1
|
Naganawa M, Nabulsi N, Planeta B, Gallezot JD, Lin SF, Najafzadeh S, Williams W, Ropchan J, Labaree D, Neumeister A, Huang Y, Carson RE. Tracer kinetic modeling of [(11)C]AFM, a new PET imaging agent for the serotonin transporter. J Cereb Blood Flow Metab 2013; 33:1886-96. [PMID: 23921898 PMCID: PMC3851894 DOI: 10.1038/jcbfm.2013.134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 11/09/2022]
Abstract
[(11)C]AFM, or [(11)C]2-[2-(dimethylaminomethyl)phenylthio]-5-fluoromethylphenylamine, is a new positron emission tomography (PET) radioligand with high affinity and selectivity for the serotonin transporter (SERT). The purpose of this study was to determine the most appropriate kinetic model to quantify [(11)C]AFM binding in the healthy human brain. Positron emission tomography data and arterial input functions were acquired from 10 subjects. Compartmental modeling and the multilinear analysis-1(MA1) method were tested using the arterial input functions. The one-tissue model showed a lack of fit in low-binding regions, and the two-tissue model failed to estimate parameters reliably. Regional time-activity curves were well described by MA1. The rank order of [(11)C]AFM binding potential (BPND) matched well with the known regional SERT densities. For routine use of [(11)C]AFM, several noninvasive methods for quantification of regional binding were evaluated, including simplified reference tissue models (SRTM and SRTM2), and multilinear reference tissue models (MRTM and MRTM2). The best methods for region of interest (ROI) analysis were MA1, MRTM2, and SRTM2, with fixed population kinetic values ( or b') for the reference methods. The MA1 and MRTM2 methods were best for parametric imaging. These results showed that [(11)C]AFM is a suitable PET radioligand to image and quantify SERT in humans.
Collapse
Affiliation(s)
- Mika Naganawa
- Diagnostic Radiology, PET Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
QSAR study and synthesis of new phenyltropanes as ligands of the dopamine transporter (DAT). Bioorg Med Chem 2012; 20:1388-95. [PMID: 22300887 DOI: 10.1016/j.bmc.2012.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/04/2012] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
Abstract
The dopamine transporter (DAT) plays a pivotal role in the regulation of dopamine neurotransmission, and is involved in a number of physiological functions and brain disorders. Furthermore the DAT analysis by molecular imaging techniques is a useful tool for the diagnosis and follow up treatment of diseases involving the DAT. In order to predict the affinity of new derivatives for the DAT, different QSAR molecular modeling models based on cocaine were compared. We have evaluated in these models tropane derivatives synthesized with original synthons which coupled properties of both fluorine and iodine atoms. One compound showed a high in vitro affinity and selectivity for the DAT (K(i)=0.87±0.04 nM). This compound should be radiolabeled with radioiodine for further investigations by SPECT.
Collapse
|
3
|
Paterson LM, Kornum BR, Nutt DJ, Pike VW, Knudsen GM. 5-HT radioligands for human brain imaging with PET and SPECT. Med Res Rev 2011; 33:54-111. [PMID: 21674551 DOI: 10.1002/med.20245] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT(1A), 5-HT(1B), 5-HT(2A), and 5-HT(4) receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging.
