serotonin neurotransmission in restrained rats. Pharmacol Rep 2012; 63:888-97. [PMID: 22001976 DOI: 10.1016/s1734-1140(11)70604-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 02/16/2011] [Indexed: 01/07/2023]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT), acting via the hippocampus, is thought to be critical for the neuroadaptation that alleviates the adverse effects of stress on emotion and behavior. It was hypothesized that a decrease in raphe-hippocampal serotonin neurotransmission caused by exaggerated feedback inhibition of 5-HT synthesis and release significantly contributes to stress-induced behavioral deficits. Acute exposure to 2 h of restraint stress increased 5-HT metabolism in the cortex and raphe region but had no such effect in the hippocampus. Exposure to 2 h of restraint stress elicited anxiety-like behavior, which was monitored in the light-dark transition test the next day. Animals sacrificed 24 h after termination of the stress period exhibited a decrease in the concentration of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the hippocampus but not in the cortex and raphe. 8-Hydroxy-2-di-n-propylaminotetralin (8-OH-DPAT) injected at doses of 0.125, 0.25 and 0.5 mg/kg decreased 5-HT metabolism in the raphe, cortex and hippocampus of restrained and unrestrained animals, and the decreases in the raphe and hippocampus, but not those in the cortex, were greater in restrained than unrestrained animals. Exaggerated feedback control over raphe-hippocampal serotonin neurotransmission may be involved in the inability of the organism to cope with increased stress and elicits behavioral depression.
Collapse
Affiliation(s)
- Darakhshan J Haleem
- Department of Biochemistry, Neurochemistry and Biochemical Neuropharmacology Research Unit, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
45
|
Differential modulation of the default mode network via serotonin-1A receptors. Proc Natl Acad Sci U S A 2012; 109:2619-24. [PMID: 22308408 DOI: 10.1073/pnas.1117104109] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT(1A)), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT(1A) binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT(1A) binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT(1A) inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT(1A) binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT(1A) binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network.
Collapse
|
46
|
Age, sex, and reproductive hormone effects on brain serotonin-1A and serotonin-2A receptor binding in a healthy population. Neuropsychopharmacology 2011; 36:2729-40. [PMID: 21849982 PMCID: PMC3230496 DOI: 10.1038/npp.2011.163] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is a need for rigorous positron emission tomography (PET) and endocrine methods to address inconsistencies in the literature regarding age, sex, and reproductive hormone effects on central serotonin (5HT) 1A and 2A receptor binding potential (BP). Healthy subjects (n=71), aged 20-80 years, underwent 5HT1A and 2A receptor imaging using consecutive 90-min PET acquisitions with [(11)C]WAY100635 and [(18)F]altanserin. Logan graphical analysis was used to derive BP using atrophy-corrected distribution volume (V(T)) in prefrontal, mesiotemporal, occipital cortices, and raphe nucleus (5HT1A only). We used multivariate linear regression modeling to examine BP relationships with age, age(2), sex, and hormone concentrations, with post hoc regional significance set at p<0.008. There were small postsynaptic 5HT1A receptor BP increases with age and estradiol concentration in women (p=0.004-0.005) and a tendency for small 5HT1A receptor BP declines with age and free androgen index in men (p=0.05-0.06). Raphe 5HT1A receptor BP decreased 4.5% per decade of age (p=0.05), primarily in men. There was a trend for 15% receptor reductions in prefrontal cortical regions in women relative to men (post hoc p=0.03-0.10). The significant decline in 5HT2A receptor BP relative to age (8% per decade; p<0.001) was not related to sex or hormone concentrations. In conclusion, endocrine standardization minimized confounding introduced by endogenous hormonal fluctuations and reproductive stage and permitted us to detect small effects of sex, age, and endogenous sex steroid exposures upon 5HT1A binding. Reduced prefrontal cortical 5HT1A receptor BP in women vs men, but increased 5HT1A receptor BP with aging in women, may partially explain the increased susceptibility to affective disorders in women during their reproductive years that is mitigated in later life. 5HT1A receptor decreases with age in men might contribute to the known increased risk for suicide in men over age 75 years. Low hormone concentrations in adults <50 years of age may be associated with more extreme 5HT1A receptor BP values, but remains to be studied further. The 5HT2A receptor declines with age were not related to sex or hormone concentrations in this sample. Additional study in clinical populations is needed to further examine the affective role of sex-hormone-serotonin receptor relationships.
