1
|
Bo Y, Zhang H, Li Y, Reva Y, Xie L, Guldi DM. Tuning the Absorption, Fluorescence, Intramolecular Charge Transfer, and Intersystem Crossing in Spiro[fluorene]acridinone. Angew Chem Int Ed Engl 2024; 63:e202313936. [PMID: 38314965 DOI: 10.1002/anie.202313936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024]
Abstract
In this work, we prepared a series of electron donor-acceptor systems based on spiro[fluorene-9,7'-dibenzo[c,h]acridine]-5'-one (SFDBAO). Our SFDBAOs consist of orthogonally positioned fluorenes and aromatic ketones. By fine-tuning the substitution of electron-donating pyrenes, the complex interplay among different excited-state decay channels and the overall impact of solvents on these decay channels were uncovered. Placing pyrene, for example, at the aromatic ketones resulted in a profound solvatochromism in the form of a bright charge-transfer (CT) emission spanning from yellow to red-NIR. In contrast, a dark non-emissive CT was noted upon pyrene substitution at the fluorenes. In apolar solvents, efficient triplet-excited state generation was observed for all SFDBAOs. Either charge transfer was concluded to mediate the intersystem crossing (ISC) in the case of pyrene substitution or the El-Sayed rule was applicable when lacking pyrene substitution as in the case of SFABAO. In polar solvents, charge separation is the sole decay upon pyrene substitution. Moreover, competition between ISC and CT lowered the triplet-excited state generation in SFDBAO.
Collapse
Affiliation(s)
- Yifan Bo
- Department of Chemistry and Pharmacy &, Interdisciplinary Center of Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - He Zhang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Center for Molecular Systems and Organic Devices (CMSOD), Nanjing University of Posts and Telecommunications, Wenyuan Road 9, Nanjing, 210023, China
- School of Materials Science and Engineering, Anhui University, Jiulong Road 111, Hefei, 230601, China
| | - Yue Li
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Center for Molecular Systems and Organic Devices (CMSOD), Nanjing University of Posts and Telecommunications, Wenyuan Road 9, Nanjing, 210023, China
| | - Yana Reva
- Department of Chemistry and Pharmacy &, Interdisciplinary Center of Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Linghai Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Center for Molecular Systems and Organic Devices (CMSOD), Nanjing University of Posts and Telecommunications, Wenyuan Road 9, Nanjing, 210023, China
- School of Flexible Electronics (SoFE), Henan Institute of Flexible Electronics (HIFE), Henan University, Mingli Road 379, Zhengzhou, 450046, China
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy &, Interdisciplinary Center of Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Quindt MI, Gola GF, Ramirez JA, Bonesi SM. Light-Driven Two-Step Preparation of 4-Chromanone Fused to Estrone Derivatives. J Org Chem 2023; 88:13796-13812. [PMID: 37721803 DOI: 10.1021/acs.joc.3c01446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
A protocol involving the irradiation of some 3-(2-alkenyl)estrone and 3-(2-alkenyl)-17-norestrone derivatives under a nitrogen atmosphere in organic solvents (both hexane and MeOH) followed by base-mediated intramolecular oxa-Michael cyclization reaction was investigated under steady-state conditions. The solvent effect and nature of the acyl group on the preparative photoreaction were studied and the multiplicity of the excited state was also demonstrated. The ortho-regioisomers were obtained in modest to good yields. Intramolecular based-mediate cyclization reaction of these synthons led to the formation of a set of novel substituted 4-chromanone moieties fused to estrone (and 17-norestrone) in good yields. This two-step sequential procedure involving a photochemical/intramolecular thermal cyclization strategy will be useful for the preparation of wide heterocyclic-fused-steroid compounds.
