1
|
Rogdakis T, Charou D, Latorrata A, Papadimitriou E, Tsengenes A, Athanasiou C, Papadopoulou M, Chalikiopoulou C, Katsila T, Ramos I, Prousis KC, Wade RC, Sidiropoulou K, Calogeropoulou T, Gravanis A, Charalampopoulos I. Development and Biological Characterization of a Novel Selective TrkA Agonist with Neuroprotective Properties against Amyloid Toxicity. Biomedicines 2022; 10:614. [PMID: 35327415 PMCID: PMC8945229 DOI: 10.3390/biomedicines10030614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins are growth factors that exert important neuroprotective effects by preventing neuronal death and synaptic loss. Nerve Growth Factor (NGF) acts through the activation of its high-affinity, pro-survival TrkA and low-affinity, pro-apoptotic p75NTR receptors. NGF has been shown to slow or prevent neurodegenerative signals in Alzheimer's Disease (AD) progression. However, its low bioavailability and its blood-brain-barrier impermeability limit the use of NGF as a potential therapeutic agent against AD. Based on our previous findings on synthetic dehydroepiandrosterone derivatives, we identified a novel NGF mimetic, named ENT-A013, which selectively activates TrkA and exerts neuroprotective, anti-amyloid-β actions. We now report the chemical synthesis, in silico modelling, metabolic stability, CYP-mediated reaction phenotyping and biological characterization of ENT-A013 under physiological and neurodegenerative conditions. We show that ENT-A013 selectively activates the TrkA receptor and its downstream kinases Akt and Erk1/2 in PC12 cells, protecting these cells from serum deprivation-induced cell death. Moreover, ENT-A013 promotes survival of primary Dorsal Root Ganglion (DRG) neurons upon NGF withdrawal and protects hippocampal neurons against Amyloid β-induced apoptosis and synaptic loss. Furthermore, this neurotrophin mimetic partially restores LTP impairment. In conclusion, ENT-A013 represents a promising new lead molecule for developing therapeutics against neurodegenerative disorders, such as Alzheimer's Disease, selectively targeting TrkA-mediated pro-survival signals.
Collapse
Affiliation(s)
- Thanasis Rogdakis
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Despoina Charou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Alessia Latorrata
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Eleni Papadimitriou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Alexandros Tsengenes
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; (A.T.); (C.A.); (R.C.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Christina Athanasiou
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; (A.T.); (C.A.); (R.C.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Marianna Papadopoulou
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Constantina Chalikiopoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Theodora Katsila
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Isbaal Ramos
- Innovative Technologies in Biological Systems SL (INNOPROT), 48160 Bizkaia, Spain;
| | - Kyriakos C. Prousis
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany; (A.T.); (C.A.); (R.C.W.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
| | - Kyriaki Sidiropoulou
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
- Department of Biology, University of Crete, 71113 Heraklion, Greece
| | - Theodora Calogeropoulou
- National Hellenic Research Foundation, Institute of Chemical Biology, 11635 Athens, Greece; (A.L.); (C.C.); (T.K.); (K.C.P.); (T.C.)
| | - Achille Gravanis
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece; (T.R.); (D.C.); (E.P.); (M.P.); (A.G.)
- Foundation for Research & Technology-Hellas (IMBB-FORTH), Institute of Molecular Biology & Biotechnology, 70013 Heraklion, Greece;
| |
Collapse
|
2
|
Oxidative Stress and Beta Amyloid in Alzheimer's Disease. Which Comes First: The Chicken or the Egg? Antioxidants (Basel) 2021; 10:antiox10091479. [PMID: 34573112 PMCID: PMC8468973 DOI: 10.3390/antiox10091479] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of Alzheimer's disease involves β amyloid (Aβ) accumulation known to induce synaptic dysfunction and neurodegeneration. The brain's vulnerability to oxidative stress (OS) is considered a crucial detrimental factor in Alzheimer's disease. OS and Aβ are linked to each other because Aβ induces OS, and OS increases the Aβ deposition. Thus, the answer to the question "which comes first: the chicken or the egg?" remains extremely difficult. In any case, the evidence for the primary occurrence of oxidative stress in AD is attractive. Thus, evidence indicates that a long period of gradual oxidative damage accumulation precedes and results in the appearance of clinical and pathological AD symptoms, including Aβ deposition, neurofibrillary tangle formation, metabolic dysfunction, and cognitive decline. Moreover, oxidative stress plays a crucial role in the pathogenesis of many risk factors for AD. Alzheimer's disease begins many years before its symptoms, and antioxidant treatment can be an important therapeutic target for attacking the disease.
Collapse
|
3
|
Cioffi F, Adam RHI, Broersen K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease. J Alzheimers Dis 2020; 72:981-1017. [PMID: 31744008 PMCID: PMC6971833 DOI: 10.3233/jad-190863] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder that can cause dementia in elderly over 60 years of age. One of the disease hallmarks is oxidative stress which interconnects with other processes such as amyloid-β deposition, tau hyperphosphorylation, and tangle formation. This review discusses current thoughts on molecular mechanisms that may relate oxidative stress to Alzheimer’s disease and identifies genetic factors observed from in vitro, in vivo, and clinical studies that may be associated with Alzheimer’s disease-related oxidative stress.
Collapse
Affiliation(s)
- Federica Cioffi
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
4
|
Jadiya P, Kolmetzky DW, Tomar D, Di Meco A, Lombardi AA, Lambert JP, Luongo TS, Ludtmann MH, Praticò D, Elrod JW. Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer's disease. Nat Commun 2019; 10:3885. [PMID: 31467276 PMCID: PMC6715724 DOI: 10.1038/s41467-019-11813-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 08/05/2019] [Indexed: 12/22/2022] Open
Abstract
Impairments in neuronal intracellular calcium (iCa2+) handling may contribute to Alzheimer’s disease (AD) development. Metabolic dysfunction and progressive neuronal loss are associated with AD progression, and mitochondrial calcium (mCa2+) signaling is a key regulator of both of these processes. Here, we report remodeling of the mCa2+ exchange machinery in the prefrontal cortex of individuals with AD. In the 3xTg-AD mouse model impaired mCa2+ efflux capacity precedes neuropathology. Neuronal deletion of the mitochondrial Na+/Ca2+ exchanger (NCLX, Slc8b1 gene) accelerated memory decline and increased amyloidosis and tau pathology. Further, genetic rescue of neuronal NCLX in 3xTg-AD mice is sufficient to impede AD-associated pathology and memory loss. We show that mCa2+ overload contributes to AD progression by promoting superoxide generation, metabolic dysfunction and neuronal cell death. These results provide a link between the calcium dysregulation and metabolic dysfunction hypotheses of AD and suggest mCa2+ exchange as potential therapeutic target in AD. Dysregulation of intracellular calcium is reported in Alzheimer’s disease. Here the authors show that loss of the mitochondrial Na+ /Ca2+ exchanger, NCLX – primary route of mitochondrial calcium efflux, precedes neuronal pathology in experimental models and contributes to Alzheimer’s disease progression.
