1
|
Babadjanov F, Specht U, Lukasczyk T, Mayer B. Heat Accumulation-Induced Surface Structures at High Degrees of Laser Pulse Overlap on Ti6Al4V Surfaces by Femtosecond Laser Texturing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2498. [PMID: 36984383 PMCID: PMC10059092 DOI: 10.3390/ma16062498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
In this work, femtosecond laser pulses at high repetition rates were used to fabricate unique microstructures on the surface of Ti6Al4V. We investigated the influence of pulse overlap and laser repetition rates on structure formation. Laser texturing with a high degree of overlap resulted in melting of the material, leading to the formation of specific microstructures that can be used as cavities for drug delivery. The reason for melt formation is attributed to local heat accumulation at high repetition rates. Such structures can be fabricated on materials with low thermal conductivity, which prevent heat dissipation into the bulk of the material. The heat accumulation effect has also been demonstrated on steel, which also has low thermal conductivity.
Collapse
Affiliation(s)
- Farkhod Babadjanov
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Str. 12, 28359 Bremen, Germany
| | - Uwe Specht
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Str. 12, 28359 Bremen, Germany
| | - Thomas Lukasczyk
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Str. 12, 28359 Bremen, Germany
| | - Bernd Mayer
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Str. 12, 28359 Bremen, Germany
- Faculty of Production Engineering, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
2
|
Babaliari E, Kavatzikidou P, Mitraki A, Papaharilaou Y, Ranella A, Stratakis E. Combined effect of shear stress and laser-patterned topography on Schwann cell outgrowth: synergistic or antagonistic? Biomater Sci 2021; 9:1334-1344. [PMID: 33367414 DOI: 10.1039/d0bm01218a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although the peripheral nervous system exhibits a higher rate of regeneration than that of the central nervous system through a spontaneous regeneration after injury, the functional recovery is fairly infrequent and misdirected. Thus, the development of successful methods to guide neuronal outgrowth, in vitro, is of great importance. In this study, a precise flow controlled microfluidic system with specific custom-designed chambers, incorporating laser-microstructured polyethylene terephthalate (PET) substrates comprising microgrooves, was fabricated to assess the combined effect of shear stress and topography on Schwann cells' behavior. The microgrooves were positioned either parallel or perpendicular to the direction of the flow inside the chambers. Additionally, the cell culture results were combined with computational flow simulations to calculate accurately the shear stress values. Our results demonstrated that wall shear stress gradients may be acting either synergistically or antagonistically depending on the substrate groove orientation relative to the flow direction. The ability to control cell alignment in vitro could potentially be used in the fields of neural tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Eleftheria Babaliari
- Foundation for Research and Technology - Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.) Vassilika Vouton, 70013 Heraklion, Greece.
| | | | | | | | | | | |
Collapse
|
3
|
Wanderley DMS, Melo DF, Silva LM, Souza JWL, Pina HV, Lima DB, Amoah SKS, Borges SMP, Fook MVL, Moura RO, Lima RSC, Damasceno BPGL. Biocompatibility and mechanical properties evaluation of chitosan films containing an N-acylhydrazonic derivative. Eur J Pharm Sci 2020; 155:105547. [PMID: 32927070 DOI: 10.1016/j.ejps.2020.105547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/15/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
The N-acylhydrazone subunit is considered a privileged structure in medicinal chemistry for its importance in pharmaceutical research. Also, alternative methods to deliver these molecules have a great pharmaceutical interest. Therefore, the objective of this work was to encapsulate JR19, an N-acyl hydrazone subunit, into chitosan films and evaluate several properties relevant for transdermal delivery, including biocompatibility using in vitro tests. CHI + JR19 film demonstrates greater strength, flexibility, water absorption capacity, low contact angle and higher surface roughness when compared to CHI. Agar diffusion and 3-(4,5-dimethyl)-2,5-diphenyl tetrazolium bromide (MTT) assay show the absence of cytotoxicity and the higher cell viability for CHI + JR19 films. Therefore, the addition of JR19 in the system positively influenced mechanical properties and granted better compatibility with biological environments, showing the potential to treat skin inflammation.
Collapse
Affiliation(s)
- Davidson M S Wanderley
- Graduation Program in Pharmaceutical Sciences, Center for Biological and Health Sciences, State University of Paraíba (UEPB), Campina Grande, Brazil; Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Center for Biological and Health Sciences, State University of Paraíba (UEPB), Campina Grande, Paraíba, Brazil
| | - Demis F Melo
- Graduation Program in Pharmaceutical Sciences, Center for Biological and Health Sciences, State University of Paraíba (UEPB), Campina Grande, Brazil; Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Center for Biological and Health Sciences, State University of Paraíba (UEPB), Campina Grande, Paraíba, Brazil
| | - Laryssa M Silva
- Department of Pharmacy, State University of Paraiba (UEPB), Campina Grande, Paraíba, Brazil
| | - José W L Souza
- Northeastern Laboratory of Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, Brazil.