Collapse
Affiliation(s)
- Matías I Quindt
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET - Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Gabriel F Gola
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), CONICET - Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Javier A Ramirez
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), CONICET - Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Sergio M Bonesi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET - Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| |
Collapse
|
3
|
Ley C, Siedel A, Bertaux T, Croutxé-Barghorn C, Allonas X. Photochemical Processes of Superbase Generation in Xanthone Carboxylic Salts. Angew Chem Int Ed Engl 2023; 62:e202214784. [PMID: 36533332 DOI: 10.1002/anie.202214784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Photobase generators are species that allow the photocatalysis of various reactions, such as thiol-Michael, thiol-isocyanate, and ring-opening polymerization reactions. However, existing compounds have complex syntheses and low quantum yields. To overcome these problems, photobase generators based on the photodecarboxylation reaction were developed. We synthesized and studied the photochemistry and photophysics of two xanthone photobase, their carboxylic acid precursors, and their photoproducts to understand the photobase generation mechanism. We determined accurate quantum yields of triplet states and photobase generation. The effect of the intermediate radical preceding the base release was demonstrated. We characterized the photophysics of the photobase by femtosecond spectroscopy and showed that the photodecarboxylation process occurred from the second excited triplet state with a rate constant of 2.2×109 s-1 .
Collapse
Affiliation(s)
- Christian Ley
- Laboratoire de Photochimie et d'Ingénierie Macromoléculaire, Université de Haute Alsace, 3b rue A. Werner, 68200, Mulhouse, France
| | - Antoine Siedel
- Laboratoire de Photochimie et d'Ingénierie Macromoléculaire, Université de Haute Alsace, 3b rue A. Werner, 68200, Mulhouse, France
| | - Tony Bertaux
- Laboratoire de Photochimie et d'Ingénierie Macromoléculaire, Université de Haute Alsace, 3b rue A. Werner, 68200, Mulhouse, France
| | - Céline Croutxé-Barghorn
- Laboratoire de Photochimie et d'Ingénierie Macromoléculaire, Université de Haute Alsace, 3b rue A. Werner, 68200, Mulhouse, France
| | - Xavier Allonas
- Laboratoire de Photochimie et d'Ingénierie Macromoléculaire, Université de Haute Alsace, 3b rue A. Werner, 68200, Mulhouse, France
| |
Collapse
|
4
|
Alías-Rodríguez M, de Graaf C, Huix-Rotllant M. Ultrafast Intersystem Crossing in Xanthone from Wavepacket Dynamics. J Am Chem Soc 2021; 143:21474-21477. [PMID: 34905690 DOI: 10.1021/jacs.1c07039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most aromatic ketones containing first-row elements undergo unexpectedly fast intersystem crossing in a few tens of picoseconds and a quantum yield close to unity. Among them, xanthone (9H-xanthen-9-one) possesses one of the fastest singlet-triplet rates of only ∼1.5 ps. The exact mechanism of this unusually fast transition is still under debate. Here, we perform wavepacket dynamics of the photochemistry of xanthone in the gas phase and in polar solvents. We show that xanthone follows El-Sayed's rule for intersystem crossing. From the second singlet excited state, the mechanism is sequential: (i) an internal conversion between singlets 1ππ* → 1nπ* (85 fs), (ii) an intersystem crossing 1nπ* → 3ππ* (2.0 ps), and (iii) an internal conversion between triplets 3ππ* → 3nπ* (602 fs). Each transfer finds its origin in a barrierless access to electronic state intersections. These intersections are close to minimum energy structures, allowing for efficient transitions from the initial singlet state to the triplets.