Collapse
Affiliation(s)
- Pooja Jadiya
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Devin W Kolmetzky
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Dhanendra Tomar
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Antonio Di Meco
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Alzheimer's Center at Temple, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Alyssa A Lombardi
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Jonathan P Lambert
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Timothy S Luongo
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Marthe H Ludtmann
- Royal Veterinary College, 4 Royal College Street, Kings Cross, London, UK
| | - Domenico Praticò
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.,Alzheimer's Center at Temple, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
5
|
Dong YT, Cao K, Tan LC, Wang XL, Qi XL, Xiao Y, Guan ZZ. Stimulation of SIRT1 Attenuates the Level of Oxidative Stress in the Brains of APP/PS1 Double Transgenic Mice and in Primary Neurons Exposed to Oligomers of the Amyloid-β Peptide. J Alzheimers Dis 2019; 63:283-301. [PMID: 29614660 DOI: 10.3233/jad-171020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the study, we examined whether the silent information regulator 1 (SIRT1) can attenuate oxidative stress in the brains of mice carrying the APP/PS1 double mutation and/or in primary neonatal rat neurons exposed to oligomers of amyloid-β peptide (AβOs). Starting at 4 or 8 months of age, the transgenic mice were treated with resveratrol (RSV, a stimulator of SIRT1) or suramin (an inhibitor) (each 20 mg/kg BW/day) for two months. The primary neurons were exposed to AβOs (0.5 μM) for 48 h and thereafter RSV (20 μM) or suramin (300 mg/ml) for 24 h. Cell viability was assessed by the CCK-8 assay; SIRT1 protein and mRNA determined by western blotting and real-time PCR, respectively; senile plaques examined immunohistochemically; ROS monitored by flow cytometry; and the contents of OH-, H2O2, O2·-, and MDA, and the activities of SOD and GSH-Px measured by standard biochemical procedures. In comparison to wild-type mice or untreated primary neurons, the expression of SIRT1 was significantly lower in the brains of APP/PS1 mice or neurons exposed to AβOs. In these same systems, increased numbers of senile plaques and a high level of oxidative stress were apparent. Interestingly, these two latter changes were attenuated by treatment with RSV, but enhanced by suramin. These findings indicate that SIRT1 may be neuroprotective.
Collapse
Affiliation(s)
- Yang-Ting Dong
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Kun Cao
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Long-Chun Tan
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Medical Molecular Biology, Guiyang, P. R. China
| | - Xiao-Ling Wang
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Medical Molecular Biology, Guiyang, P. R. China
| | - Xiao-Lan Qi
- Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Medical Molecular Biology, Guiyang, P. R. China
| | - Yan Xiao
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Zhi-Zhong Guan
- Department of Pathology at the Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Endemic and Ethnic Diseases of the Ministry of Education, Guizhou Medical University, Guiyang, P. R. China.,Key Laboratory of Medical Molecular Biology, Guiyang, P. R. China
| |
Collapse
|
6
|
Kim W, Ma L, Lomoio S, Willen R, Lombardo S, Dong J, Haydon PG, Tesco G. BACE1 elevation engendered by GGA3 deletion increases β-amyloid pathology in association with APP elevation and decreased CHL1 processing in 5XFAD mice. Mol Neurodegener 2018; 13:6. [PMID: 29391027 PMCID: PMC5796504 DOI: 10.1186/s13024-018-0239-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/24/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting enzyme in the production of amyloid beta (Aβ), the toxic peptide that accumulates in the brains of Alzheimer's disease (AD) patients. Our previous studies have shown that the clathrin adaptor Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) plays a key role in the trafficking of BACE1 to lysosomes, where it is normally degraded. GGA3 depletion results in BACE1 stabilization both in vitro and in vivo. Moreover, levels of GGA3 are reduced and inversely related to BACE1 levels in post-mortem brains of AD patients. METHOD In order to assess the effect of GGA3 deletion on AD-like phenotypes, we crossed GGA3 -/- mice with 5XFAD mice. BACE1-mediated processing of APP and the cell adhesion molecule L1 like protein (CHL1) was measured as well as levels of Aβ42 and amyloid burden. RESULTS In 5XFAD mice, we found that hippocampal and cortical levels of GGA3 decreased while BACE1 levels increased with age, similar to what is observed in human AD brains. GGA3 deletion prevented age-dependent elevation of BACE1 in GGA3KO;5XFAD mice. We also found that GGA3 deletion resulted in increased hippocampal levels of Aβ42 and amyloid burden in 5XFAD mice at 12 months of age. While levels of BACE1 did not change with age and gender in GGAKO;5XFAD mice, amyloid precursor protein (APP) levels increased with age and were higher in female mice. Moreover, elevation of APP was associated with a decreased BACE1-mediated processing of CHL1 not only in 12 months old 5XFAD mice but also in human brains from subjects affected by Down syndrome, most likely due to substrate competition. CONCLUSION This study demonstrates that GGA3 depletion is a leading candidate mechanism underlying elevation of BACE1 in AD. Furthermore, our findings suggest that BACE1 inhibition could exacerbate mechanism-based side effects in conditions associated with APP elevation (e.g. Down syndrome) owing to impairment of BACE1-mediated processing of CHL1. Therefore, therapeutic approaches aimed to restore GGA3 function and to prevent the down stream effects of its depletion (e.g. BACE1 elevation) represent an attractive alternative to BACE inhibition for the prevention/treatment of AD.