| | - Hermano V Pina
- Northeastern Laboratory of Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, Brazil
| | - Daniel B Lima
- Northeastern Laboratory of Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, Brazil
| | - Solomon K S Amoah
- Northeastern Laboratory of Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, Brazil
| | - Silvia M P Borges
- Northeastern Laboratory of Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, Brazil
| | - Marcus V L Fook
- Northeastern Laboratory of Evaluation and Development of Biomaterials (CERTBIO), Federal University of Campina Grande (UFCG), Campina Grande, Paraíba, Brazil.
| | - Ricardo O Moura
- Graduation Program in Pharmaceutical Sciences, Center for Biological and Health Sciences, State University of Paraíba (UEPB), Campina Grande, Brazil; Laboratory of Drug Development and Synthesis, State University of Paraíba (UEPB), João Pessoa, Paraíba, Brazil
| | - Rosemary S C Lima
- Department of Pharmacy, State University of Paraiba (UEPB), Campina Grande, Paraíba, Brazil
| | - Bolívar P G L Damasceno
- Graduation Program in Pharmaceutical Sciences, Center for Biological and Health Sciences, State University of Paraíba (UEPB), Campina Grande, Brazil; Laboratory of Development and Characterization of Pharmaceutical Products, Department of Pharmacy, Center for Biological and Health Sciences, State University of Paraíba (UEPB), Campina Grande, Paraíba, Brazil.
| |
Collapse
|
4
|
Fadel MA, Kamel NA, Darwish MM, El-Messieh SLA, Abd-El-Nour KN, Khalil WA. Dielectric properties and in vitro hemocompatibility of Nd:YAG laser-irradiated polyethylene terephthalate. Prog Biomater 2020; 9:107-114. [PMID: 32627137 PMCID: PMC7544811 DOI: 10.1007/s40204-020-00134-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/29/2020] [Indexed: 11/27/2022] Open
Abstract
Surface properties and morphology of the biomaterial play an essential role in the polymer-material interaction. In this work, laser surface modification of polyethylene terephthalate as a polymer with distinguished mechanical properties was carried out using (neodymium-doped yttrium aluminum garnet) Nd:YAG laser (1.064 µm) with different output power (0.3, 3, and 6 W). The structural, surface, and dielectric properties of PET before and after laser irradiation have been studied using attenuation total reflection-Fourier transform infrared (ATR-FTIR), dielectric spectroscopy (DS), scanning electron microscope (SEM), and contact angle measurements. Moreover, the anticoagulant properties of the laser-irradiated PET was determined through measuring the prothrombin time (PT), partial thromboplastin time (PTT), and international normalized ratio (INR). In vitro platelet adhesion test was used to assess the platelets adhered to the surface of the samples; in addition to hematological study. It was found that contact angle (θ) measurements of laser-irradiated PET samples decreased compared to the unirradiated PET. The irradiated samples at 0.3 W have the lowest contact angle which is a clear indication that surface treatment with Nd:YAG laser brought about improving the wettability of the polymer. From the dielectric measurements, both values of permittivity and dielectric loss decrease by increasing the laser power. The electrical conductivity decreases with increasing laser power, but still in the same order 10-14 S/cm. The decrease in electrical conductivity σ may be due to the cross-linking of the polymeric matrix which led to a decrease in the total polarity and consequently decrease in electrical conductivity. The magnitude of σ obtained is highly recommended to be used for insulator purposes in addition to the main purpose that is blood contact.
Collapse
Affiliation(s)
- Maie A Fadel
- Microwave Physics and Dielectrics Department, National Research Centre, Dokki, Cairo, Egypt
| | - Nagwa A Kamel
- Microwave Physics and Dielectrics Department, National Research Centre, Dokki, Cairo, Egypt.
| | - Mirhane M Darwish
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Salwa L Abd El-Messieh
- Microwave Physics and Dielectrics Department, National Research Centre, Dokki, Cairo, Egypt
| | - Kamal N Abd-El-Nour
- Microwave Physics and Dielectrics Department, National Research Centre, Dokki, Cairo, Egypt
| | - Wafaa A Khalil
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater 2019; 94:112-131. [PMID: 31128320 DOI: 10.1016/j.actbio.2019.05.045] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 12/16/2022]
Abstract
The main aim of this review study was to report the state of art on the nano-scale technological advancements of titanium implant surfaces to enhance the osseointegration process. Several methods of surface modification are chronologically described bridging ordinary methods (e.g. grit blasting and etching) and advanced physicochemical approaches such as 3D-laser texturing and biomimetic modification. Functionalization procedures by using proteins, peptides, and bioactive ceramics have provided an enhancement in wettability and bioactivity of implant surfaces. Furthermore, recent findings have revealed a combined beneficial effect of micro- and nano-scale modification and biomimetic functionalization of titanium surfaces. However, some technological developments of implant surfaces are not commercially available yet due to costs and a lack of clinical validation for such recent surfaces. Further in vitro and in vivo studies are required to endorse the use of enhanced biomimetic implant surfaces. STATEMENT OF SIGNIFICANCE: Grit-blasting followed by acid-etching is currently used for titanium implant modifications, although recent technological biomimetic physicochemical methods have revealed enhanced osteoconductive and anti-microbial outcomes. An improvement in wettability and bioactivity of titanium implant surfaces has been accomplished by combining micro and nano-scale modification and functionalization with protein, peptides, and bioactive compounds. Such morphological and chemical modification of the titanium surfaces induce the migration and differentiation of osteogenic cells followed by an enhancement of the mineral matrix formation that accelerate the osseointegration process. Additionally, the incorporation of bioactive molecules into the nanostructured surfaces is a promising strategy to avoid early and late implant failures induced by the biofilm accumulation.