Collapse
Affiliation(s)
- Louise M Paterson
- Neuropsychopharmacology Unit, Division of Experimental Medicine, Imperial College London, Burlington Danes Building, Du Cane Road, London, United Kingdom
| | | | | | | | | |
Collapse
|
4
|
Mavel S, Meheux N, Guilloteau D, Emond P. Synthesis and in vitro evaluation of fluorinated diphenyloxide derivatives and sulfur analogs as serotonin transporter ligands. Bioorg Med Chem 2010; 18:236-41. [DOI: 10.1016/j.bmc.2009.10.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/28/2009] [Accepted: 10/30/2009] [Indexed: 11/24/2022]
|
5
|
Simple and rapid preparation of [11C]DASB with high quality and reliability for routine applications. Appl Radiat Isot 2009; 67:1654-60. [DOI: 10.1016/j.apradiso.2009.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/12/2009] [Accepted: 03/10/2009] [Indexed: 01/26/2023]
|
6
|
Mavel S, Vercouillie J, Garreau L, Raguza T, Ravna AW, Chalon S, Guilloteau D, Emond P. Docking study, synthesis, and in vitro evaluation of fluoro-MADAM derivatives as SERT ligands for PET imaging. Bioorg Med Chem 2008; 16:9050-5. [PMID: 18793858 DOI: 10.1016/j.bmc.2008.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 07/25/2008] [Accepted: 08/01/2008] [Indexed: 11/27/2022]
Abstract
In order to predict affinity of new diphenylsulfides for the serotonin transporter (SERT), a molecular modeling model was used to compare potential binding affinity of new compounds with known potent ligands. The aim of this study is to identify a suitable PET radioligand for imaging the SERT, new derivatives, and their precursors for a C-11 or F-18 radiolabeling, were synthesized. Two fluorinated derivatives displayed good in vitro affinity for the SERT (K(i)=14.3+/-1 and 10.1+/-2.7 nM) and good selectivity toward the other monoamine transporters as predicted by the docking study.
Collapse
Affiliation(s)
- Sylvie Mavel
- INSERM U930, 37000 TOURS, France; Université François-Rabelais de Tours, 37000 TOURS, France.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Carbon-11 labeled indolylpropylamine analog as a new potential PET agent for imaging of the serotonin transporter. Bioorg Med Chem 2008; 16:6364-70. [DOI: 10.1016/j.bmc.2008.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 04/29/2008] [Accepted: 05/05/2008] [Indexed: 11/21/2022]
|
8
|
Jarkas N, Voll RJ, Williams L, Votaw JR, Owens M, Goodman MM. Synthesis and in vivo evaluation of halogenated N,N-dimethyl-2-(2'-amino-4'-hydroxymethylphenylthio)benzylamine derivatives as PET serotonin transporter ligands. J Med Chem 2007; 51:271-81. [PMID: 18085744 DOI: 10.1021/jm0707929] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N, N-dimethyl-2-(2'-amino-4'-hydroxymethylphenylthio)benzylamine (38), substituted on ring A, was reported to display high binding affinity and selectivity to the human brain serotonin transporter (SERT). In an attempt to explore the potential of compounds substituted on ring B of the phenylthiophenyl core structure, three derivatives of 38 were synthesized: N, N-dimethyl-2-(2'-amino-4'-hydroxymethyl-phenylthio)-5-fluorobenzylamine (35), N, N-dimethyl-2-(2'-amino-4'-hydroxymethyl-phenylthio)-5-bromobenzylamine (36), and N, N-dimethyl-2-(2'-amino-4'-hydroxymethyl-phenylthio)-5-iodobenzylamine (37). The in vitro binding studies in cells transfected with human SERT, norepinephrine transporter (NET), and dopamine transporter (DAT) showed that 35, 36, and 37 exhibited high SERT affinity with K is (SERT) = 1.26, 0.29, and 0.31 nM (vs [(3)H]citalopram), respectively. [(11)C]-(35), [(11)C]-(36), and [(11)C]-( 37) were prepared by methylation of their monomethyl precursors 16, 17, and 18, with [(11)C]iodomethane in 28, 11, and 14% radiochemical yields, respectively. The microPET images of [(11)C]-(35), [(11)C]-(36), and [(11)C]-(37) showed high uptake in the monkey brain regions rich in SERT with peak midbrain to cerebellum ratios of 3.41, 3.24, and 3.00 at 85 min post-injection, respectively. In vivo bindings of [(11)C]-(35), [(11)C]-(36), and [(11)C]-(37) were shown to be specific to the SERT as displacement with citalopram (a potent SERT ligand) reduced radioactivity in SERT-rich regions to the cerebellum level. These results suggest that [(11)C]-(35), [(11)C]-(36), and [(11)C]-(37) could be potential agents for mapping human SERT by PET and radiolabeling 37 with iodine-123, which could afford the first SPECT SERT imaging agent exhibiting fast kinetics.