Collapse
Affiliation(s)
- WonHee Kim
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Liang Ma
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Selene Lomoio
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Rachel Willen
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Sylvia Lombardo
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Jinghui Dong
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Philip G. Haydon
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| | - Giuseppina Tesco
- Alzheimer’s Disease Research Laboratory, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111 USA
| |
Collapse
|
7
|
Maggio M, De Vita F, Fisichella A, Colizzi E, Provenzano S, Lauretani F, Luci M, Ceresini G, Dall'Aglio E, Caffarra P, Valenti G, Ceda GP. DHEA and cognitive function in the elderly. J Steroid Biochem Mol Biol 2015; 145:281-92. [PMID: 24794824 DOI: 10.1016/j.jsbmb.2014.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/20/2014] [Accepted: 03/27/2014] [Indexed: 11/28/2022]
Abstract
The adrenal prohormone dehydroepiandrosterone (DHEA) and its sulphate conjugate (DHEAS) steadily decrease with age by 10% per decade reaching a nadir after the age of 80. Both DHEA and DHEAS (DHEA/S) exert many biological activities in different tissues and organs. In particular, DHEA and DHEAS are produced de novo in the brain, hence their classification as neurosteroids. In humans, the brain-to-plasma ratios for DHEA and DHEAS are 4-6.5 and 8.5, respectively, indicating a specific neuroendocrine role for these hormones. DHEA/S stimulates neurite growth, neurogenesis and neuronal survival, apoptosis, catecholamine synthesis and secretion. Together with antioxidant, anti-inflammatory and anti-glucocorticoid properties, it has been hypothesized a neuroprotective effect for DHEA/S. We conducted an accurate research of the literature using PubMed. In the period of time between 1994 and 2013, we selected the observational human studies testing the relationship between DHEA/S and cognitive function in both sexes. The studies are presented according to the cross-sectional and longitudinal design and to the positive or neutral effects on different domains of cognitive function. We also analysed the Clinical Trials, available in the literature, having cognitive domains as the main or secondary outcome. Although the cross-sectional evidence of a positive association between DHEA/S and cognitive function, longitudinal studies and RCTs using DHEA oral treatment (50mg/day) in normal or demented adult-older subjects, have produced conflicting and inconsistent results. In summary, the current data do not provide clear evidence for the usefulness of DHEA treatment to improve cognitive function in adult-older subjects. This article is part of a Special Issue entitled 'Essential role of DHEA'.
Collapse
Affiliation(s)
- Marcello Maggio
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy; Department of Clinical and Experimental Medicine, Section of Geriatrics, Food Sciences Unit and Endocrinology of Aging Unit, University of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy.
| | - Francesca De Vita
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Alberto Fisichella
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Elena Colizzi
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Sandra Provenzano
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Fulvio Lauretani
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Michele Luci
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Graziano Ceresini
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy; Department of Clinical and Experimental Medicine, Section of Geriatrics, Food Sciences Unit and Endocrinology of Aging Unit, University of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Elisabetta Dall'Aglio
- Department of Clinical and Experimental Medicine, Section of Geriatrics, Food Sciences Unit and Endocrinology of Aging Unit, University of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Paolo Caffarra
- Department of Neuroscience, University of Parma, Parma (PR), Italy; Outpatient Clinic for the Diagnosis and Therapy of Cognitive Disorders, AUSL, Parma (PR), Italy
| | - Giorgio Valenti
- Department of Clinical and Experimental Medicine, Section of Geriatrics, Food Sciences Unit and Endocrinology of Aging Unit, University of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| | - Gian Paolo Ceda
- Geriatric Rehabilitation Department, University Hospital of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy; Department of Clinical and Experimental Medicine, Section of Geriatrics, Food Sciences Unit and Endocrinology of Aging Unit, University of Parma, Via Gramsci, 14, 43126 Parma (PR), Italy
| |
Collapse
|
8
|
Gamba P, Guglielmotto M, Testa G, Monteleone D, Zerbinati C, Gargiulo S, Biasi F, Iuliano L, Giaccone G, Mauro A, Poli G, Tamagno E, Leonarduzzi G. Up-regulation of β-amyloidogenesis in neuron-like human cells by both 24- and 27-hydroxycholesterol: protective effect of N-acetyl-cysteine. Aging Cell 2014; 13:561-72. [PMID: 24612036 PMCID: PMC4326893 DOI: 10.1111/acel.12206] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2014] [Indexed: 01/26/2023] Open
Abstract
An abnormal accumulation of cholesterol oxidation products in the brain of patients with Alzheimer’s disease (AD) would further link an impaired cholesterol metabolism in the pathogenesis of the disease. The first evidence stemming from the content of oxysterols in autopsy samples from AD and normal brains points to an increase in both 27-hydroxycholesterol (27-OH) and 24-hydroxycholesterol (24-OH) in the frontal cortex of AD brains, with a trend that appears related to the disease severity. The challenge of differentiated SK-N-BE human neuroblastoma cells with patho-physiologically relevant amounts of 27-OH and 24-OH showed that both oxysterols induce a net synthesis of Aβ1-42 by up-regulating expression levels of amyloid precursor protein and β-secretase, as well as the β-secretase activity. Interestingly, cell pretreatment with N-acetyl-cysteine (NAC) fully prevented the enhancement of β-amyloidogenesis induced by the two oxysterols. The reported findings link an impaired cholesterol oxidative metabolism to an excessive β-amyloidogenesis and point to NAC as an efficient inhibitor of oxysterols-induced Aβ toxic peptide accumulation in the brain.
Collapse
Affiliation(s)
- Paola Gamba
- Department of Clinical and Biological Sciences University of Turin Orbassano Turin Italy
| | - Michela Guglielmotto
- Department of Neuroscience “Rita Levi Montalcini” University of Turin Orbassano Turin Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences University of Turin Orbassano Turin Italy
| | - Debora Monteleone
- Department of Clinical and Biological Sciences University of Turin Orbassano Turin Italy
- Department of Neuroscience “Rita Levi Montalcini” University of Turin Orbassano Turin Italy
| | - Chiara Zerbinati
- Department of Medico‐Surgical Sciences and Biotechnology Vascular Biology and Mass Spectrometry Laboratory Sapienza University of Rome Latina Italy
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences University of Turin Orbassano Turin Italy
| | - Fiorella Biasi
- Department of Clinical and Biological Sciences University of Turin Orbassano Turin Italy
| | - Luigi Iuliano
- Department of Medico‐Surgical Sciences and Biotechnology Vascular Biology and Mass Spectrometry Laboratory Sapienza University of Rome Latina Italy
| | | | - Alessandro Mauro
- Division of Neurology and Neurorehabilitation IRCCS Italian Institute of Auxology Verbania Italy
- Department of Neurosciences University of Turin Turin Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences University of Turin Orbassano Turin Italy
| | - Elena Tamagno
- Department of Neuroscience “Rita Levi Montalcini” University of Turin Orbassano Turin Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences University of Turin Orbassano Turin Italy
| |
Collapse
|
9
|
Guillot-Sestier MV, Town T. Innate immunity in Alzheimer's disease: a complex affair. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 12:593-607. [PMID: 23574177 DOI: 10.2174/1871527311312050008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized by three major histopathological hallmarks: β-amyloid deposits, neurofibrillary tangles and gliosis. While neglected for decades, the neuroinflammatory processes coordinated by microglia are now accepted as etiologic events in AD evolution. Microglial cells are found in close vicinity to amyloid plaques and display various activation phenotypes determined by the expression of a wide range of cytokines, chemokines, and innate immune surface receptors. During the development of AD pathology, microglia fail to restrict amyloid plaques and may contribute to neurotoxicity and cognitive deficit. Nevertheless, under specific activation states, microglia can participate in cerebral amyloid clearance. This review focuses on the complex relationship between microglia and Aβ pathology, and highlights both deleterious and beneficial roles of microglial activation states in the context of AD. A deeper understanding of microglial biology will hopefully pave the way for next-generation AD therapeutic approaches aimed at harnessing these enigmatic innate immune cells of the central nervous system.
