1
|
Deng W, Fu P, Li J, Wang X, Zhang Y. Effect of long-term dry-wet circulations on the Solidification/stabilization of Municipal solid waste incineration fly ash using a novel cementitious material. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24302-24314. [PMID: 38441736 DOI: 10.1007/s11356-024-32742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/28/2024] [Indexed: 04/07/2024]
Abstract
Solidification/stabilization (S/S) is a typical technique to immobilize toxic heavy metals in Municipal solid waste incineration fly ash (MSWI FA). This study utilized blast furnace slag, steel slag, desulfurization gypsum, and phosphoric acid sludge to develop a novel metallurgical slag based cementing material (MSCM). Its S/S effects of MSWI FA and long-term S/S effectiveness under dry-wet circulations (DWC) were evaluated and compared with ordinary Portland cement (OPC). The MSCM-FA block with 25 wt.% MSCM content achieved 28-day compressive strength of 9.38 MPa, indicating its high hydration reactivity. The leaching concentrations of Pb, Zn and Cd were just 51.4, 1895.8 and 36.1 μg/L, respectively, well below the limit standard of Municipal solid wastes in China (GB 16889-2008). After 30 times' DWC, leaching concentrations of Pb, Zn and Cd for MSCM-FA blocks increased up to 130.7, 9107.4 and 156.8 μg/L, respectively, but considerably lower than those for OPC-FA blocks (689, 11,870.6 and 185.2 μg/L, respectively). The XRD and chemical speciation analysis revealed the desorption of Pb, Zn and Cd attached to surface of C-S-H crystalline structure during the DWC. The XPS and SEM-EDS analysis confirmed the formation of Pb-O-Si and Zn-O-Si bonds via isomorphous replacement of C-A-S-H in binder-FA blocks. Ettringite crystalline structure in OPC-FA block was severely destructed during the DWC, resulting in the reduced contents of PbSO4 and CaZn2Si2O7·H2O and the higher leachability of Pb2+ and Zn2+.
Collapse
Affiliation(s)
- Wei Deng
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Pingfeng Fu
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jia Li
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoli Wang
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuliang Zhang
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
2
|
Fu QL, Weng N, Fujii M, Zhou DM. Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature. CHEMOSPHERE 2018; 194:285-296. [PMID: 29216548 DOI: 10.1016/j.chemosphere.2017.11.183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Global warming has obtained increasing attentions due to its multiple impacts on agro-ecosystem. However, limited efforts had been devoted to reveal the temporal variability of metal speciation and phytotoxicity of heavy metal-polluted soils affected by elevated temperature under the global warming scenario. In this study, effects of elevated temperature (15 °C, 25 °C, and 35 °C) on the physicochemical properties, microbial metabolic activities, and phytotoxicity of three Cu-polluted soils were investigated by a laboratory incubation study. Soil physicochemical properties were observed to be significantly altered by elevated temperature with the degree of temperature effect varying in soil types and incubation time. The Biolog and enzymatic tests demonstrated that soil microbial activities were mainly controlled and decreased with increasing incubation temperature. Moreover, plant assays confirmed that the phytotoxicity and Cu uptake by wheat roots were highly dependent on soil types but less affected by incubation temperature. Overall, the findings in this study have highlighted the importance of soil types to better understand the temperature-dependent alternation of soil properties, Cu speciation and bioavailability, as well as phytotoxicity of Cu-polluted soils under global warming scenario. The present study also suggests the necessary of investigating effects of soil types on the transport and accumulation of toxic elements in soil-crop systems under global warming scenario.
Collapse
Affiliation(s)
- Qing-Long Fu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Ookayama, Meguroku, Tokyo 152-8552, Japan.
| | - Nanyan Weng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; HKUST-Shenzhen Research Institute, Shenzhen, 518057, PR China.