Collapse
Affiliation(s)
- Nachwa Jarkas
- Department of Radiology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
9
|
Zhu Z, Guo N, Narendran R, Erritzoe D, Ekelund J, Hwang DR, Bae SA, Laruelle M, Huang Y. The new PET imaging agent [11C]AFE is a selective serotonin transporter ligand with fast brain uptake kinetics. Nucl Med Biol 2005; 31:983-94. [PMID: 15607480 DOI: 10.1016/j.nucmedbio.2004.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2004] [Revised: 06/30/2004] [Accepted: 07/22/2004] [Indexed: 10/26/2022]
Abstract
A new positron emission tomography (PET) radioligand for the serotonin transporter (SERT), [(11)C]2-[2-[[(dimethylamino)methyl]phenyl]thio]-5-(2-fluoroethyl)phenylamine ([(11)C]AFE, 12), was synthesized and evaluated in vivo in rats and baboons. [(11)C]AFE (12) was prepared from its monomethylamino precursor 11 by reaction with high specific activity [(11)C]methyl triflate. Radiochemical yield was 32+/-17% based on [(11)C]methyl triflate (n=6) and specific activity was 1670+/-864 Ci/mmol at end of synthesis (EOS, n=6). Binding assays indicated that AFE displays high affinity for SERT (K(i)=1.80 nM for hSERT) and lower affinity for norepinephrine transporter (K(i)=946 nM for hNET) or dopamine transporter (K(i)>10,000 nM for hDAT). In addition, AFE displays negligible binding affinities for other serotonin and dopamine receptors, indicating an excellent binding selectivity in vitro. Biodistribution studies in rats indicated that [(11)C]AFE enters the brain readily and localizes in regions known to contain high concentrations of SERT, such as the thalamus, hypothalamus, frontal cortex and striatum. Moreover, such binding in SERT-rich brain regions is reduced significantly by pretreatment with either citalopram or the cold compound itself, but not by nisoxetine or GBR 12935, thus demonstrating that [(11)C]AFE binding in the rat brain is saturable, specific and selective for the SERT. Imaging experiments in baboons indicated that the uptake pattern of [(11)C]AFE is consistent with the known distribution of SERT in the baboon brain, with high levels of radioactivity detected in the midbrain and thalamus, moderate levels in the hippocampus and striatum and low levels in the cortical regions. The uptake kinetics of [(11)C]AFE in the baboon brain is rapid, with activity in the midbrain and thalamus peaking at 15-40 min postinjection. Pretreatment of the baboon with citalopram (4 mg/kg) 20 min before radioactivity injection reduced the binding of [(11)C]AFE in all SERT-containing brain regions to the level in the cerebellum. Kinetic analysis revealed that in all brain regions examined, [(11)C]AFE specific-to-nonspecific partition coefficients (V(3)'') are similar to those of [(11)C]McN5652 and [(11)C]2-[2-[[(dimethylamino)methyl]phenyl]thio]-5-fluorophenylamine ([(11)C]AFA), but lower than those of [(11)C]2-[2-[[(dimethylamino)methyl]phenyl]thio]-5-fluoromethylphenylamine ([(11)C]AFM) or [(11)C]DASB. In summary, [(11)C]AFE appears to be a PET radioligand with fast brain uptake kinetics and can be used for the visualization and quantification of SERT in vivo.