Collapse
Affiliation(s)
- Marie-Victoire Guillot-Sestier
- Regenerative Medicine Institute Neural Program, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Steven Spielberg Building Room 345, Los Angeles, CA 90048, USA
| | | |
Collapse
|
10
|
Breunig JJ, Guillot-Sestier MV, Town T. Brain injury, neuroinflammation and Alzheimer's disease. Front Aging Neurosci 2013; 5:26. [PMID: 23874297 PMCID: PMC3708131 DOI: 10.3389/fnagi.2013.00026] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/13/2013] [Indexed: 12/14/2022] Open
Abstract
With as many as 300,000 United States troops in Iraq and Afghanistan having suffered head injuries (Miller, 2012), traumatic brain injury (TBI) has garnered much recent attention. While the cause and severity of these injuries is variable, severe cases can lead to lifelong disability or even death. While aging is the greatest risk factor for Alzheimer's disease (AD), it is now becoming clear that a history of TBI predisposes the individual to AD later in life (Sivanandam and Thakur, 2012). In this review article, we begin by defining hallmark pathological features of AD and the various forms of TBI. Putative mechanisms underlying the risk relationship between these two neurological disorders are then critically considered. Such mechanisms include precipitation and ‘spreading’ of cerebral amyloid pathology and the role of neuroinflammation. The combined problems of TBI and AD represent significant burdens to public health. A thorough, mechanistic understanding of the precise relationship between TBI and AD is of utmost importance in order to illuminate new therapeutic targets. Mechanistic investigations and the development of preclinical therapeutics are reliant upon a clearer understanding of these human diseases and accurate modeling of pathological hallmarks in animal systems.
Collapse
Affiliation(s)
- Joshua J Breunig
- Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles, CA, USA ; Department of Biomedical Sciences, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | | | | |
Collapse
|
11
|
Tamagno E, Guglielmotto M, Monteleone D, Vercelli A, Tabaton M. Transcriptional and post-transcriptional regulation of β-secretase. IUBMB Life 2012. [DOI: 10.1002/iub.1099] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Abstract
Traumatic brain injury (TBI) is one of the most robust environmental risk factors for Alzheimer's disease (AD). Compelling evidence is accumulating that a single event of TBI is associated with increased levels of Aβ. However, the underlying molecular mechanisms remain unknown. We report here that the BACE1 interacting protein, GGA3, is depleted while BACE1 levels increase in the acute phase after injury (48 h) in a mouse model of TBI. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3-null mice. We next found that head trauma potentiates BACE1 elevation in GGA3-null mice in the acute phase after TBI, and discovered that GGA1, a GGA3 homolog, is a novel caspase-3 substrate depleted at 48 h after TBI. Moreover, GGA1 silencing potentiates BACE1 elevation induced by GGA3 deletion in neurons in vitro, indicating that GGA1 and GGA3 synergistically regulate BACE1. Accordingly, we found that levels of both GGA1 and GGA3 are depleted while BACE1 levels are increased in a series of postmortem AD brains. Finally, we show that GGA3 haploinsufficiency results in sustained elevation of BACE1 and Aβ levels while GGA1 levels are restored in the subacute phase (7 d) after injury. In conclusion, our data indicate that depletion of GGA1 and GGA3 engender a rapid and robust elevation of BACE1 in the acute phase after injury. However, the efficient disposal of the acutely accumulated BACE1 solely depends on GGA3 levels in the subacute phase of injury.
Collapse
|
13
|
Amyloid-β Production: Major Link Between Oxidative Stress and BACE1. Neurotox Res 2011; 22:208-19. [DOI: 10.1007/s12640-011-9283-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/28/2011] [Accepted: 09/30/2011] [Indexed: 12/20/2022]
|
14
|
Prasanthi JRP, Larson T, Schommer J, Ghribi O. Silencing GADD153/CHOP gene expression protects against Alzheimer's disease-like pathology induced by 27-hydroxycholesterol in rabbit hippocampus. PLoS One 2011; 6:e26420. [PMID: 22046282 PMCID: PMC3194795 DOI: 10.1371/journal.pone.0026420] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/26/2011] [Indexed: 02/07/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is suggested to play a key role in the pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD). Sustained ER stress leads to activation of the growth arrest and leucine zipper transcription factor, DNA damage inducible gene 153 (gadd153; also called CHOP). Activated gadd153 can generate oxidative damage and reactive oxygen species (ROS), increase β-amyloid (Aβ) levels, disturb iron homeostasis and induce inflammation as well as cell death, which are all pathological hallmarks of AD. Epidemiological and laboratory studies suggest that cholesterol dyshomeostasis contributes to the pathogenesis of AD. We have previously shown that the cholesterol oxidized metabolite 27-hydroxycholesterol (27-OHC) triggers AD-like pathology in organotypic slices. However, the extent to which gadd153 mediates 27-OHC effects has not been determined. We silenced gadd153 gene with siRNA and determined the effects of 27-OHC on AD hallmarks in organotypic slices from adult rabbit hippocampus. siRNA to gadd153 reduced 27-OHC-induced Aβ production by mechanisms involving reduction in levels of β-amyloid precursor protein (APP) and β-secretase (BACE1), the enzyme that initiates cleavage of APP to yield Aβ peptides. Additionally, 27-OHC-induced tau phosphorylation, ROS generation, TNF-α activation, and iron and apoptosis-regulatory protein levels alteration were also markedly reduced by siRNA to gadd153. These data suggest that ER stress-mediated gadd153 activation plays a central role in the triggering of AD pathological hallmarks that result from incubation of hippocampal slices with 27-OHC. Our results add important insights into cellular mechanisms that underlie the potential contribution of cholesterol metabolism in AD pathology, and suggest that preventing gadd153 activation protects against AD related to cholesterol oxidized products.