Collapse
|
6
|
Cai J, Zhang L, Chen J, Chen S. Silk fibroin coating through EDC/NHS crosslink is an effective method to promote graft remodeling of a polyethylene terephthalate artificial ligament. J Biomater Appl 2019; 33:1407-1414. [PMID: 30885033 DOI: 10.1177/0885328219836625] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Anterior cruciate ligament reconstruction using polyethylene terephthalate artificial ligaments is one of the research hotspots in sports medicine but it is still challenging to achieve biological healing. The purpose of this study was to modify polyethylene terephthalate ligament with silk fibroin through ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) crosslink and to investigate the performance of graft remodeling in vitro and in vivo. After silk fibroin coating, changes in the surface properties of ligament were characterized by scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy and water contact angle measurements. The compatibility of polyethylene terephthalate ligament with silk fibroin coating was investigated in vitro. The results showed the silk fibroin coating significantly improved adhesion, proliferation and extracellular matrix secretion of fibroblast cells. Moreover, a rabbit anterior cruciate ligament reconstruction model was established to evaluate the effect of ligament with silk fibroin coating in vivo. The gross observation and histological results showed that the silk fibroin coating significantly inhibited inflammation response and promoted new tissue regeneration with fusiform cells infiltration in and around the graft. Furthermore, the expressions of collagen I protein and mRNA in the silk fibroin-coated polyethylene terephthalate group were much higher than those in the control group according to the immunohistochemical and real-time polymerase chain reaction results. Therefore, silk fibroin coating through EDC/NHS crosslink promotes the biocompatibility and remodeling process of polyethylene terephthalate artificial ligament in vitro and in vivo. It can be considered as a potential solution to the problem of poor remodeling of artificial ligaments after anterior cruciate ligament reconstruction in the clinical applications.
Collapse
Affiliation(s)
- Jiangyu Cai
- 1 Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Li Zhang
- 2 Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Jun Chen
- 1 Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Shiyi Chen
- 1 Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
7
|
Lavieja C, Oriol L, Peña JI. Creation of Superhydrophobic and Superhydrophilic Surfaces on ABS Employing a Nanosecond Laser. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2547. [PMID: 30558144 PMCID: PMC6316655 DOI: 10.3390/ma11122547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 11/17/2022]
Abstract
A nanosecond green laser was employed to obtain both superhydrophobic and superhydrophilic surfaces on a white commercial acrylonitrile-butadiene-styrene copolymer (ABS). These wetting behaviors were directly related to a laser-induced superficial modification. A predefined pattern was not produced by the laser, rather, the entire surface was covered with laser pulses at 1200 DPI by placing the sample at different positions along the focal axis. The changes were related to the laser fluence used in each case. The highest fluence, on the focal position, induced a drastic heating of the material surface, and this enabled the melted material to flow, thus leading to an almost flat superhydrophilic surface. By contrast, the use of a lower fluence by placing the sample 0.8 µm out of the focal position led to a poor material flow and a fast cooling that froze in a rugged superhydrophobic surface. Contact angles higher than 150° and roll angles of less than 10° were obtained. These wetting behaviors were stable over time.
Collapse
Affiliation(s)
- Cristian Lavieja
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC Dpto. Ciencia y Tecnología de Materiales y Fluidos Maria de Luna 3, 50018 Zaragoza, Spain.
| | - Luis Oriol
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC Dpto. Química Orgánica-Facultad de Ciencias Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - José-Ignacio Peña
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC Dpto. Ciencia y Tecnología de Materiales y Fluidos Maria de Luna 3, 50018 Zaragoza, Spain.