Collapse
Affiliation(s)
- Zhihong Zhu
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jarkas N, McConathy J, Voll RJ, Goodman MM. Synthesis, in Vitro Characterization, and Radiolabeling of N,N-Dimethyl-2-(2‘-amino-4‘-substituted-phenylthio)benzylamines: Potential Candidates as Selective Serotonin Transporter Radioligands. J Med Chem 2005; 48:4254-65. [PMID: 15974579 DOI: 10.1021/jm050079o] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of N,N-dimethylated and N-monomethylated analogues of N,N-dimethyl-2-(2'-amino-4'-iodophenylthio)benzylamine substituted at the 4'-phenyl position have been prepared and evaluated in vitro for serotonin transporter (SERT) selectivity. Several derivatives were prepared where the 4'-position was either unsubstituted 13 and 33a or substituted with methyl 14a and 33b, ethenyl 14b and 34, ethyl 16 and 35, hydroxymethyl 20 and 41, hydroxyethyl 22, fluoroethyl 23, hydroxypropyl 27, and fluoropropyl 28. Competition binding in cells stably expressing the transfected human SERT, dopamine transporter (DAT), and norepinephrine transporter (NET) using [(3)H]citalopram, [(3)H]WIN 35,428 or [(125)I]RTI-55, and [(3)H]nisoxetine, respectively, demonstrated the following order of SERT affinity (K(i) (nM)): 14a (0.25) > 16 (0.49) > 20 (0.57) > 14b (1.12) > 13 (1.59) > 33b (1.94) = 35 (2.04) >> 23 (8.50) = 28 (8.55) > 41 (15.11) >> 22 (51) > 33a (83.43) > 27 (92). The K(i) values revealed that most of these derivatives displayed a high affinity for the SERT and a high selectivity over the DAT and NET. Moreover, substitution at the 4'-position of the dimethylated and monomethylated benzylamines differently influenced SERT binding: (i) the dimethylated benzylamines exhibited higher SERT affinity than the monomethylated ones, (ii) alkyl, alkenyl, or hydroxymethyl functions at the 4'-position afford compounds with high SERT affinity, and (iii) omega-hydroxy and fluoro-substituted ethyl and propyl groups at the 4'-position decrease the SERT affinity. From this series, the dimethylated derivatives 13, 14a, 14b, 16, and 20 were radiolabeled with carbon-11 and their log P(7.4) was calculated as a measure of their potential brain penetrance as positron emission tomography SERT imaging agents.
Collapse
Affiliation(s)
- Nachwa Jarkas
- Division of Radiological Sciences, Department of Radiology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
11
|
Huang Y, Bae SA, Zhu Z, Guo N, Roth BL, Laruelle M. Fluorinated diaryl sulfides as serotonin transporter ligands: synthesis, structure-activity relationship study, and in vivo evaluation of fluorine-18-labeled compounds as PET imaging agents. J Med Chem 2005; 48:2559-70. [PMID: 15801845 DOI: 10.1021/jm0400808] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of new, fluorine-containing substituted diphenyl sulfides was synthesized to serve as candidate ligands for positron emission tomography (PET) imaging of the serotonin transporter (SERT) and to further probe the structure-activity relationship (SAR) of this class of compounds. Candidate compounds were assayed for their affinities to the monoamine transporters (SERT, norepinephrine transporter (NET), and dopamine transporter (DAT)) in competitive binding experiments in vitro using cloned human transporters. From these in vitro assays, four compounds (7c-f) were chosen for further evaluation. All four compounds have nanomolar affinity for SERT (K(i) 1.46 nM, 1.04 nM,1.83 nM, and 3.58 nM for 7c, 7d, 7e, and 7f, respectively). The F-18-labeled compounds, 16 and 18a-c, were prepared via a two-step radiosynthesis. Biodistribution studies in rats indicated that the F-18-labeled compounds localized in brain regions with high concentrations of SERT. Furthermore, competition experiments demonstrated that the binding of these radioligands in the rat brain was saturable, specific, and selective to SERT. Specific binding in the rat hypothalamus peaked at 5.6 for ligand 16 and 4.4 for 18b at 90 min after radioactivity administration. For ligand 18a, this same ratio was 8.4 at 120 min postinjection, while compound 18c displayed a lower specific binding ratio of 2.4. In summary, four F-18-labeled ligands were prepared and evaluated as candidate PET imaging agents for SERT. Among these four ligands, three appear to be promising radioligands suitable for the labeling of SERT in vivo, with 18a providing a higher specific binding in vivo than 16 or 18b.