Collapse
Affiliation(s)
- Jaya R. P. Prasanthi
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Tyler Larson
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Jared Schommer
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Othman Ghribi
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| |
Collapse
|
15
|
Naylor JC, Kilts JD, Hulette CM, Steffens DC, Blazer DG, Ervin JF, Strauss JL, Allen TB, Massing MW, Payne VM, Youssef NA, Shampine LJ, Marx CE. Allopregnanolone levels are reduced in temporal cortex in patients with Alzheimer's disease compared to cognitively intact control subjects. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:951-9. [PMID: 20488256 DOI: 10.1016/j.bbalip.2010.05.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/09/2010] [Accepted: 05/11/2010] [Indexed: 11/29/2022]
Abstract
The neurosteroid allopregnanolone has pronounced neuroprotective actions, increases myelination, and enhances neurogenesis. Evidence suggests that allopregnanolone dysregulation may play a role in the pathophysiology of Alzheimer's disease (AD) and other neurodegenerative disorders. Our prior data demonstrate that allopregnanolone is reduced in prefrontal cortex in male patients with AD compared to male cognitively intact control subjects, and inversely correlated with neuropathological disease stage (Braak and Braak). We therefore determined if allopregnanolone levels are also reduced in AD patients compared to control subjects in temporal cortex, utilizing a larger set of samples from both male and female patients. In addition, we investigated if neurosteroids are altered in subjects who are APOE4 allele carriers. Allopregnanolone, dehydroepiandrosterone (DHEA), and pregnenolone levels were determined in temporal cortex postmortem samples by gas chromatography/mass spectrometry, preceded by high performance liquid chromatography (40 subjects with AD/41 cognitively intact control subjects). Allopregnanolone levels are reduced in temporal cortex in patients with AD (median 2.68 ng/g, n=40) compared to control subjects (median 5.64 ng/g, n=41), Mann-Whitney p=0.0002, and inversely correlated with Braak and Braak neuropathological disease stage (Spearman r=-0.38, p=0.0004). DHEA and pregnenolone are increased in patients with AD compared to control subjects. Patients carrying an APOE4 allele demonstrate reduced allopregnanolone levels in temporal cortex (Mann-Whitney p=0.04). In summary, our findings indicate that neurosteroids are altered in temporal cortex in patients with AD and related to neuropathological disease stage. In addition, the APOE4 allele is associated with reduced allopregnanolone levels. Neurosteroids may be relevant to the neurobiology and therapeutics of AD.
Collapse
Affiliation(s)
- Jennifer C Naylor
- VA Mid-Atlantic Mental Illness, Research and Clinical Center (MIRECC), Durham, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hampl R, Bicíková M. Neuroimmunomodulatory steroids in Alzheimer dementia. J Steroid Biochem Mol Biol 2010; 119:97-104. [PMID: 20153425 DOI: 10.1016/j.jsbmb.2010.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 01/09/2023]
Abstract
Though pathobiochemical and neurochemical changes and accompanied morphological alterations in Alzheimer dementia are well known, the triggering mechanisms, if any, remain obscure. Important factors influencing the development and progression of Alzheimer disease include hormonal steroids and their metabolites, some of which may serve as therapeutic agents. This review focusses on major biochemical alterations in the brain of Alzheimer patients with respect to the involvement of steroids. It includes their role in impairment of fuel supply and in brain glycoregulation, with especial emphasis on glucocorticoids and their counter-regulatory steroids as dehydroepiandrosterone and its metabolites. Further, the role of steroids in beta-amyloid pathology is reviewed including alterations in tau-protein(s) phosphorylation. The (auto)immune theory of Alzheimer dementia is briefly outlined, pointing to the possible involvement of steroids in brain ageing, immunosenescence and neuronal apoptosis. Some effects of steroids are briefly mentioned on the formation and removal of reactive oxygen species and their effect on calcium flux and cytotoxicity. The recent biochemical research of Alzheimer disease focusses on molecular signalling at which steroids also take part. New findings may be anticipated when the mosaic describing the molecular mechanisms behind these events becomes more complete.
Collapse
|
17
|
Guglielmotto M, Giliberto L, Tamagno E, Tabaton M. Oxidative stress mediates the pathogenic effect of different Alzheimer's disease risk factors. Front Aging Neurosci 2010; 2:3. [PMID: 20552043 PMCID: PMC2874401 DOI: 10.3389/neuro.24.003.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 01/20/2010] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting the elderly population. Mechanistically, the major cause of the disease bases on the altered processing of the amyloid-β (Aβ) precursor protein (APP), resulting in the accumulation and aggregation of neurotoxic forms of Aβ. Aβ derives from the sequential proteolytic cleavage of the β- and γ-secretases on APP. The causes of Aβ accumulation in the common sporadic form of AD are not completely known, but they are likely to include oxidative stress (OS). OS and Aβ are linked to each other since Aβ aggregation induces OS in vivo and in vitro, and oxidant agents increase the production of Aβ. Moreover, OS produces several effects that may contribute to synaptic function and cell death in AD. We and others have shown that the expression and activity of β-secretase (named BACE1; β-site APP cleaving enzyme) is increased by oxidant agents and by lipid peroxidation product 4-hydroxynonenal and that there is a significant correlation between BACE1 activity and oxidative markers in sporadic AD. OS results from several cellular insults such as aging, hyperglycemia, hypoxic insults that are all well known risk factors for AD development. Thus, our data strengthen the hypothesis that OS is a basic common pathway of Aβ accumulation, common to different AD risk factors.
Collapse
Affiliation(s)
- Michela Guglielmotto
- Department of Experimental Medicine and Oncology, University of Turin Turin, Italy
| | | | | | | |
Collapse
|
18
|
Tamagno E, Guglielmotto M, Giliberto L, Vitali A, Borghi R, Autelli R, Danni O, Tabaton M. JNK and ERK1/2 pathways have a dual opposite effect on the expression of BACE1. Neurobiol Aging 2009; 30:1563-73. [DOI: 10.1016/j.neurobiolaging.2007.12.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 12/17/2007] [Accepted: 12/19/2007] [Indexed: 12/29/2022]
|
19
|
Maninger N, Wolkowitz OM, Reus VI, Epel ES, Mellon SH. Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Neuroendocrinol 2009; 30:65-91. [PMID: 19063914 PMCID: PMC2725024 DOI: 10.1016/j.yfrne.2008.11.002] [Citation(s) in RCA: 524] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 01/12/2023]
Abstract
DHEA and DHEAS are steroids synthesized in human adrenals, but their function is unclear. In addition to adrenal synthesis, evidence also indicates that DHEA and DHEAS are synthesized in the brain, further suggesting a role of these hormones in brain function and development. Despite intensifying research into the biology of DHEA and DHEAS, many questions concerning their mechanisms of action and their potential involvement in neuropsychiatric illnesses remain unanswered. We review and distill the preclinical and clinical data on DHEA and DHEAS, focusing on (i) biological actions and putative mechanisms of action, (ii) differences in endogenous circulating concentrations in normal subjects and patients with neuropsychiatric diseases, and (iii) the therapeutic potential of DHEA in treating these conditions. Biological actions of DHEA and DHEAS include neuroprotection, neurite growth, and antagonistic effects on oxidants and glucocorticoids. Accumulating data suggest abnormal DHEA and/or DHEAS concentrations in several neuropsychiatric conditions. The evidence that DHEA and DHEAS may be fruitful targets for pharmacotherapy in some conditions is reviewed.