| |
Collapse
|
8
|
Babaliari E, Kavatzikidou P, Angelaki D, Chaniotaki L, Manousaki A, Siakouli-Galanopoulou A, Ranella A, Stratakis E. Engineering Cell Adhesion and Orientation via Ultrafast Laser Fabricated Microstructured Substrates. Int J Mol Sci 2018; 19:E2053. [PMID: 30011926 PMCID: PMC6073590 DOI: 10.3390/ijms19072053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/02/2022] Open
Abstract
Cell responses depend on the stimuli received by the surrounding extracellular environment, which provides the cues required for adhesion, orientation, proliferation, and differentiation at the micro and the nano scales. In this study, discontinuous microcones on silicon (Si) and continuous microgrooves on polyethylene terephthalate (PET) substrates were fabricated via ultrashort pulsed laser irradiation at various fluences, resulting in microstructures with different magnitudes of roughness and varying geometrical characteristics. The topographical models attained were specifically developed to imitate the guidance and alignment of Schwann cells for the oriented axonal regrowth that occurs in nerve regeneration. At the same time, positive replicas of the silicon microstructures were successfully reproduced via soft lithography on the biodegradable polymer poly(lactide-co-glycolide) (PLGA). The anisotropic continuous (PET) and discontinuous (PLGA replicas) microstructured polymeric substrates were assessed in terms of their influence on Schwann cell responses. It is shown that the micropatterned substrates enable control over cellular adhesion, proliferation, and orientation, and are thus useful to engineer cell alignment in vitro. This property is potentially useful in the fields of neural tissue engineering and for dynamic microenvironment systems that simulate in vivo conditions.
Collapse
Affiliation(s)
- Eleftheria Babaliari
- Foundation for Research and Technology-Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vassilika Vouton, 711 10 Heraklion, Greece.
- Department of Materials Science and Technology, University of Crete, 70013 Crete, Greece.
| | - Paraskevi Kavatzikidou
- Foundation for Research and Technology-Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vassilika Vouton, 711 10 Heraklion, Greece.
| | - Despoina Angelaki
- Foundation for Research and Technology-Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vassilika Vouton, 711 10 Heraklion, Greece.
- Department of Physics, University of Crete, 70013 Crete, Greece.
| | - Lefki Chaniotaki
- Department of Materials Science and Technology, University of Crete, 70013 Crete, Greece.
| | - Alexandra Manousaki
- Foundation for Research and Technology-Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vassilika Vouton, 711 10 Heraklion, Greece.
| | | | - Anthi Ranella
- Foundation for Research and Technology-Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vassilika Vouton, 711 10 Heraklion, Greece.
| | - Emmanuel Stratakis
- Foundation for Research and Technology-Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vassilika Vouton, 711 10 Heraklion, Greece.
- Department of Materials Science and Technology, University of Crete, 70013 Crete, Greece.
| |
Collapse
|
9
|
Hu ZL, Chen XY. Fabrication of Polyethylene Terephthalate Microfluidic Chip Using CO2 Laser System. INT POLYM PROC 2018. [DOI: 10.3139/217.3447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
CO2 laser machining technology is a wide and low-cost method for fabrication of microfluidic chips on polyethylene terephthalate (PET). In this paper, the influence of CO2 laser parameters including laser power and laser moving velocity on the depth and width of PET microchannel are studied. Laser power is set from 4 W to 20 W and laser moving velocity is set from 5 mm/s to 25 mm/s in the experiment. Compared with experimental results, some rules for the depth and width on laser parameters are obtained. The depth and width of the microchannel increase with the increase of laser power at the same laser moving velocity. However, the depth and width of the microchannel first increase and then decrease with the increase of laser moving velocity at the same laser power. The PET microfluidic chip is fabricated by a hot bonding machine.
Collapse
Affiliation(s)
- Z. L. Hu
- Faculty of Mechanical Engineering and Automation , Liaoning University of Technology, Jinzhou , PRC
| | - X. Y. Chen
- Faculty of Mechanical Engineering and Automation , Liaoning University of Technology, Jinzhou , PRC
| |
Collapse
|
10
|
Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology. Int J Mol Sci 2017; 18:ijms18020419. [PMID: 28212308 PMCID: PMC5343953 DOI: 10.3390/ijms18020419] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 01/24/2023] Open
Abstract
Antimicrobial biocompatible polymers form a group of highly desirable materials in medicinal technology that exhibit interesting thermal and mechanical properties, and high chemical resistance. There are numerous types of polymers with antimicrobial activity or antimicrobial properties conferred through their proper modification. In this review, we focus on the second type of polymers, especially those whose antimicrobial activity is conferred by nanotechnology. Nanotechnology processing is a developing area that exploits the antibacterial effects of broad-scale compounds, both organic and inorganic, to form value-added medical devices. This work gives an overview of nanostructured antimicrobial agents, especially silver ones, used together with biocompatible polymers as effective antimicrobial composites in healthcare. The bactericidal properties of non-conventional antimicrobial agents are compared with those of conventional ones and the advantages and disadvantages are discussed.