Collapse
Affiliation(s)
- Yiyun Huang
- Department of Psychiatry and Radiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
12
|
Jarkas N, Votaw JR, Voll RJ, Williams L, Camp VM, Owens MJ, Purselle DC, Bremner JD, Kilts CD, Nemeroff CB, Goodman MM. Carbon-11 HOMADAM: A novel PET radiotracer for imaging serotonin transporters. Nucl Med Biol 2005; 32:211-24. [PMID: 15820756 DOI: 10.1016/j.nucmedbio.2004.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 11/23/2004] [Accepted: 11/29/2004] [Indexed: 10/25/2022]
Abstract
UNLABELLED Carbon-11-labeled N,N-dimethyl-2-(2'-amino-4'-hydroxymethylphenylthio)benzylamine (HOMADAM) was synthesized as a new serotonin transporter (SERT) imaging agent. METHODS Carbon-11 was introduced into HOMADAM by preparation of N-methyl-2-(2'-amino-4'-hydroxymethylphenylthio)benzylamine followed by alkylation with carbon-11 iodomethane. Binding affinities of HOMADAM and the radiolabeling substrate, N-methyl-2-(2'-amino-4'-hydroxymethylphenylthio)benzylamine, were determined in cDNA transfected cells expressing human SERT, dopamine transporters (DAT) and norepinephrine transporters NET using [3H]citalopram, [(125)I]RTI-55 and [3H]nisoxetine, respectively. MicroPET brain imaging was performed in monkeys. Arterial plasma metabolites of HOMADAM were analyzed in a rhesus monkey by high-performance liquid chromatography (HPLC). RESULTS HOMADAM displayed high affinity for the SERT (Ki = 0.6 nM). N-methyl-2-(2'-amino-4'-hydroxymethylphenylthio)benzylamine displayed moderate affinity for the SERT (Ki = 15.11 nM). The affinities of HOMADAM for the DAT and NET were 2000- and 253-fold lower, respectively, than for the SERT. [11C]HOMADAM was prepared from [11C]iodomethane in approximately 25% radiochemical yield (decay-corrected to end of bombardment). MicroPET brain imaging studies in monkeys demonstrated that [11C]HOMADAM uptake was selectively localized in the midbrain, thalamus, pons, caudate, putamen and medulla. The midbrain-to-cerebellum, pons-to-cerebellum, thalamus-to-cerebellum and putamen-to-cerebellum ratios at 85 min were 4.2, 2.8, 2.3 and 2.0, respectively. HOMADAM binding achieved quasi-equilibrium at 45 min. Radioactivity in the SERT-rich regions of monkey brain was displaceable with R,S-citalopram. Radioactivity in the DAT-rich regions of monkey brain was not displaceable with the DAT ligand RTI-113. Radioactivity in the SERT-rich regions of monkey brain was displaceable with the R,S-reboxetine, a NET ligand with a high nanomolar affinity for SERT. Arterial plasma metabolites of HOMADAM were analyzed in a rhesus monkey by HPLC and displayed a single peak that corresponded to unmetabolized HOMADAM. CONCLUSION HOMADAM is an excellent candidate for PET primate imaging of brain SERTs.
