1
|
Di Lucente J, Persico G, Zhou Z, Jin LW, Ramsey JJ, Rutkowsky JM, Montgomery CM, Tomilov A, Kim K, Giorgio M, Maezawa I, Cortopassi GA. Ketogenic diet and BHB rescue the fall of long-term potentiation in an Alzheimer's mouse model and stimulates synaptic plasticity pathway enzymes. Commun Biol 2024; 7:195. [PMID: 38366025 PMCID: PMC10873348 DOI: 10.1038/s42003-024-05860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
The Ketogenic Diet (KD) improves memory and longevity in aged C57BL/6 mice. We tested 7 months KD vs. control diet (CD) in the mouse Alzheimer's Disease (AD) model APP/PS1. KD significantly rescued Long-Term-Potentiation (LTP) to wild-type levels, not by changing Amyloid-β (Aβ) levels. KD's 'main actor' is thought to be Beta-Hydroxy-butyrate (BHB) whose levels rose significantly in KD vs. CD mice, and BHB itself significantly rescued LTP in APP/PS1 hippocampi. KD's 6 most significant pathways induced in brains by RNAseq all related to Synaptic Plasticity. KD induced significant increases in synaptic plasticity enzymes p-ERK and p-CREB in both sexes, and of brain-derived neurotrophic factor (BDNF) in APP/PS1 females. We suggest KD rescues LTP through BHB's enhancement of synaptic plasticity. LTP falls in Mild-Cognitive Impairment (MCI) of human AD. KD and BHB, because they are an approved diet and supplement respectively, may be most therapeutically and translationally relevant to the MCI phase of Alzheimer's Disease.
Collapse
Affiliation(s)
- Jacopo Di Lucente
- Department of Pathology and MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Giuseppe Persico
- Department of Experimental Oncology, European Institute of Oncology, IRCCS, 21041, Milan, Italy
| | - Zeyu Zhou
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Lee-Way Jin
- Department of Pathology and MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA
- Alzheimer's Disease Research Center, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Jennifer M Rutkowsky
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Claire M Montgomery
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Alexey Tomilov
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Kyoungmi Kim
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Marco Giorgio
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Izumi Maezawa
- Department of Pathology and MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
- Alzheimer's Disease Research Center, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| | - Gino A Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Shahtaghi NR, Soni B, Bakrey H, Bigdelitabar S, Jain SK. Beta-Hydroxybutyrate: A Supplemental Molecule for Various Diseases. Curr Drug Targets 2024; 25:919-933. [PMID: 39238395 DOI: 10.2174/0113894501312168240821082224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Accepted: 07/25/2024] [Indexed: 09/07/2024]
Abstract
β-hydroxybutyrate (BHB) is a ketone body that serves as an alternative energy source for various tissues, including the brain, heart, and skeletal muscle. As a metabolic intermediate and signaling molecule, BHB plays a crucial role in modulating cellular and physiological processes. Notably, BHB supplementation offers a novel and promising strategy to induce nutritional ketosis without the need for strict dietary adherence or causing nutritional deficiencies. This review article provides an overview of BHB metabolism and explores its applications in age-related diseases. This review conducted a comprehensive search of PubMed, ScienceDirect, and other relevant English-language articles. The main findings were synthesized, and discussed the challenges, limitations, and future directions of BHB supplementation. BHB supplementation holds potential benefits for various diseases and conditions, including neurodegenerative disorders, cardiovascular diseases, cancers, and inflammation. BHB acts through multiple mechanisms, including interactions with cell surface receptors, intracellular enzymes, transcription factors, signaling molecules, and epigenetic modifications. Despite its promise, BHB supplementation faces several challenges, such as determining the optimal dosage, ensuring long-term safety, identifying the most effective type and formulation, establishing biomarkers of response, and conducting cost-effectiveness analyses. BHB supplementation opens exciting avenues for research, including investigating molecular mechanisms, refining optimization strategies, exploring innovation opportunities, and assessing healthspan and lifespan benefits. BHB supplementation represents a new frontier in health research, offering a potential pathway to enhance well-being and extend lifespan.