Collapse
|
11
|
Polívková M, Štrublová V, Hubáček T, Rimpelová S, Švorčík V, Siegel J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 72:512-518. [PMID: 28024615 DOI: 10.1016/j.msec.2016.11.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/03/2016] [Accepted: 11/21/2016] [Indexed: 01/04/2023]
Abstract
Polymeric biomaterials with antibacterial effects are requisite materials in the fight against hospital-acquired infections. An effective way for constructing a second generation of antibacterials is to exploit the synergic effect of (i) patterning of polymeric materials by a laser, and (ii) deposition of noble metals in their nanostructured forms. With this approach, we prepared highly-ordered periodic structures (ripples) on polyethylene naphthalate (PEN). Subsequent deposition of Ag under the glancing angle of 70° resulted in the formation of self-organized, fully separated Ag nanowire (Ag NW) arrays homogenously distributed on PEN surface. Surface properties of these samples were characterized by AFM and XPS. Vacuum evaporation of Ag at the glancing angle geometry of 70° caused that Ag NWs were formed predominantly from one side of the ripples, near to the top of the ridges. The release of Ag+ ions into physiological solution was studied by ICP-MS. The results of antibacterial tests predetermine these novel structures as promising materials able to fight against a broad spectrum of microorganisms, however, their observed cytotoxicity warns about their applications in the contact with living tissues.
Collapse
Affiliation(s)
- M Polívková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic.
| | - V Štrublová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - T Hubáček
- Institute of Hydrobiology, Biology Centre of the AS CR, 370 05 Ceske Budejovice, Czech Republic
| | - S Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - V Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - J Siegel
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| |
Collapse
|
12
|
Waugh DG, Hussain I, Lawrence J, Smith GC, Cosgrove D, Toccaceli C. In vitro mesenchymal stem cell response to a CO2 laser modified polymeric material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:727-736. [PMID: 27287173 DOI: 10.1016/j.msec.2016.05.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/21/2016] [Accepted: 05/15/2016] [Indexed: 11/25/2022]
Abstract
With an ageing world population it is becoming significantly apparent that there is a need to produce implants and platforms to manipulate stem cell growth on a pharmaceutical scale. This is needed to meet the socio-economic demands of many countries worldwide. This paper details one of the first ever studies in to the manipulation of stem cell growth on CO2 laser surface treated nylon 6,6 highlighting its potential as an inexpensive platform to manipulate stem cell growth on a pharmaceutical scale. Through CO2 laser surface treatment discrete changes to the surfaces were made. That is, the surface roughness of the nylon 6,6 was increased by up to 4.3μm, the contact angle was modulated by up to 5° and the surface oxygen content increased by up to 1atom %. Following mesenchymal stem cell growth on the laser treated samples, it was identified that CO2 laser surface treatment gave rise to an enhanced response with an increase in viable cell count of up to 60,000cells/ml when compared to the as-received sample. The effect of surface parameters modified by the CO2 laser surface treatment on the mesenchymal stem cell response is also discussed along with potential trends that could be identified to govern the mesenchymal stem cell response.
Collapse
Affiliation(s)
- D G Waugh
- Laser Engineering and Manufacturing Research Centre, Faculty of Science and Engineering, University of Chester, Chester CH1 4BJ, UK.
| | - I Hussain
- School of Life Sciences, Brayford Pool, University of Lincoln, Lincoln LN6 7TS, UK
| | - J Lawrence
- Laser Engineering and Manufacturing Research Centre, Faculty of Science and Engineering, University of Chester, Chester CH1 4BJ, UK
| | - G C Smith
- Laser Engineering and Manufacturing Research Centre, Faculty of Science and Engineering, University of Chester, Chester CH1 4BJ, UK
| | - D Cosgrove
- School of Life Sciences, Brayford Pool, University of Lincoln, Lincoln LN6 7TS, UK
| | - C Toccaceli
- Laser Engineering and Manufacturing Research Centre, Faculty of Science and Engineering, University of Chester, Chester CH1 4BJ, UK
| |
Collapse
|
13
|
Vellayappan MV, Jaganathan SK, Muhamad II. Unravelling the potential of nitric acid as a surface modifier for improving the hemocompatibility of metallocene polyethylene for blood contacting devices. PeerJ 2016; 4:e1388. [PMID: 26819837 PMCID: PMC4727976 DOI: 10.7717/peerj.1388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/16/2015] [Indexed: 11/20/2022] Open
Abstract
Design of blood compatible surfaces is obligatory to minimize platelet surface interactions and improve the thromboresistance of foreign surfaces when they are utilized as biomaterials particularly for blood contacting devices. Pure metallocene polyethylene (mPE) and nitric acid (HNO3) treated mPE antithrombogenicity and hydrophilicity were investigated. The contact angle of the mPE treated with HNO3 decreased. Surface of mPE and HNO3 treated mPE investigated with FTIR revealed no major changes in its functional groups. 3D Hirox digital microscopy, SEM and AFM images show increased porosity and surface roughness. Blood coagulation assays prothrombin time (PT) and activated partial thromboplastin time (APTT) were delayed significantly (P < 0.05) for HNO3 treated mPE. Hemolysis assay and platelet adhesion of the treated surface resulted in the lysis of red blood cells and platelet adherence, respectively indicating improved hemocompatibility of HNO3 treated mPE. To determine that HNO3 does not deteriorate elastic modulus of mPE, the elastic modulus of mPE and HNO3 treated mPE was compared and the result shows no significant difference. Hence, the overall observation suggests that the novel HNO3 treated mPE may hold great promises to be exploited for blood contacting devices like grafts, catheters, and etc.