Collapse
Affiliation(s)
- Nachwa Jarkas
- Center for Positron Emission Tomography, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Huang Y, Narendran R, Bae SA, Erritzoe D, Guo N, Zhu Z, Hwang DR, Laruelle M. A PET imaging agent with fast kinetics: synthesis and in vivo evaluation of the serotonin transporter ligand [11C]2-[2-dimethylaminomethylphenylthio)]-5-fluorophenylamine ([11C]AFA). Nucl Med Biol 2005; 31:727-38. [PMID: 15246363 DOI: 10.1016/j.nucmedbio.2004.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2004] [Revised: 03/22/2004] [Accepted: 03/25/2004] [Indexed: 11/19/2022]
Abstract
A new serotonin transporter (SERT) ligand, [11C]2-[2-(dimethylaminomethylphenylthio)]-5-fluorophenylamine (10, [11C]AFA), was synthesized and evaluated as a candidate PET radioligand in pharmacological and pharmacokinetic studies. As a PET radioligand, AFA (8) can be labeled with either C-11 or F-18. In vitro, AFA displayed high affinity for SERT (Ki 1.46 +/- 0.15 nM) and lower affinity for norepinephrine transporter (NET, Ki 141.7 +/- 47.4 nM) or dopamine transporter (DAT, Ki > 10,000 nM). [11C]AFA (10) was prepared from its monomethylamino precursor 9 by reaction with high specific activity [11C]methyl iodide. Radiochemical yield was 43 +/- 20% based on [11C]methyl iodide at end of bombardment (EOB, n = 10) and specific activity was 2,129 +/- 1,369 Ci/mmol at end of synthesis (EOS, n = 10). Biodistribution studies in rats indicated that [11C]AFA accumulated in brain regions known to contain high concentrations of SERT. Binding in SERT-rich brain regions was reduced significantly by pretreatment with either the cold compound 8 or with the selective serotonin reuptake inhibitor (SSRI) citalopram, but not by the selective norepinephrine reuptake inhibitor nisoxetine, thus underlining its in vivo binding selectivity and specificity for SERT. Imaging experiments in baboons demonstrated that the uptake pattern of [11C]AFA in the baboon brain is consistent with the known distribution of SERT, with highest activity levels in the midbrain and thalamus, followed by striatum, hippocampus, and cortical regions. Activity levels in the baboon brain peaked at 15-40 min after radioligand injection, indicating a fast uptake kinetics for [11C]AFA. Pretreatment of the baboon with citalopram (4 mg/kg) significantly reduced the specific binding of [11C]AFA in all SERT-containing brain regions. Kinetic analysis revealed that the regional equilibrium specific to non-specific partition coefficients (V3") of [11C]AFA are similar to those of [11C]McN5652, but lower than those of [11C]AFM or [11C]DASB. In summary, [11C]AFA appears to be an appropriate PET radioligand with a fast brain uptake kinetics:
Collapse
Affiliation(s)
- Yiyun Huang
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, 1051 Riverside Drive, Box 31, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Jarkas N, McConathy J, Votaw JR, Voll RJ, Malveaux E, Camp VM, Williams L, Goodman RR, Kilts CD, Goodman MM. Synthesis and characterization of EADAM: a selective radioligand for mapping the brain serotonin transporters by positron emission tomography. Nucl Med Biol 2005; 32:75-86. [PMID: 15691664 DOI: 10.1016/j.nucmedbio.2004.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
[11C]N,N-Dimethyl-2-(2'-amino-4'-ethylphenylthio)benzylamine ([11C]EADAM) was synthesized in the development of a serotonin transporter (SERT) imaging ligand for positron emission tomography (PET). The methods of ligand synthesis, results of in vitro characterization, 11C labeling and in vivo micro-PET imaging studies of [11C]EADAM in cynomolgus monkey brain are described. 11C was introduced into N,N-dimethyl-2-(2'-amino-4'-ethylphenylthio)benzylamine (5) by alkylation of N-methyl-2-(2'-amino-4'-ethylphenylthio)benzylamine (10) in 32% radiochemical yield (end of bombardment [EOB], decay-corrected from [11C]methyl iodide). Competition binding assays in cells stably expressing the transfected human dopamine transporter (DAT), SERT and norepinephrine transporter (NET) labeled with [3H]WIN 35428 or [(125)I]RTI-55, [3H]citalopram and [3H]nisoxetine, respectively, indicated the following order of SERT affinity: ADAM>EADAM>>fluvoxamine. The affinity of EADAM for DAT and NET was 500- and >1000-fold lower, respectively, than for SERT. Micro-PET brain imaging studies in a cynomolgus monkey demonstrated high [11C]EADAM uptake in the striatum, thalamus and brainstem. [11C]EADAM uptake in these brain regions peaked in less than 60 min following administration of [11C]EADAM. The tissue-to-cerebellum ratios of the striatum, thalamus and brainstem were 1.67, 1.71 and 1.63, respectively, at 120 min postinjection of [11C]EADAM. Analysis of monkey arterial plasma samples using high-pressure liquid chromatography determined there was no detectable formation of lipophilic radiolabeled metabolites capable of entering the brain. In a displacement experiment with citalopram in a cynomolgus monkey, radioactivity in the striatum, thalamus and brainstem was displaced 20-60 min after administration of citalopram. In a blocking experiment with citalopram in a cynomolgus monkey, radioactivity in the striatum, thalamus and brainstem was significantly reduced. These results support the candidacy of [11C]EADAM as a radioligand for visualizing brain SERT using PET.