Collapse
Affiliation(s)
- Navid Reza Shahtaghi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
| | - Bindu Soni
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
| | - Hossamaldeen Bakrey
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
| | - Samira Bigdelitabar
- Department of Microbiology, Government Medical College, 143001, Amritsar, Punjab, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, 143005, Amritsar, Punjab, India
- Centre for Basic & Translational Research in Health Sciences (CBTHRS), Guru Nanak Dev University, 143005, Amritsar, Punjab, India
| |
Collapse
|
3
|
Shaik SM, Cao Y, Gogola JV, Dodiya HB, Zhang X, Boutej H, Han W, Kriz J, Sisodia SS. Translational profiling identifies sex-specific metabolic and epigenetic reprogramming of cortical microglia/macrophages in APPPS1-21 mice with an antibiotic-perturbed-microbiome. Mol Neurodegener 2023; 18:95. [PMID: 38104136 PMCID: PMC10725591 DOI: 10.1186/s13024-023-00668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/14/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Microglia, the brain-resident macrophages perform immune surveillance and engage with pathological processes resulting in phenotype changes necessary for maintaining homeostasis. In preceding studies, we showed that antibiotic-induced perturbations of the gut microbiome of APPPS1-21 mice resulted in significant attenuation in Aβ amyloidosis and altered microglial phenotypes that are specific to male mice. The molecular events underlying microglial phenotypic transitions remain unclear. Here, by generating 'APPPS1-21-CD11br' reporter mice, we investigated the translational state of microglial/macrophage ribosomes during their phenotypic transition and in a sex-specific manner. METHODS Six groups of mice that included WT-CD11br, antibiotic (ABX) or vehicle-treated APPPS1-21-CD11br males and females were sacrificed at 7-weeks of age (n = 15/group) and used for immunoprecipitation of microglial/macrophage polysomes from cortical homogenates using anti-FLAG antibody. Liquid chromatography coupled to tandem mass spectrometry and label-free quantification was used to identify newly synthesized peptides isolated from polysomes. RESULTS We show that ABX-treatment leads to decreased Aβ levels in male APPPS1-21-CD11br mice with no significant changes in females. We identified microglial/macrophage polypeptides involved in mitochondrial dysfunction and altered calcium signaling that are associated with Aβ-induced oxidative stress. Notably, female mice also showed downregulation of newly-synthesized ribosomal proteins. Furthermore, male mice showed an increase in newly-synthesized polypeptides involved in FcγR-mediated phagocytosis, while females showed an increase in newly-synthesized polypeptides responsible for actin organization associated with microglial activation. Next, we show that ABX-treatment resulted in substantial remodeling of the epigenetic landscape, leading to a metabolic shift that accommodates the increased bioenergetic and biosynthetic demands associated with microglial polarization in a sex-specific manner. While microglia in ABX-treated male mice exhibited a metabolic shift towards a neuroprotective phenotype that promotes Aβ clearance, microglia in ABX-treated female mice exhibited loss of energy homeostasis due to persistent mitochondrial dysfunction and impaired lysosomal clearance that was associated with inflammatory phenotypes. CONCLUSIONS Our studies provide the first snapshot of the translational state of microglial/macrophage cells in a mouse model of Aβ amyloidosis that was subject to ABX treatment. ABX-mediated changes resulted in metabolic reprogramming of microglial phenotypes to modulate immune responses and amyloid clearance in a sex-specific manner. This microglial plasticity to support neuro-energetic homeostasis for its function based on sex paves the path for therapeutic modulation of immunometabolism for neurodegeneration.
Collapse
Affiliation(s)
- Shabana M Shaik
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Yajun Cao
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Joseph V Gogola
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Hemraj B Dodiya
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Xulun Zhang
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Hejer Boutej
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Laval University, Québec, QC, Canada
| | - Weinong Han
- Dept. of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Jasna Kriz
- CERVO Brain Research Centre and Department of Psychiatry and Neuroscience, Laval University, Québec, QC, Canada
| | | |
Collapse
|
4
|
Lepiarz-Raba I, Gbadamosi I, Florea R, Paolicelli RC, Jawaid A. Metabolic regulation of microglial phagocytosis: Implications for Alzheimer's disease therapeutics. Transl Neurodegener 2023; 12:48. [PMID: 37908010 PMCID: PMC10617244 DOI: 10.1186/s40035-023-00382-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023] Open
Abstract
Microglia, the resident immune cells of the brain, are increasingly implicated in the regulation of brain health and disease. Microglia perform multiple functions in the central nervous system, including surveillance, phagocytosis and release of a variety of soluble factors. Importantly, a majority of their functions are closely related to changes in their metabolism. This natural inter-dependency between core microglial properties and metabolism offers a unique opportunity to modulate microglial activities via nutritional or metabolic interventions. In this review, we examine the existing scientific literature to synthesize the hypothesis that microglial phagocytosis of amyloid beta (Aβ) aggregates in Alzheimer's disease (AD) can be selectively enhanced via metabolic interventions. We first review the basics of microglial metabolism and the effects of common metabolites, such as glucose, lipids, ketone bodies, glutamine, pyruvate and lactate, on microglial inflammatory and phagocytic properties. Next, we examine the evidence for dysregulation of microglial metabolism in AD. This is followed by a review of in vivo studies on metabolic manipulation of microglial functions to ascertain their therapeutic potential in AD. Finally, we discuss the effects of metabolic factors on microglial phagocytosis of healthy synapses, a pathological process that also contributes to the progression of AD. We conclude by enlisting the current challenges that need to be addressed before strategies to harness microglial phagocytosis to clear pathological protein deposits in AD and other neurodegenerative disorders can be widely adopted.