Collapse
Affiliation(s)
- Muthu Vignesh Vellayappan
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Malaysia
| | - Saravana Kumar Jaganathan
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Malaysia
| | - Ida Idayu Muhamad
- IJN-UTM Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Malaysia
| |
Collapse
|
14
|
Rashid AN, Tsuru K, Ishikawa K. Effect of calcium-ozone treatment on chemical and biological properties of polyethylene terephthalate. J Biomed Mater Res B Appl Biomater 2014; 103:853-60. [DOI: 10.1002/jbm.b.33260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 06/12/2014] [Accepted: 07/15/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Ahmed Nafis Rashid
- Department of Biomaterials, Faculty of Dental Science; Kyushu University; 3-1-1 Maidashi Higashi-ku Fukuoka 812-8582 Japan
| | - Kanji Tsuru
- Department of Biomaterials, Faculty of Dental Science; Kyushu University; 3-1-1 Maidashi Higashi-ku Fukuoka 812-8582 Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science; Kyushu University; 3-1-1 Maidashi Higashi-ku Fukuoka 812-8582 Japan
| |
Collapse
|
15
|
Enhanced blood compatibility of metallocene polyethylene subjected to hydrochloric acid treatment for cardiovascular implants. BIOMED RESEARCH INTERNATIONAL 2014; 2014:963149. [PMID: 24955370 PMCID: PMC4053302 DOI: 10.1155/2014/963149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/27/2014] [Accepted: 04/06/2014] [Indexed: 11/18/2022]
Abstract
Blood compatibility of metallocene polyethylene (mPE) was investigated after modifying the surface using hydrochloric acid. Contact angle of the mPE exposed to HCl poses a decrease in its value which indicates increasing wettability and better blood compatibility. Surface of mPE analyzed by using FTIR revealed no significant changes in its functional groups after treatment. Furthermore, scanning electron microscope images supported the increasing wettability through the modifications like pit formations and etching on the acid rendered surface. To evaluate the effect of acid treatment on the coagulation cascade, prothrombin time (PT) and activated partial thromboplastin time (APTT) were measured. Both PT and APTT were delayed significantly (P < 0.05) after 60 min exposure implying improved blood compatibility of the surfaces. Hemolysis assay of the treated surface showed a remarkable decrease in the percentage of lysis of red blood cells when compared with untreated surface. Moreover, platelet adhesion assay demonstrated that HCl exposed surfaces deter the attachment of platelets and thereby reduce the chances of activation of blood coagulation cascade. These results confirmed the enhanced blood compatibility of mPE after HCl exposure which can be utilized for cardiovascular implants like artificial vascular prostheses, implants, and various blood contacting devices.
Collapse
|
16
|
Microwave-assisted surface modification of metallocene polyethylene for improving blood compatibility. BIOMED RESEARCH INTERNATIONAL 2013; 2013:253473. [PMID: 23841059 PMCID: PMC3694368 DOI: 10.1155/2013/253473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/26/2013] [Indexed: 11/17/2022]
Abstract
A wide number of polymers are being used for various medical applications. In this work, microwave-assisted surface modification of metallocene polyethylene (mPE) was studied. FTIR analysis showed no significant changes in the chemical groups after treatment. Contact angle analysis revealed a decrease in contact angle of the treated samples insinuating increasing hydrophilicity and better biocompatibility. Qualitative analysis of treated samples using scanning electron microscope (SEM) depicted increasing surface roughness and holes formation further corroborating the results. Coagulation assays performed for estimating prothrombin time (PT) and activated partial thromboplastin time (APTT) showed an increase in the clotting time which further confirmed the improved blood compatibility of the microwave-treated surfaces. Further, the extent of hemolysis in the treated sample was lower than the untreated one. Hence, microwave-assisted surface modification of mPE resulted in enhanced blood compatibility. Improved blood compatibility of mPE may be exploited for fabrication of artificial vascular prostheses, implants, and various blood contacting devices.