Collapse
|
47
|
Bailer UF, Bloss CS, Frank GK, Price JC, Meltzer CC, Mathis CA, Geyer MA, Wagner A, Becker CR, Schork NJ, Kaye WH. 5-HT₁A receptor binding is increased after recovery from bulimia nervosa compared to control women and is associated with behavioral inhibition in both groups. Int J Eat Disord 2011; 44:477-87. [PMID: 20872754 PMCID: PMC4286242 DOI: 10.1002/eat.20843] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2010] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Because altered serotonin (5-HT) function appears to persist after recovery from bulimia nervosa (RBN), we investigated the 5-HT(1A) receptor, which could contribute to regulation of appetite, mood, impulse control, or the response to antidepressants. METHOD Thirteen RBN individuals were compared to 21 healthy control women (CW) using positron emission tomography and [carbonyl-(11)C]WAY100635 ([(11)C]WAY). RESULTS RBN had a 23-34% elevation of [(11)C]WAY binding potential (BP)(P) in subgenual cingulate, mesial temporal, and parietal regions after adjustments for multiple comparisons. For CW, [(11)C]WAY BP(P) was related negatively to novelty seeking, whereas for RBN, [(11)C]WAY BP(P) was related positively to harm avoidance and negatively related to sensation seeking. DISCUSSION Alterations of 5-HT(1A) receptor function may provide new insight into efficacy of 5-HT medication in BN, as well as symptoms such as the ability to inhibit or self-control the expression of behaviors related to stimulus seeking, aggression, and impulsivity.
Collapse
Affiliation(s)
- Ursula F. Bailer
- Department of Psychiatry and Psychotherapy, Division of Biological Psychiatry, Medical University Vienna, Vienna, Austria,Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Cinnamon S. Bloss
- Scripps Genomic Medicine, Scripps Translational Science Institute (STSI), and Scripps Health, La Jolla, California
| | - Guido K. Frank
- University of Colorado at Denver and Health Sciences Center, Department of Psychiatry, The Children’s Hospital, Aurora, Colorado
| | - Julie C. Price
- University of Pittsburgh, School of Medicine, Department of Radiology, Presbyterian University Hospital, Pittsburgh, Pennsylvania
| | - Carolyn C. Meltzer
- Emory School of Medicine, Departments of Radiology, Neurology, and Psychiatry and Behavioral Sciences, Atlanta, Georgia, and Adjunct Professor of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Chester A. Mathis
- University of Pittsburgh, School of Medicine, Department of Radiology, Presbyterian University Hospital, Pittsburgh, Pennsylvania
| | - Mark A. Geyer
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Angela Wagner
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Carl R. Becker
- University of Pittsburgh, School of Medicine, Department of Radiology, Presbyterian University Hospital, Pittsburgh, Pennsylvania
| | - Nicholas J. Schork
- Scripps Genomic Medicine, Scripps Translational Science Institute (STSI), and Scripps Health, La Jolla, California
| | - Walter H. Kaye
- Department of Psychiatry, University of California, San Diego, La Jolla, California,Correspondence to: Walter H. Kaye, MD, UCSD Department of Psychiatry University of California, San Diego, 8950 Villa La Jolla Drive, Suite C - 207, La Jolla, California 92037.
| |
Collapse
|
48
|
Bethea CL, Smith AW, Centeno ML, Reddy AP. Long-term ovariectomy decreases serotonin neuron number and gene expression in free ranging macaques. Neuroscience 2011; 192:675-88. [PMID: 21763405 DOI: 10.1016/j.neuroscience.2011.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/06/2011] [Accepted: 06/01/2011] [Indexed: 01/08/2023]
Abstract
The serotonin system responds to the ovarian steroids, estradiol (E) and progesterone (P), in women and female animal models. In macaques, ovarian steroid administration to ovariectomized (Ovx) individuals improves serotonin neural function through actions on pivotal serotonin-related genes and proteins, such as TPH2 (tryptophan hydroxylase 2), SERT (serotonin reuptake transporter), and the 5HT1A autoreceptor. In addition, ovarian steroid administration reduces gene and protein expression in the caspase-independent pathway and reduces DNA fragmentation in serotonin neurons. This study examines the hypothesis that long-term ovariectomy will lead to a loss of serotonin neurons and compromised gene expression in serotonin neurons. Female Japanese macaques were ovariectomized or tubal ligated (n=5/group) at 3 years of age and returned to their natal troop. After 3 years, the animals were collected, administered a fenfluramine challenge to determine global serotonin availability, and then euthanized. Fev, TPH2, SERT, and 5HT1A expression were examined with digoxigenin in situ hybridization (ISH) and quantitative image analysis. Cell number, positive pixel area, and average pixel density were determined. In the Ovx group, Fev, TPH2, SERT, and 5HT1A showed a significant decease in average and total cell number and positive pixel area. The reduction in Fev-positive neurons suggests that there were fewer serotonin neurons in Ovx animals compared to ovary-intact animals. The decrease in TPH2 in the Ovx animals was consistent with earlier results in 5-month Ovx animals, but it may be due to the decrease in cell number rather than a decrease in expression on an individual cell basis. The decrease in SERT and 5HT1A in long-term Ovx differed from previous studies in short-term Ovx. In summary, long-term ovarian steroid loss resulted in fewer serotonin neurons and overall lower Fev, TPH2, SERT, and 5HT1A gene expression. This may be due to serotonin cell death or to a negative impact on a long-term developmental process in young female macaques.