Collapse
Affiliation(s)
- Izabela Lepiarz-Raba
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | - Ismail Gbadamosi
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Roberta Florea
- Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | | - Ali Jawaid
- Laboratory for Translational Research in Neuropsychiatric Disorders (TREND), BRAINCITY: Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
5
|
Zhang Y, Liu K, Li Y, Ma Y, Wang Y, Fan Z, Li Y, Qi J. D-beta-hydroxybutyrate protects against microglial activation in lipopolysaccharide-treated mice and BV-2 cells. Metab Brain Dis 2022; 38:1115-1126. [PMID: 36543978 DOI: 10.1007/s11011-022-01146-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Microglial activation is a key event in neuroinflammation, which, in turn, is a central process in neurological disorders. In this study, we investigated the protective effects of D-beta-hydroxybutyrate (BHB) against microglial activation in lipopolysaccharide (LPS)-treated mice and BV-2 cells. The effects of BHB in mice were assessed using behavioral testing, morphological analysis and immunofluorescence labeling for the microglial marker ionizing calcium-binding adaptor molecule 1 (IBA-1) and the inflammatory cytokine interleukin-6 (IL-6) in the hippocampus. Moreover, we examined the levels of the inflammatory IL-6 and tumor necrosis factor-α (TNF-α), as well as those of the neuroprotective brain-derived neurotrophic factor (BDNF) and transforming growth factor-β (TGF-β) in the brain. In addition, we examined the effects of BHB on IL-6, TNF-α, BDNF, TGF-β, reactive oxygen species (ROS) level and cell viability in LPS-stimulated BV-2 cells. BHB treatments attenuated behavioral abnormalities, reduced the number of IBA-1-positive cells and the intensity of IL-6 fluorescence in the hippocampus, with amelioration of microglia morphological changes in the LPS-treated mice. Furthermore, BHB inhibited IL-6 and TNF-α generation, but promoted BDNF and TGF-β production in the brain of LPS-treated mice. In vitro, BHB inhibited IL-6 and TNF-α generation, increased BDNF and TGF-β production, reduced ROS level, ameliorated morphological changes and elevated cell viability of LPS-stimulated BV-2 cells. Together, our findings suggest that BHB exerts protective effects against microglial activation in vitro and in vivo, thereby reducing neuroinflammation.
Collapse
Affiliation(s)
- Yuping Zhang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Kun Liu
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yunpeng Li
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yujie Ma
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yu Wang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Zihan Fan
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yanning Li
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China.
| | - Jinsheng Qi
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China.
| |
Collapse
|
6
|
Wang L, Chen P, Xiao W. β-hydroxybutyrate as an Anti-Aging Metabolite. Nutrients 2021; 13:nu13103420. [PMID: 34684426 PMCID: PMC8540704 DOI: 10.3390/nu13103420] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/18/2022] Open
Abstract
The ketone bodies, especially β-hydroxybutyrate (β-HB), derive from fatty acid oxidation and alternatively serve as a fuel source for peripheral tissues including the brain, heart, and skeletal muscle. β-HB is currently considered not solely an energy substrate for maintaining metabolic homeostasis but also acts as a signaling molecule of modulating lipolysis, oxidative stress, and neuroprotection. Besides, it serves as an epigenetic regulator in terms of histone methylation, acetylation, β-hydroxybutyrylation to delay various age-related diseases. In addition, studies support endogenous β-HB administration or exogenous supplementation as effective strategies to induce a metabolic state of nutritional ketosis. The purpose of this review article is to provide an overview of β-HB metabolism and its relationship and application in age-related diseases. Future studies are needed to reveal whether β-HB has the potential to serve as adjunctive nutritional therapy for aging.
Collapse
Affiliation(s)
| | - Peijie Chen
- Correspondence: (P.C.); (W.X.); Tel.: +86-021-65508039 (P.C.); +86-021-65507367 (W.X.)
| | - Weihua Xiao
- Correspondence: (P.C.); (W.X.); Tel.: +86-021-65508039 (P.C.); +86-021-65507367 (W.X.)
| |
Collapse
|
7
|
Wang L, Chen P, Xiao W. β-hydroxybutyrate as an Anti-Aging Metabolite. Nutrients 2021; 13:3420. [PMID: 34684426 PMCID: PMC8540704 DOI: 10.3390/nu13103420&set/a 930838900+926910489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The ketone bodies, especially β-hydroxybutyrate (β-HB), derive from fatty acid oxidation and alternatively serve as a fuel source for peripheral tissues including the brain, heart, and skeletal muscle. β-HB is currently considered not solely an energy substrate for maintaining metabolic homeostasis but also acts as a signaling molecule of modulating lipolysis, oxidative stress, and neuroprotection. Besides, it serves as an epigenetic regulator in terms of histone methylation, acetylation, β-hydroxybutyrylation to delay various age-related diseases. In addition, studies support endogenous β-HB administration or exogenous supplementation as effective strategies to induce a metabolic state of nutritional ketosis. The purpose of this review article is to provide an overview of β-HB metabolism and its relationship and application in age-related diseases. Future studies are needed to reveal whether β-HB has the potential to serve as adjunctive nutritional therapy for aging.