Collapse
Affiliation(s)
- Marc Alías-Rodríguez
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43 007, Spain.,Aix-Marseille Univ, CNRS, ICR, Marseille 13 397, France
| | - Coen de Graaf
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43 007, Spain.,ICREA, Passeig Lluís Companys 23, Barcelona 08 010, Spain
| | | |
Collapse
|
5
|
Bracker M, Marian CM, Kleinschmidt M. Internal conversion of singlet and triplet states employing numerical DFT/MRCI derivative couplings: Implementation, tests, and application to xanthone. J Chem Phys 2021; 155:014102. [PMID: 34241387 DOI: 10.1063/5.0056182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an efficient implementation of nonadiabatic coupling matrix elements (NACMEs) for density functional theory/multireference configuration interaction (DFT/MRCI) wave functions of singlet and triplet multiplicity and an extension of the Vibes program that allows us to determine rate constants for internal conversion (IC) in addition to intersystem crossing (ISC) nonradiative transitions. Following the suggestion of Plasser et al. [J. Chem. Theory Comput. 12, 1207 (2016)], the derivative couplings are computed as finite differences of wave function overlaps. Several measures have been taken to speed up the calculation of the NACMEs. Schur's determinant complement is employed to build up the determinant of the full matrix of spin-blocked orbital overlaps from precomputed spin factors with fixed orbital occupation. Test calculations on formaldehyde, pyrazine, and xanthone show that the mutual excitation level of the configurations at the reference and displaced geometries can be restricted to 1. In combination with a cutoff parameter of tnorm = 10-8 for the DFT/MRCI wave function expansion, this approximation leads to substantial savings of cpu time without essential loss of precision. With regard to applications, the photoexcitation decay kinetics of xanthone in apolar media and in aqueous solution is in the focus of the present work. The results of our computational study substantiate the conjecture that S1 T2 reverse ISC outcompetes the T2 ↝ T1 IC in aqueous solution, thus explaining the occurrence of delayed fluorescence in addition to prompt fluorescence.
Collapse
Affiliation(s)
- Mario Bracker
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christel M Marian
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Martin Kleinschmidt
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Yakubov S, Barham JP. Photosensitized direct C-H fluorination and trifluoromethylation in organic synthesis. Beilstein J Org Chem 2020; 16:2151-2192. [PMID: 32952732 PMCID: PMC7476599 DOI: 10.3762/bjoc.16.183] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
The importance of fluorinated products in pharmaceutical and medicinal chemistry has necessitated the development of synthetic fluorination methods, of which direct C-H fluorination is among the most powerful. Despite the challenges and limitations associated with the direct fluorination of unactivated C-H bonds, appreciable advancements in manipulating the selectivity and reactivity have been made, especially via transition metal catalysis and photochemistry. Where transition metal catalysis provides one strategy for C-H bond activation, transition-metal-free photochemical C-H fluorination can provide a complementary selectivity via a radical mechanism that proceeds under milder conditions than thermal radical activation methods. One exciting development in C-F bond formation is the use of small-molecule photosensitizers, allowing the reactions i) to proceed under mild conditions, ii) to be user-friendly, iii) to be cost-effective and iv) to be more amenable to scalability than typical photoredox-catalyzed methods. In this review, we highlight photosensitized C-H fluorination as a recent strategy for the direct and remote activation of C-H (especially C(sp3)-H) bonds. To guide the readers, we present the developing mechanistic understandings of these reactions and exemplify concepts to assist the future planning of reactions.
Collapse
Affiliation(s)
- Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
7
|
Kayal S, Roy K, Adithya Lakshmanna Y, Umapathy S. Ultrafast Raman Loss Spectroscopy Unravels the Dynamics in Entangled Singlet and Triplet States in Thioxanthone. J Phys Chem A 2018; 122:6048-6054. [DOI: 10.1021/acs.jpca.8b04310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Ravi Kumar V, Ariese F, Umapathy S. Triplet excited electronic state switching induced by hydrogen bonding: A transient absorption spectroscopy and time-dependent DFT study. J Chem Phys 2016; 144:114301. [PMID: 27004870 DOI: 10.1063/1.4943514] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The solvent plays a decisive role in the photochemistry and photophysics of aromatic ketones. Xanthone (XT) is one such aromatic ketone and its triplet-triplet (T-T) absorption spectra show intriguing solvatochromic behavior. Also, the reactivity of XT towards H-atom abstraction shows an unprecedented decrease in protic solvents relative to aprotic solvents. Therefore, a comprehensive solvatochromic analysis of the triplet-triplet absorption spectra of XT was carried out in conjunction with time dependent density functional theory using the ad hoc explicit solvent model approach. A detailed solvatochromic analysis of the T-T absorption bands of XT suggests that the hydrogen bonding interactions are different in the corresponding triplet excited states. Furthermore, the contributions of non-specific and hydrogen bonding interactions towards differential solvation of the triplet states in protic solvents were found to be of equal magnitude. The frontier molecular orbital and electron density difference analysis of the T1 and T2 states of XT indicates that the charge redistribution in these states leads to intermolecular hydrogen bond strengthening and weakening, respectively, relative to the S0 state. This is further supported by the vertical excitation energy calculations of the XT-methanol supra-molecular complex. The intermolecular hydrogen bonding potential energy curves obtained for this complex in the S0, T1, and T2 states support the model. In summary, we propose that the different hydrogen bonding mechanisms exhibited by the two lowest triplet excited states of XT result in a decreasing role of the nπ(∗) triplet state, and are thus responsible for its reduced reactivity towards H-atom abstraction in protic solvents.