Collapse
Affiliation(s)
- Nicole Maninger
- Department of Psychiatry, University of California San Francisco, School of Medicine, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
20
|
Epigallocatechin-3-gallate and curcumin suppress amyloid beta-induced beta-site APP cleaving enzyme-1 upregulation. Neuroreport 2008; 19:1329-33. [DOI: 10.1097/wnr.0b013e32830b8ae1] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Coma M, Guix FX, Ill-Raga G, Uribesalgo I, Alameda F, Valverde MA, Muñoz FJ. Oxidative stress triggers the amyloidogenic pathway in human vascular smooth muscle cells. Neurobiol Aging 2008; 29:969-80. [PMID: 17306421 DOI: 10.1016/j.neurobiolaging.2007.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 12/01/2006] [Accepted: 01/13/2007] [Indexed: 10/23/2022]
Abstract
Cerebral amyloid angiopathy, associated to most cases of Alzheimer's disease (AD), is characterized by the deposition of amyloid ss-peptide (Ass) in brain vessels, although the origin of the vascular amyloid deposits is still controversial: neuronal versus vascular. In the present work, we demonstrate that primary cultures of human cerebral vascular smooth muscle cells (HC-VSMCs) have all the secretases involved in amyloid ss-protein precursor (APP) cleavage and produce Ass(1-40) and Ass(1-42). Oxidative stress, a key factor in the etiology and pathophysiology of AD, up-regulates ss-site APP cleaving enzyme 1 (BACE1) expression, as well as Ass(1-40) and Ass(1-42) secretion in HC-VSMCs. This process is mediated by c-Jun N-terminal Kinase and p38 MAPK signaling and appears restricted to BACE1 regulation as no changes in the other secretases were observed. In conclusion, oxidative stress-mediated up-regulation of the amyloidogenic pathway in human cerebral vascular smooth muscle cells may contribute to the overall cerebrovascular amyloid angiopathy observed in AD patients.
Collapse
Affiliation(s)
- Mireia Coma
- Laboratory of Molecular Physiology and Channelopathies, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Alzheimer disease (AD) is defined by progressive impairments in memory and cognition and by the presence of extracellular neuritic plaques and intracellular neurofibrillary tangles. However, oxidative stress and impaired mitochondrial function always accompany AD. Mitochondria are a major site of production of free radicals [ie, reactive oxygen species (ROS)] and primary targets of ROS. ROS are cytotoxic, and evidence of ROS-induced damage to cell membranes, proteins, and DNA in AD is overwhelming. Nevertheless, therapies based on antioxidants have been disappointing. Thus, alternative strategies are necessary. ROS also act as signaling molecules including for transcription. Thus, chronic exposure to ROS in AD could activate cascades of genes. Although initially protective, prolonged activation may be damaging. Thus, therapeutic approaches based on modulation of these gene cascades may lead to effective therapies. Genes involved in several pathways including antioxidant defense, detoxification, inflammation, etc, are induced in response to oxidative stress and in AD. However, genes that are associated with energy metabolism, which is necessary for normal brain function, are mostly down-regulated. Redox-sensitive transcription factors such as activator protein-1, nuclear factor-kappaB, specificity protein-1, and hypoxia-inducible factor are important in redox-dependent gene regulation. Peroxisome proliferators-activated receptor-gamma coactivator (PGC-1alpha) is a coactivator of several transcription factors and is a potent stimulator of mitochondrial biogenesis and respiration. Down-regulated expression of PGC-1alpha has been implicated in Huntington disease and in several Huntington disease animal models. PGC-1alpha role in regulation of ROS metabolism makes it a potential candidate player between ROS, mitochondria, and neurodegenerative diseases. This review summarizes the current progress on how oxidative stress regulates the expression of genes that might contribute to AD pathophysiology and the implications of the transcriptional modifications for AD. Finally, potential therapeutic strategies based on the updated understandings of redox state-dependent gene regulation in AD are proposed to overcome the lack of efficacy of antioxidant therapies.
Collapse
|
23
|
Zacchetti D, Chieregatti E, Bettegazzi B, Mihailovich M, Sousa VL, Grohovaz F, Meldolesi J. BACE1 expression and activity: relevance in Alzheimer's disease. NEURODEGENER DIS 2007; 4:117-26. [PMID: 17596706 DOI: 10.1159/000101836] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A turning point of research in Alzheimer's disease was undoubtedly the discovery of BACE1, the amyloid-beta precursor protein-cleaving enzyme that initiates the generation of amyloid-beta, the peptide strongly suspected to be responsible for neuronal malfunction and death. Several research groups started a race to identify the best inhibitor of BACE1 activity. On the other hand, basic researchers are evaluating the changes in BACE1 expression and activity with the aim to better understand the pathogenetic process of the disease. Along this second line of research, in the last few years many important results have been reported in various experimental models, as well as in Alzheimer's disease patients. As a consequence, new pathogenetic paradigms have been developed. We have reviewed these reports trying to highlight contrasting viewpoints, data awaiting final confirmation, and promising perspectives.
Collapse
Affiliation(s)
- Daniele Zacchetti
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Tesco G, Koh YH, Kang E, Cameron A, Das S, Sena-Esteves M, Hiltunen M, Yang SH, Zhong Z, Shen Y, Simpkins J, Tanzi RE. Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity. Neuron 2007; 54:721-37. [PMID: 17553422 PMCID: PMC1973166 DOI: 10.1016/j.neuron.2007.05.012] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 04/27/2007] [Accepted: 05/03/2007] [Indexed: 11/16/2022]
Abstract
Beta-site APP-cleaving enzyme (BACE) is required for production of the Alzheimer's disease (AD)-associated Abeta protein. BACE levels are elevated in AD brain, and increasing evidence reveals BACE as a stress-related protease that is upregulated following cerebral ischemia. However, the molecular mechanism responsible is unknown. We show that increases in BACE and beta-secretase activity are due to posttranslational stabilization following caspase activation. We also found that during cerebral ischemia, levels of GGA3, an adaptor protein involved in BACE trafficking, are reduced, while BACE levels are increased. RNAi silencing of GGA3 also elevated levels of BACE and Abeta. Finally, in AD brain samples, GGA3 protein levels were significantly decreased and inversely correlated with increased levels of BACE. In summary, we have elucidated a GGA3-dependent mechanism regulating BACE levels and beta-secretase activity. This mechanism may explain increased cerebral levels of BACE and Abeta following cerebral ischemia and existing in AD.