Collapse
|
17
|
Mirzadeh H, Moghadam EV, Mivehchi H. Laser-modified nanostructures of PET films and cell behavior. J Biomed Mater Res A 2011; 98:63-71. [PMID: 21523906 DOI: 10.1002/jbm.a.33097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/08/2011] [Accepted: 03/03/2011] [Indexed: 12/31/2022]
Affiliation(s)
- Hamid Mirzadeh
- Department of Polymer Engineering, Amirkabir University of Technology, P.O. Box 15875/4413, Tehran-159163/4311, Iran.
| | | | | |
Collapse
|
18
|
Waugh D, Lawrence J, Morgan D, Thomas C. Interaction of CO2 laser-modified nylon with osteoblast cells in relation to wettability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2009.07.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Ramazani S.A. A, Mousavi SA, Seyedjafari E, Poursalehi R, Sareh S, Silakhori K, Poorfatollah AA, Shamkhali AN. Polycarbonate surface cell's adhesion examination after Nd:YAG laser irradiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Rebollar E, Frischauf I, Olbrich M, Peterbauer T, Hering S, Preiner J, Hinterdorfer P, Romanin C, Heitz J. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials 2008; 29:1796-806. [PMID: 18237776 DOI: 10.1016/j.biomaterials.2007.12.039] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 12/22/2007] [Indexed: 12/18/2022]
Abstract
Biomaterial surface chemistry and nanoscale topography are important for many potential applications in medicine and biotechnology as they strongly influence cell function, adhesion and proliferation. In this work, we present periodic surface structures generated by linearly polarized KrF laser light (248 nm) on polystyrene (PS) foils. These structures have a periodicity of 200-430 nm and a depth of 30-100 nm, depending on the angle of incidence of the laser beam. The changes in surface topography and chemistry were analysed by atomic force microscopy (AFM), advancing water contact-angle measurements, Fourier-transform infrared spectroscopy using an attenuated total reflection device (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). We show that the surface laser modification results in a significantly enhanced adhesion and proliferation of human embryonic kidney cells (HEK-293) compared to the unmodified polymer foil. Furthermore, we report on the alignment of HEK-293 cells, Chinese hamster ovary (CHO-K1) cells and skeletal myoblasts along the direction of the structures. The results indicate that the presence of nanostructures on the substrates can guide cell alignment along definite directions, and more importantly, in our opinion, that this alignment is only observed when the periodicity is above a critical periodicity value that is cell-type specific.
Collapse
Affiliation(s)
- Esther Rebollar
- Institute of Applied Physics, Johannes Kepler University Linz, Linz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mirzadeh H, Bagheri S. Comparison of the effect of excimer laser irradiation and RF plasma treatment on polystyrene surface. Radiat Phys Chem Oxf Engl 1993 2007. [DOI: 10.1016/j.radphyschem.2007.02.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Almazán-Almazán MC, Paredes JI, Pérez-Mendoza M, Domingo-García M, López-Garzón FJ, Martínez-Alonso A, Tascón JMD. Effects of oxygen and carbon dioxide plasmas on the surface of poly(ethylene terephthalate). J Colloid Interface Sci 2006; 287:57-66. [PMID: 15914148 DOI: 10.1016/j.jcis.2005.01.072] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 01/11/2005] [Accepted: 01/24/2005] [Indexed: 10/25/2022]
Abstract
Poly(ethylene terephthalate) was exposed to oxygen and carbon dioxide plasmas for different periods of time. The surface-modified samples were characterized by infrared spectroscopy, atomic force microscopy, and inverse gas-solid chromatography. The main difference between both types of plasma was connected to the time scale of degradation, which was much faster when using oxygen plasma. Aggregate globular features were produced by different treatments due to chain scission and further recombination of evolved products. Oxygenated functionalities were introduced in significant amounts after long exposure times to the oxygen plasma. As a consequence, the specific component of the surface free energy was clearly observed to increase after these long treatments.
Collapse
|
23
|
Zhu J, Marchant RE. Dendritic saccharide surfactant polymers as antifouling interface materials to reduce platelet adhesion. Biomacromolecules 2006; 7:1036-41. [PMID: 16602718 DOI: 10.1021/bm050611p] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we report on the synthesis of dendritic saccharide surfactant polymers as antifouling interface materials to reduce platelet adhesion. An acetal-protected poly(amidoamine) (PAMAM) dendron (5, G = 2) was first synthesized by using aminoacetaldehyde dimethyl acetal (1) as the starting material to provide a monovalent focal structure with dimethyl acetal-protected aldehyde functionality. Maltose dendron (M4, 6) was obtained by reacting the peripheral amine groups of acetal-dendron (5) with maltonolactone. The dendritic surfactant polymers (9) were then synthesized via a two-step method by sequential addition of maltose dendron and hexanal to react with the amine groups on the poly(vinylamine) (PVAm) backbone. Surface activity of the amphiphilic glycopolymers at the air/water interface was demonstrated by reduction in water surface tension. Adsorption of the amphiphilic glycopolymers at the solid/water interface was examined on octadecyltrichlorosilane (OTS)-coated coverslips by water contact angle measurements. A nanoscale understanding of surface-induced self-assembly of the dendritic surfactant polymer on highly oriented pyrolytic graphite (HOPG) was gained using AFM operated in fluid tapping mode. A lateral ordering of adsorbing surfactant polymer was visualized with a pattern in strands 60 degrees out of alignment. The static platelet adhesion tests show that the hexyl side chains can facilitate adsorption of the surfactant polymers onto hydrophobic substrates, while the maltose dendron side chains can provide a dense canopy of protective glycocalyx-like layer as an antifouling interface to reduce platelet adhesion.