Collapse
Affiliation(s)
| | - Peijie Chen
- Correspondence: (P.C.); (W.X.); Tel.: +86-021-65508039 (P.C.); +86-021-65507367 (W.X.)
| | - Weihua Xiao
- Correspondence: (P.C.); (W.X.); Tel.: +86-021-65508039 (P.C.); +86-021-65507367 (W.X.)
| |
Collapse
|
8
|
β-hydroxybutyrate as an Anti-Aging Metabolite. Nutrients 2021. [DOI: 10.3390/nu13103420
expr 933295879 + 814156476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The ketone bodies, especially β-hydroxybutyrate (β-HB), derive from fatty acid oxidation and alternatively serve as a fuel source for peripheral tissues including the brain, heart, and skeletal muscle. β-HB is currently considered not solely an energy substrate for maintaining metabolic homeostasis but also acts as a signaling molecule of modulating lipolysis, oxidative stress, and neuroprotection. Besides, it serves as an epigenetic regulator in terms of histone methylation, acetylation, β-hydroxybutyrylation to delay various age-related diseases. In addition, studies support endogenous β-HB administration or exogenous supplementation as effective strategies to induce a metabolic state of nutritional ketosis. The purpose of this review article is to provide an overview of β-HB metabolism and its relationship and application in age-related diseases. Future studies are needed to reveal whether β-HB has the potential to serve as adjunctive nutritional therapy for aging.
Collapse
|
9
|
Why a d-β-hydroxybutyrate monoester? Biochem Soc Trans 2020; 48:51-59. [PMID: 32096539 PMCID: PMC7065286 DOI: 10.1042/bst20190240] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
Much of the world's prominent and burdensome chronic diseases, such as diabetes, Alzheimer's, and heart disease, are caused by impaired metabolism. By acting as both an efficient fuel and a powerful signalling molecule, the natural ketone body, d-β-hydroxybutyrate (βHB), may help circumvent the metabolic malfunctions that aggravate some diseases. Historically, dietary interventions that elevate βHB production by the liver, such as high-fat diets and partial starvation, have been used to treat chronic disease with varying degrees of success, owing to the potential downsides of such diets. The recent development of an ingestible βHB monoester provides a new tool to quickly and accurately raise blood ketone concentration, opening a myriad of potential health applications. The βHB monoester is a salt-free βHB precursor that yields only the biologically active d-isoform of the metabolite, the pharmacokinetics of which have been studied, as has safety for human consumption in athletes and healthy volunteers. This review describes fundamental concepts of endogenous and exogenous ketone body metabolism, the differences between the βHB monoester and other exogenous ketones and summarises the disease-specific biochemical and physiological rationales behind its clinical use in diabetes, neurodegenerative diseases, heart failure, sepsis related muscle atrophy, migraine, and epilepsy. We also address the limitations of using the βHB monoester as an adjunctive nutritional therapy and areas of uncertainty that could guide future research.
Collapse
|
10
|
Neudorf H, Durrer C, Myette‐Cote E, Makins C, O'Malley T, Little JP. Oral Ketone Supplementation Acutely Increases Markers of NLRP3 Inflammasome Activation in Human Monocytes. Mol Nutr Food Res 2019; 63:e1801171. [DOI: 10.1002/mnfr.201801171] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/25/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Helena Neudorf
- School of Health and Exercise SciencesUniversity of British Columbia Okanagan Campus Kelowna BC V1V 1V7 Canada
| | - Cody Durrer
- School of Health and Exercise SciencesUniversity of British Columbia Okanagan Campus Kelowna BC V1V 1V7 Canada
| | - Etienne Myette‐Cote
- School of Health and Exercise SciencesUniversity of British Columbia Okanagan Campus Kelowna BC V1V 1V7 Canada
| | - Caitlyn Makins
- Faculty of MedicineUniversity of British Columbia Okanagan Campus Kelowna BC V1V 1V7 Canada
| | - Trevor O'Malley
- School of Health and Exercise SciencesUniversity of British Columbia Okanagan Campus Kelowna BC V1V 1V7 Canada
| | - Jonathan P. Little
- School of Health and Exercise SciencesUniversity of British Columbia Okanagan Campus Kelowna BC V1V 1V7 Canada
| |
Collapse
|