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Ookayama, Meguroku, Tokyo 152-8552, Japan.
| | - Dong-Mei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
3
|
Shaheen SM, Balbaa AA, Khatab AM, Rinklebe J. Compost and sulfur affect the mobilization and phyto-availability of Cd and Ni to sorghum and barnyard grass in a spiked fluvial soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:1305-1324. [PMID: 28444474 DOI: 10.1007/s10653-017-9962-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Soil reclamation via additives can cause contradictory effects on the mobilization of toxic elements in soils under dry and wet conditions. Therefore, our aim was to investigate the impact of compost and sulfur in two rates (1.25 and 2.5%) on fractionation, mobilization, and phyto-availability of cadmium (Cd) and nickel (Ni) to sorghum (dry soil) and barnyard grass (wet soil) in a fluvial soil spiked with 25 mg Cd or 200 mg Ni/kg soil. Compost decreased the solubility and mobilization of Cd (especially in dry soil) and Ni (in both soils). Sulfur increased the solubility of Cd (31% in dry soil-49% in wet soil) and Ni (4.6% in wet soil-8.7% in dry soil). Sulfur altered the carbonate fraction of Cd to the soluble fraction and the residual fraction of Cd and Ni to the non-residual fraction. Compost decreased Cd and increased Ni in sorghum, but enhanced Cd and degraded Ni in grass. Sulfur increased Cd and Ni in both plants, and the increasing rate of Cd was higher in grass than in sorghum, while Ni was higher in sorghum than in grass. These results suggest that compost can be used as an immobilizing agent for Cd in the dry soil and Ni in the wet soil; however, it might be used as mobilizing agent for Cd in the wet soil and Ni in the dry soil. Sulfur (with rate 2.5%) can be used for enhancing the phyto-extraction of Cd and Ni (especially Cd) from contaminated alkaline soils.
Collapse
Affiliation(s)
- Sabry M Shaheen
- Department of Soil and Water Sciences, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh, 33 516, Egypt.
- Laboratory of Soil- and Groundwater-Management, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany.
| | - Ali A Balbaa
- Department of Soil and Water Sciences, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh, 33 516, Egypt
| | - Alaa M Khatab
- Department of Soil and Water Sciences, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh, 33 516, Egypt
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany
- Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, South Korea
| |
Collapse
|
4
|
Voua Otomo P, Reinecke SA, Reinecke AJ. Combined effects of metal contamination and temperature on the potwormEnchytraeus doerjesi(Oligochaeta). J Appl Toxicol 2012; 33:1520-4. [PMID: 23047761 DOI: 10.1002/jat.2820] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Patricks Voua Otomo
- Department of Botany and Zoology; Stellenbosch University; Private Bag X1 Matieland 7602 South Africa
| | - Sophie A. Reinecke
- Department of Botany and Zoology; Stellenbosch University; Private Bag X1 Matieland 7602 South Africa
| | - Adriaan J. Reinecke
- Department of Botany and Zoology; Stellenbosch University; Private Bag X1 Matieland 7602 South Africa
| |
Collapse
|
5
|
Park JH, Bolan N, Megharaj M, Naidu R. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2011; 92:1115-1120. [PMID: 21190789 DOI: 10.1016/j.jenvman.2010.11.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/24/2010] [Accepted: 11/26/2010] [Indexed: 05/30/2023]
Abstract
This paper examines the potential value of phosphate solubilizing bacteria (Enterobacter cloacae) in the dissolution of rock phosphate (RP) and subsequent immobilization of lead (Pb) in both bacterial growth medium and soils. Enterobacter sp. showed resistance to Pb and the bacterium solubilized 17.5% of RP in the growth medium. Enterobacter sp. did not enhance Pb immobilization in solution because of acidification of bacterial medium, thereby inhibiting the formation of P-induced Pb precipitation. However, in the case of soil, Enterobacter sp. increased Pb immobilization by 6.98, 25.6 and 32.0% with the RP level of 200, 800 and 1600 mg P/kg, respectively. The immobilization of Pb in Pb-spiked soils was attributed to pyromorphite formation as indicated by XRD analysis. Inoculation of phosphate solubilizing bacteria with RP in soil can be used as an alternative technique to soluble P compounds which can cause eutrophication of surface water.