Collapse
Affiliation(s)
- Junmin Zhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
24
|
Almazán-Almazán MC, Paredes JI, Pérez-Mendoza M, Domingo-García M, López-Garzón FJ, Martínez-Alonso A, Tascón JMD. Surface characterisation of plasma-modified poly(ethylene terephthalate). J Colloid Interface Sci 2006; 293:353-63. [PMID: 16081090 DOI: 10.1016/j.jcis.2005.06.073] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 06/07/2005] [Accepted: 06/27/2005] [Indexed: 11/17/2022]
Abstract
This paper reports the modifications produced by nitrogen and helium cold plasmas on the surface of PET. The changes have been studied by diffuse reflectance Fourier transform spectroscopy (DRIFTS), atomic force microscopy (AFM) and inverse gas-solid chromatography (IGSC). Nitrogen and oxygen atoms seem to appear on the surface of PET as a consequence of the exposure to the atmosphere after the treatments with plasmas. AFM shows that both plasmas altered in different extent the surface of PET as they break the polymer chains producing low molecular products which appear as bumps on the surface. The surface area and the porosity of PET does not change by plasma treatments even after 15 min. The dispersive component of the surface free energy, gamma(s)(d), decreases after long treatments with nitrogen plasma whereas it remains almost unchanged after long treatment with helium plasma.
Collapse
|
25
|
Hao L, Lawrence J, Chian KS. Osteoblast cell adhesion on a laser modified zirconia based bioceramic. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2005; 16:719-26. [PMID: 15965741 DOI: 10.1007/s10856-005-2608-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 11/18/2004] [Indexed: 05/03/2023]
Abstract
Due to their attractive mechanical properties, bioinert zirconia bioceramics are frequently used in the high load-bearing sites such as orthopaedic and dental implants, but they are chemically inert and do not naturally form a direct bond with bone and thus do not provide osseointegration. A CO2 laser was used to modify the surface properties with the aim to achieve osseointegration between bioinert zirconia and bone. The surface characterisation revealed that the surface roughness decreased and solidified microstructure occurred after laser treatment. Higher wettability characteristics generated by the CO2 laser treatment was primarily due to the enhancement of the surface energy, particularly the polar component, determined by microstructural changes. An in vitro test using human fetal osteoblast cells (hFOB) revealed that osteoblast cells adhere better on the laser treated sample than the untreated sample. The change in the wettability characteristics could be the main mechanism governing the osteoblast cell adhesion on the YPSZ.
Collapse
Affiliation(s)
- L Hao
- Wolfson School of Mechanical and Manufacturing Engineering, Rapid Manufacturing Research Group, Loughborough University, LE11 3TU, UK.
| | | | | |
Collapse
|
26
|
Hao L, Lawrence J, Chian KS. Effects of CO2 laser irradiation on the surface properties of magnesia-partially stabilised zirconia (MgO-PSZ) bioceramic and the subsequent improvements in human osteoblast cell adhesion. J Biomater Appl 2005; 19:81-105. [PMID: 15381783 DOI: 10.1177/0885328204043546] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to acquire the surface properties favouring osseo-integration at the implant and bone interface, human foetal osteoblast cells (hFOB) were used in an in vitro test to examine changes in cell adhesion on a magnesia-partially stabilised zirconia (MgO-PSZ) bioceramic after CO(2) laser treatment. The surface roughness, microstructure, crystal size and surface energy of untreated and CO(2) laser-treated MgO-PSZ were fully characterised. The in vitro cell evaluation revealed a more favourable cell response on the CO(2) laser-treated MgO-PSZ than on the untreated sample. After 24-h cell incubation, no cell was observed on the MgO-PSZ, whereas a few cells attached on the CO(2) laser-treated MgO-PSZandshowedwellspreadandgood attachment. Moreover, the cell coverage density indicating cell proliferation generally increases with CO(2) laser power densities applied in the experiments. The enhancement of the surface energy of the MgO-PSZ, especially its polar component caused by the CO(2) laser treatment, was found to play a significant role in the initial cell attaching, thus enhancing the cell growth. Moreover, the change in topography induced by the CO(2) laser treatment was identified as one of the factors influencing the hFOB cell response.
Collapse
Affiliation(s)
- L Hao
- Manufacturing Engineering Division, School of Mechanical & Production Engineering, Nanyang Technological University (NTU), Nanyang Avenue, Singapore 639798.
| | | | | |
Collapse
|