Collapse
Affiliation(s)
- Nachwa Jarkas
- Department of Radiology, Division of Radiological Sciences, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Scott Mason N, Mathis CA. Positron Emission Tomography Agents for Central Nervous System Drug Development Applications. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2005. [DOI: 10.1016/s0065-7743(05)40004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
16
|
Huang Y, Hwang DR, Bae SA, Sudo Y, Guo N, Zhu Z, Narendran R, Laruelle M. A new positron emission tomography imaging agent for the serotonin transporter: synthesis, pharmacological characterization, and kinetic analysis of [11C]2-[2-(dimethylaminomethyl)phenylthio]-5-fluoromethylphenylamine ([11C]AFM). Nucl Med Biol 2004; 31:543-56. [PMID: 15219271 DOI: 10.1016/j.nucmedbio.2003.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 11/23/2003] [Accepted: 11/27/2003] [Indexed: 11/25/2022]
Abstract
The synthesis, radiolabeling, and in vitro and in vivo evaluation of a new positron emission tomography (PET) radioligand for the serotonin transporter (SERT), [(11)C]2-[2-(dimethylaminomethyl)phenylthio]-5-fluoromethylphenylamine ([(11)C]AFM) is reported. AFM was prepared from 4-chloro-3-nitrobenzyl acetate and thiosalicylic acid in a five-step synthetic sequence. In binding studies in vitro with cloned human transporters, AFM displayed high binding affinity (Ki 1.04 nmol/L for hSERT) and good selectivity (Ki 664 nmol/L for hNET and >10,000 nmol/L for hDAT) for SERT. The radiolabled compound [(11)C]AFM was prepared in 30-37 minutes from its monomethylamine precursor by reaction with high specific activity [(11)C]iodomethane. Radiochemical yield was 12.3 +/- 8.1% based on [(11)C]iodomethane and specific activity was 1733 +/- 428 Ci/mmol at end of synthesis (EOS, n = 14). Radiochemical and chemical purity of the final product was >97%. Biodistribution studies in rats indicated that [(11)C]AFM entered the brain readily and localized in regions known to contain high concentrations of SERT, with high specific to nonspecific binding ratios. Furthermore, binding of [(11)C]AFM in SERT-rich regions was blocked by the cold compound AFM and the selective serotonin reuptake inhibitor citalopram but not by the selective norepinephrine reuptake inhibitor nisoxetine or the selective dopamine reuptake inhibitor GBR 12935. At 30 minutes after injection, >95% of the brain activity corresponded to the parent compound, indicating the absence of radiolabeled metabolites in the rat brain. PET imaging experiments in baboons showed a brain distribution pattern of [(11)C]AFM consistent with the regional concentrations of SERT, with the highest levels of radioactivity detected in the midbrain and thalamus, moderate levels in the hippocampus and striatum, and the low levels in the cortical regions. Pretreatment of the baboons with citalopram (4 and 6 mg/kg, intravenously) reduced regional brain distribution volumes to low and homogeneous levels, thus underlining the binding specificity of [(11)C]AFM for SERT in vivo. Analysis of blood samples indicated a fast metabolism of the radioligand into more hydrophilic components, as well as the absence of radiolabeled lipophilic metabolites. Regional time-activity curves were analyzed with kinetic and graphical analysis methods using the arterial concentrations as input function. Both methods returned similar kinetic parameters and documented high specific to nonspecific equilibrium coefficients (V(3)") for [(11)C]AFM. Identical V(3)" values were also derived with the simple reference tissue method, indicating that quantification of SERT with [(11)C]AFM can be achieved without arterial blood sampling. In summary, [(11)C]AFM appears to be an excellent PET radioligand for the visualization and reliable quantification of SERT in vivo.