Collapse
Affiliation(s)
- Giuseppina Tesco
- Genetics and Aging Research Unit, Massachusetts General Hospital, Charlestown, MA 02129
- To whom correspondence should be addressed: Giuseppina Tesco, Genetics and Aging Research Unit, Massachusetts General Hospital, Building 114, 16 Street C3900, Charlestown, MA, 02129-4404, Tel: (617) 724 9850, Fax: (617) 724 1823, ; Rudolph E. Tanzi, Genetics and Aging Research Unit, Massachusetts General Hospital, Building 114, 16 Street C3009, Charlestown, MA, 02129-4404, Tel: (617) 726 6845, Fax: (617) 724 1949,
| | - Young Ho Koh
- Genetics and Aging Research Unit, Massachusetts General Hospital, Charlestown, MA 02129
| | - Eugene Kang
- Genetics and Aging Research Unit, Massachusetts General Hospital, Charlestown, MA 02129
| | - Andrew Cameron
- Genetics and Aging Research Unit, Massachusetts General Hospital, Charlestown, MA 02129
| | - Shinjita Das
- Genetics and Aging Research Unit, Massachusetts General Hospital, Charlestown, MA 02129
| | - Miguel Sena-Esteves
- Neuroscience Center at Massachusetts General Hospital, Charlestown, MA 02129
| | - Mikko Hiltunen
- Genetics and Aging Research Unit, Massachusetts General Hospital, Charlestown, MA 02129
| | - Shao-Hua Yang
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Zhenyu Zhong
- Sun Health Research Institute, Sun City, AZ, USA
| | - Yong Shen
- Sun Health Research Institute, Sun City, AZ, USA
| | - James Simpkins
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Massachusetts General Hospital, Charlestown, MA 02129
- To whom correspondence should be addressed: Giuseppina Tesco, Genetics and Aging Research Unit, Massachusetts General Hospital, Building 114, 16 Street C3900, Charlestown, MA, 02129-4404, Tel: (617) 724 9850, Fax: (617) 724 1823, ; Rudolph E. Tanzi, Genetics and Aging Research Unit, Massachusetts General Hospital, Building 114, 16 Street C3009, Charlestown, MA, 02129-4404, Tel: (617) 726 6845, Fax: (617) 724 1949,
| |
Collapse
|
25
|
Anekonda TS. Resveratrol—A boon for treating Alzheimer's disease? ACTA ACUST UNITED AC 2006; 52:316-26. [PMID: 16766037 DOI: 10.1016/j.brainresrev.2006.04.004] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/16/2022]
Abstract
Resveratrol, a red wine polyphenol, is known to protect against cardiovascular diseases and cancers, as well as to promote antiaging effects in numerous organisms. It also modulates pathomechanisms of debilitating neurological disorders, such as strokes, ischemia, and Huntington's disease. The role of resveratrol in Alzheimer's disease is still unclear, although some recent studies on red wine bioactive compounds suggest that resveratrol modulates multiple mechanisms of Alzheimer's disease pathology. Emerging literature indicates that mechanisms of aging and Alzheimer's disease are intricately linked and that these mechanisms can be modulated by both calorie restriction regimens and calorie restriction mimetics, the prime mediator of which is the SIRT1 protein, a human homologue of yeast silent information regulator (Sir)-2, and a member of NAD+-dependent histone deacetylases. Calorie restriction regimens and calorie restriction-mimetics trigger sirtuins in a wide variety of organisms, ranging from bacteria to mouse. In a mouse model of Huntington's disease, resveratrol-induced SIRT1 was found to protect neurons against ployQ toxicity and in Wallerian degeneration slow mice, resveratrol was found to protect the degeneration of neurons from axotomy, suggesting that resveratrol may possess therapeutic value to neuronal degeneration. This paper mainly focuses on the role of resveratrol in modulating AD pathomechanisms.
Collapse
Affiliation(s)
- Thimmappa S Anekonda
- Neurological Sciences Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, 97006, USA.
| |
Collapse
|
26
|
Patil S, Sheng L, Masserang A, Chan C. Palmitic acid-treated astrocytes induce BACE1 upregulation and accumulation of C-terminal fragment of APP in primary cortical neurons. Neurosci Lett 2006; 406:55-9. [PMID: 16904262 DOI: 10.1016/j.neulet.2006.07.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 06/23/2006] [Accepted: 07/08/2006] [Indexed: 01/30/2023]
Abstract
High-fat diet is a significant risk factor for the development of Alzheimer's disease (AD). In addition, the AD brain is characterized by elevated levels of fatty acids as compared to that of healthy controls. Despite this, it is unclear how elevated levels of fatty acids are related to the pathogenesis of AD. The present study examines the role of saturated fatty acid, palmitic acid (PA), in causing BACE1 upregulation and consequent amyloidogenic processing of beta-amyloid precursor protein (APP), one of the main characteristic signatures of AD pathology. Here, primary rat cortical neurons and astrocytes were treated with pathological concentration of PA. There was no change in the BACE1 levels in the rat cortical neurons treated directly with PA as compared to controls. The conditioned medium from PA-treated astrocytes, however, caused BACE1 upregulation in the cortical neurons. Moreover, there was a consequent increase in the cleavage of APP leading to the accumulation of the C-terminal fragment of APP (C99) in the cortical neurons. Co-treatment of neurons with 1,3-dimethyl urea (DMU), an antioxidant, decreased PA-induced upregulation in the levels of BACE1 and C99. The present results establish an important role of saturated fatty acids in AD-associated amyloidogenesis through astroglia-mediated oxidative stress.
Collapse
Affiliation(s)
- Sachin Patil
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI-48823, USA
| | | | | | | |
Collapse
|
27
|
Tamagno E, Bardini P, Guglielmotto M, Danni O, Tabaton M. The various aggregation states of beta-amyloid 1-42 mediate different effects on oxidative stress, neurodegeneration, and BACE-1 expression. Free Radic Biol Med 2006; 41:202-12. [PMID: 16814100 DOI: 10.1016/j.freeradbiomed.2006.01.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 12/20/2005] [Accepted: 01/12/2006] [Indexed: 11/30/2022]
Abstract
The amyloid cascade hypothesis suggests that the insoluble and fibrillar form of beta-amyloid (A beta) may play a primary pathogenic role in Alzheimer disease at the molecular level. However, neither the rate of dementia nor the extent of neuronal change seems to correlate with the levels of amyloidotic plaques (i.e., aggregated/fibrillar A beta). Recent evidence suggests, however, that neurotoxicity may be exerted also by rather small soluble aggregates of A beta, including oligomers. To characterize the mechanisms underlying toxicity mediated by the various aggregation states of A beta peptides is then a major goal of research. In this work we investigated the effects of fibrillar, prefibrillar, and oligomeric A beta(1-42) on the induction of oxidative stress, cell death, and BACE-1 expression in NT2 neuronal cells. We found that prefibrillar and oligomeric A beta(1-42) resulted in a more dramatic increase in the oxidative stress markers 4-hydroxynonenal and hydrogen peroxide compared to fibrillar A beta(1-42). Moreover, increased oxidative stress levels also resulted in a more rapid and significant induction of both apoptotic and necrotic neuronal cell death. Accordingly, fibrillar A beta(1-42), but not the soluble nonfibrillar forms, was the only condition able to up-regulate BACE-1 expression and activity.