Collapse
Affiliation(s)
- C L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
49
|
Bethea CL, Lima FB, Centeno ML, Weissheimer KV, Senashova O, Reddy AP, Cameron JL. Effects of citalopram on serotonin and CRF systems in the midbrain of primates with differences in stress sensitivity. J Chem Neuroanat 2011; 41:200-18. [PMID: 21683135 DOI: 10.1016/j.jchemneu.2011.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/02/2011] [Accepted: 05/16/2011] [Indexed: 10/24/2022]
Abstract
This chapter reviews the neurobiological effects of stress sensitivity and s-citalpram (CIT) treatment observed in our nonhuman primate model of functional hypothalamic amenorrhea (FHA). This type of infertility, also known as stress-induced amenorrhea, is exhibited by cynomolgus macaques. In small populations, some individuals are stress-sensitive (SS) and others are highly stress-resilient (HSR). The SS macaques have suboptimal secretion of estrogen and progesterone during normal menstrual cycles. SS monkeys also have decreased serotonin gene expression and increased CRF expression compared to HSR monkeys. Recently, we found that CIT treatment improved ovarian steroid secretion in SS monkeys, but had no effect in HSR monkeys. Examination of the serotonin system revealed that SS monkeys had significantly lower Fev (fifth Ewing variant, rodent Pet1), TPH2 (tryptophan hydroxylase 2), 5HT1A autoreceptor and SERT (serotonin reuptake transporter) expression in the dorsal raphe than SR monkeys. However, CIT did not alter the expression of either Fev, TPH2, SERT or 5HT1A mRNAs. In contrast, SS monkeys tended to have a higher density of CRF fiber innervation of the dorsal raphe than HSR monkeys, and CIT significantly decreased the CRF fiber density in SS animals. In addition, CIT increased CRF-R2 gene expression in the dorsal raphe. We speculate that in a 15-week time frame, the therapeutic effect of S-citalopram may be achieved through a mechanism involving extracellular serotonin inhibition of CRF and stimulation of CRF-R2, rather than alteration of serotonin-related gene expression.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, United States.
| | | | | | | | | | | | | |
Collapse
|
50
|
Structural and functional neuroimaging studies of the suicidal brain. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:796-808. [PMID: 21216267 DOI: 10.1016/j.pnpbp.2010.12.026] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/30/2010] [Accepted: 12/25/2010] [Indexed: 12/27/2022]
Abstract
Suicidality is a major challenge for today's health care. Evidence suggests that there are differences in cognitive functioning of suicidal patients but the knowledge about the underlying neurobiology is limited. Brain imaging offers the advantage of a non-invasive in vivo direct estimation of detailed brain structure, regional brain functioning and estimation of molecular processes in the brain. We have reviewed the literature on neuroimaging studies of the suicidal brain. This article contains studies on structural imaging such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) and functional imaging, consisting of Positron Emission Tomography (PET), Single Photon Emission Tomography (SPECT) and functional MRI (fMRI). We classified the results of the different imaging modalities in structural and functional imaging. Within our research, we found no significant differences in the suicidal brain demonstrated by Computed Tomography. Magnetic Resonance Imaging studies in subjects with a history of suicide attempt on the other hand deliver differing results, mostly pointing at a higher prevalence of white (especially deep white matter and periventricular) and grey matter hyperintensities in the frontal, temporal and/or parietal lobe and decreased volumes in the frontal and temporal lobe. There seems to be a trend towards findings of reduced grey matter volume in the frontal lobe. Overall, there is no consensus of opinion on structural imaging of the suicidal brain. Research on functional imaging is further divided into studies in resting state, studies in activation conditions and studies on brain neurotransmitters, transporters and receptors. A common finding in functional neuroimaging in resting conditions is a decreased perfusion in the prefrontal cortex of suicidal patients. During cognitive activation, perfusion deficits in the prefrontal cortex have been observed. After fenfluramine challenge, the prefrontal cortex metabolism seems to be inversely correlated to the lethality of previous suicide attempt. The few studies that examined the serotonin transporter in suicide found no significant differences in binding potential. In suicide attempters there seems to be a negative correlation between impulsivity and SERT binding. Our group found a reduced 5-HT(2A) binding in the frontal cortex in patients with a recent suicide attempt. The binding index was significantly lower in the deliberate self injury patients compared to the deliberate self poisoning patients. The few authors that examined DAT binding in suicide found no significant DAT differences between patients and controls. However they demonstrated significant negative correlations between DAT binding potential and mental energy among suicide attempters, but not in healthy control subjects. We did not find studies measuring the binding potential of the noradrenalin or gamma amino butyric acid transporter or receptor in suicidal subjects. Several reports have suggested abnormalities of GABA neurotransmission in depression. During our literature search, we have focused on neuroimaging studies in suicidal populations, but in the absence of evidence in the literature on this group or when further collateral evidence is appropriate, this overview expands to results in impulsive aggressive or in depressed subjects.
Collapse
|