Collapse
Affiliation(s)
- Yiyun Huang
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, 1051 Riverside Drive, Box 31, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Shiue CY, Welch MJ. Update on PET radiopharmaceuticals: life beyond fluorodeoxyglucose. Radiol Clin North Am 2004; 42:1033-53, viii. [PMID: 15488556 DOI: 10.1016/j.rcl.2004.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Twenty-eight years after its inception, 2-[18F]FDG- is still the most widely used radiopharmaceutical for PET studies, but numerous more specific radiotracers have been developed and applied in neuroscience and oncology. The advances in radiotracer chemistry, especially the nucleophilic substitution reaction, have played the pivotal role in synthesizing various no-carrier-added 18F-labeled radiotracers for PET studies of various receptor systems. This article lists some of the radiotracers that are available for PET studies in neuroscience and oncology. The prospects for developing other new radiotracers for imaging other organ diseases also seem to be promising.
Collapse
Affiliation(s)
- Chyng-Yann Shiue
- Department of Radiology, University of Pennsylvania School of Medicine, 1 Silverstein, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
18
|
Li Q, Ma L, Innis RB, Seneca N, Ichise M, Huang H, Laruelle M, Murphy DL. Pharmacological and genetic characterization of two selective serotonin transporter ligands: 2-[2-(dimethylaminomethylphenylthio)]-5-fluoromethylphenylamine (AFM) and 3-amino-4-[2-(dimethylaminomethyl-phenylthio)]benzonitrile (DASB). J Pharmacol Exp Ther 2003; 308:481-6. [PMID: 14610240 DOI: 10.1124/jpet.103.058636] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression and function of the serotonin transporter (SERT) is important in the regulation of mood and emotion. Determination of SERT alterations in physiological and pathological states is essential for understanding the role of SERT in mood regulation, and in the etiology and therapy of psychiatric disorders. Two SERT ligands, AFM ([(3)H]2-[2-(dimethylaminomethylphenylthio)]-5-fluoromethylphenylamine) and DASB ([(3)H]3-amino-4-[2-(dimethylaminomethylphenylthio)]benzonitrile), have recently been developed for positron emission tomography (PET) imaging. The aim of the present study was to determine the selectivity of these compounds for SERT. Autoradiography of AFM or DASB binding was compared in the brains of mice with genetically normal, diminished, or absent SERT. In addition, the pharmacodynamic profile of [(3)H]AFM was examined in the mouse brain. The distribution of [(3)H]AFM and [(3)H]DASB binding in the normal brains was consistent with that of previously studied serotonin reuptake inhibitors. Both ligands had negligible binding in the brain of SERT knockout mice, and binding was reduced approximately 50% in heterozygote SERT mice. The K(d) of [(3)H]AFM binding in the cortex and midbrain was 1.6 and 1.0 nM, respectively. Competition studies showed that [(3)H]AFM has very low affinity for norepinephrine and dopamine transporters as well as 5-HT receptors, including 5-HT(1A), 5-HT(1B), 5-HT(2A), and 5-HT(2C) receptors. In addition, fenfluramine showed a low capability to compete with [(3)H]AFM. The present results suggest that both AFM and DASB are highly selective SERT ligands potentially suitable for use in human PET studies of SERT.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|