Collapse
Affiliation(s)
- Elena Tamagno
- General Pathology Section, Department of Experimental Medicine and Oncology, University of Turin, Corso Raffaello 30, 10125 Turin, Italy.
| | | | | | | | | |
Collapse
|
28
|
Velliquette RA, O'Connor T, Vassar R. Energy inhibition elevates beta-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: possible early events in Alzheimer's disease pathogenesis. J Neurosci 2006; 25:10874-83. [PMID: 16306400 PMCID: PMC6725876 DOI: 10.1523/jneurosci.2350-05.2005] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Beta-secretase [beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1)] is the key rate-limiting enzyme for the production of the beta-amyloid (Abeta) peptide involved in the pathogenesis of Alzheimer's disease (AD). BACE1 levels and activity are increased in AD brain and are likely to drive Abeta overproduction, but the cause of BACE1 elevation in AD is unknown. Interestingly, cerebral glucose metabolism and blood flow are both reduced in preclinical AD, suggesting that impaired energy production may be an early pathologic event in AD. To determine whether reduced energy metabolism would cause BACE1 elevation, we used pharmacological agents (insulin, 2-deoxyglucose, 3-nitropropionic acid, and kainic acid) to induce acute energy inhibition in C57/B6 wild-type and amyloid precursor protein (APP) transgenic (Tg2576) mice. Four hours after treatment, we observed that reduced energy production caused a approximately 150% increase of cerebral BACE1 levels compared with control. Although this was a modest increase, the effect was long-lasting, because levels of the BACE1 enzyme remained elevated for at least 7 d after a single dose of energy inhibitor. In Tg2576 mice, levels of the BACE1-cleaved APP ectodomain APPsbeta were also elevated and paralleled the BACE1 increase in both relative amount and duration. Importantly, cerebral Abeta40 levels in Tg2576 were increased to approximately 200% of control at 7 d after injection, demonstrating that energy inhibition was potentially amyloidogenic. These results support the hypothesis that impaired energy production in the brain may drive AD pathogenesis by elevating BACE1 levels and activity, which, in turn, lead to Abeta overproduction. This process may represent one of the earliest pathogenic events in AD.
Collapse
Affiliation(s)
- Rodney A Velliquette
- Department of Cell and Molecular Biology, Northwestern University, The Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
29
|
Abstract
Silent information regulator 2, a member of NAD+-dependent histone deacetylase in yeast, and its homologs in mice and humans, participate in numerous important cell functions, including cell protection and cell cycle regulation. The sirtuin family members are highly conserved evolutionarily, and are predicted to have a role in cell survival. The science of sirtuins is an emerging field and is expected to contribute significantly to the role of sirtuins in healthy aging in humans. The role of sirtuins in neuronal protection has been studied in lower organisms, such as yeast, worms, flies and rodents. Both yeast Sir2 and mammalian sirtuin proteins are up-regulated under calorie-restricted and resveratrol treatments. Increased sirtuin expression protects cells from various insults. Caloric restriction and antioxidant treatments have shown useful effects in mouse models of aging and Alzheimer's disease (AD) and in limited human AD clinical trials. The role sirtuins may play in modifying and protecting neurons in patients with neurodegenerative diseases is still unknown. However, a recent report of Huntington's disease revealed that Sirtuin protects neurons in a Huntington's disease mouse model, suggesting that sirtuins may protect neurons in patients with neurodegenerative diseases, such as AD. In this review, we discuss the possible mechanisms of sirtuins involved in neuronal protection and the potential therapeutic value of sirtuins in healthy aging and AD.
Collapse
Affiliation(s)
- Thimmappa S Anekonda
- Neurogenetics Laboratory, Neurological Sciences Institute, Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | |
Collapse
|
30
|
Tamagno E, Parola M, Bardini P, Piccini A, Borghi R, Guglielmotto M, Santoro G, Davit A, Danni O, Smith MA, Perry G, Tabaton M. beta-Site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J Neurochem 2005; 92:628-36. [PMID: 15659232 DOI: 10.1111/j.1471-4159.2004.02895.x] [Citation(s) in RCA: 257] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
4-Hydroxynonenal (HNE), an aldehydic product of lipid peroxidation, up-regulates expression of the beta-site APP cleaving enzyme (BACE-1), an aspartyl protease responsible for the beta-secretase cleavage of amyloid precursor protein (AbetaPP), and results in increased levels of amyloid beta (Abeta) peptide. The mechanisms underlying this remain unclear but are of fundamental importance because prevention of BACE-1 up-regulation is viewed as an important therapeutic strategy. In this study, we exposed NT(2) neurons to a range of HNE concentrations (0.5-5 microm) that elicited an up-regulation of BACE-1 expression, a significant increase in intracellular and secreted levels of Abeta peptides as well as apoptosis involving poly-ADP ribose polymerase cleavage and activation of caspase 3. To delineate the molecular events involved in HNE-mediated BACE-1 activation, we investigated the involvement of stress-activated protein kinases (SAPK), signal transducers and activators of transcription (STAT) and serine-threonine kinase B/phosphatidylinositol phosphate 3 kinase (Akt/PtdIns3K). Using specific pharmacological inhibitors, our results show that activation of c-Jun N-terminal kinases and p38(MAPK.), but not STAT or Akt/PtdIns3K, pathways mediate the HNE-dependent up-regulation of BACE-1 expression. Therefore, HNE, an oxidative stress mediator detected in vivo in the brains of Alzheimer's disease patients, may play a pathogenetic role in Alzheimer's disease by selectively activating SAPK pathways and BACE-1 that regulate the proteolytic processing of AbetaPP.
Collapse
Affiliation(s)
- Elena Tamagno
- Department of Experimental Medicine and Oncology, General Pathology Section, University of Turin, Corso Raffaello 30, 10125 Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|