Collapse
Affiliation(s)
- Jin Hee Park
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | | | | | | |
Collapse
|
6
|
Park JH, Bolan N, Megharaj M, Naidu R. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. JOURNAL OF HAZARDOUS MATERIALS 2011; 185:829-36. [PMID: 20971555 DOI: 10.1016/j.jhazmat.2010.09.095] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/17/2010] [Accepted: 09/11/2010] [Indexed: 05/08/2023]
Abstract
Lead (Pb), a highly toxic heavy metal forms stable compounds with phosphate (P). The potential of phosphate solubilizing bacteria (PSB) to immobilize Pb by enhancing solubilization of insoluble P compounds was tested in this research. Eighteen different PSB strains isolated from P amended and Pb contaminated soils were screened for their efficiency in P solubilization. The PSB isolated from P amended soils solubilized 217-479 mg/L of P while the PSB from Pb contaminated soil solubilized 31-293 mg/L of P. Stepwise multiple regression analysis and P solubility kinetics indicated that the major mechanism of P solubilization by PSB is the pH reduction through the release of organic acids. From the isolated bacteria, two PSB were chosen for Pb immobilization and these bacteria were identified as Pantoea sp. and Enterobacter sp., respectively. The PSB significantly increased P solubilization by 25.0% and 49.9% in the case of Pantoea sp., and 63.3% and 88.6% in the case of Enterobacter sp. for 200 and 800 mg/kg of rock phosphate (RP) addition, respectively, thereby enhancing the immobilization of Pb by 8.25-13.7% in the case of Pantoea sp. and 14.7-26.4% in the case of Enterobacter sp. The ability of PSB to solubilize P, promote plant growth, and immobilize Pb can be used for phytostabilization of Pb contaminated soils.
Collapse
Affiliation(s)
- Jin Hee Park
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA, Australia
| | | | | | | |
Collapse
|
7
|
Park JH, Bolan N, Megharaj M, Naidu R. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:853-60. [PMID: 21130488 DOI: 10.1016/j.scitotenv.2010.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/05/2010] [Accepted: 11/06/2010] [Indexed: 05/08/2023]
Abstract
The mobility and bioavailability of lead (Pb) in soils can be mitigated by its immobilization using both soluble and insoluble phosphate (P) compounds. The effectiveness of insoluble P sources on Pb immobilization depends on their rate of dissolution which can be enhanced by phosphate solubilizing bacteria (PSB). In this study, the effect of soluble (potassium dihydrogen phosphate) and insoluble (rock phosphate in the presence and absence of PSB) P compounds on the immobilization of Pb, and leaching of Pb and P was examined using both naturally contaminated (SR soil: NH₄NO₃ extractable Pb: 28.7 mg/kg, pH: 5.88, organic matter: 0.7%) and Pb spiked (AH soil: NH(4)NO(3) extractable Pb: 42.7 mg/kg, pH: 5.23, organic matter: 10.9%) soils. Phosphate compounds were added at the rate of 200 mg P/kg and 800 mg P/kg for SR and AH soils, respectively. Soluble P treatment immobilized 80% and 57% of Pb in SR and AH soils, respectively. Insoluble rock phosphate immobilized 40% and 9% of Pb without PSB, and 60% and 17% with PSB in SR and AH soils, respectively. Lead leaching was the lowest when soils were amended with rock phosphate in the presence of PSB, which reduced Pb leaching by 36% for SR soil and 18% for AH soil compared to the control. The leaching of Pb increased when the soils were amended with soluble P because soluble P treatment increased dissolved organic carbon (DOC) concentration of soil, thereby increasing Pb mobility. Soluble P treatment significantly increased P leaching and 9% of total added P was leached from low P retaining AH soil. The optimum level of P amendment is a critical issue when soluble P is used as a Pb immobilizing agent because of eutrophication resulting from excessive P leaching to surface and ground water. While the soluble P compound was effective in the immobilization of Pb, it resulted in P leaching which increased with increasing levels of P addition. However, rock phosphate amendment with PSB achieved the immobilization of Pb with a minimum effect on both Pb and P leaching.
Collapse
Affiliation(s)
- Jin Hee Park
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA, Australia
| | | | | | | |
Collapse
|