Collapse
Affiliation(s)
- Venkatraman Ravi Kumar
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| | - Freek Ariese
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| | - Siva Umapathy
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Chen L, Zhou QH, Liu X, Zhou XG, Liu SL. Solvent Effect on the Photoinduced Electron Transfer Reaction Between Thioxanthen-9-one and Diphenylamine. CHINESE J CHEM PHYS 2015. [DOI: 10.1063/1674-0068/28/cjcp1503054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
10
|
Pandey R, Umapathy S. Solvent-induced changes on the polarity of the triplet excited state of 2-chlorothioxanthone: From time-resolved absorption and resonance Raman spectroscopies. Chem Phys 2014. [DOI: 10.1016/j.chemphys.2013.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Photophysical characterization of the plant growth regulator 2-(1-naphthyl) acetamide. J Photochem Photobiol A Chem 2013. [DOI: 10.1016/j.jphotochem.2013.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Rai-Constapel V, Etinski M, Marian CM. Photophysics of Xanthone: A Quantum Chemical Perusal. J Phys Chem A 2013; 117:3935-44. [DOI: 10.1021/jp401755j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vidisha Rai-Constapel
- Institute of Theoretical and
Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Mihajlo Etinski
- Institute of Theoretical and
Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158
Belgrade, Serbia
| | - Christel M. Marian
- Institute of Theoretical and
Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Pandey R, Umapathy S. Simultaneous Detection of Two Triplets: A Time-Resolved Resonance Raman Study. J Phys Chem A 2012; 116:8484-9. [DOI: 10.1021/jp3047467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rishikesh Pandey
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
14
|
Tang R, Zhang P, Li H, Liu Y, Wang W. Photosensitized xanthone-based oxidation of guanine and its repair: a laser flash photolysis study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2011; 105:157-61. [PMID: 21908198 DOI: 10.1016/j.jphotobiol.2011.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/05/2011] [Accepted: 08/11/2011] [Indexed: 01/22/2023]
Abstract
The photosensitized oxidation of guanine (G) by the triplet state of xanthone (XT) and the repair for photo-damaged G(-H)(·) by ferulic acid (FCA) were investigated using the laser flash photolysis technique. The rate constants of the reaction of triplet state of XT with G and with FCA were determined as 4.5×10(9) and 8.0×10(9) L mol(-1) s(-1), respectively. Laser exposure was performed on the N(2)-saturated acetonitrile/water (v/v, 1:1) solution containing G, XT and FCA. The transient absorption spectra indicated that the triplet state of XT first reacted with G predominantly to form the oxidized radical G(-H)(·). The radical G(-H)(·) was rapidly repaired by FCA, and the rate constant for the repair reaction was determined as 1.1×10(9) L mol(-1) s(-1). These results demonstrated that non-enzymatic repair is a feasible method for repairing photosensitized DNA bases oxidation.
Collapse
Affiliation(s)
- Ruizhi Tang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | | | | | | | | |
Collapse
|
15
|
Mujiburohman M, Mahdi KA, Elkamel A. Predictive model of pervaporation performance based on physicochemical properties of permeant–membrane material and process conditions. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.06.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Asvos X, Siskos MG, Zarkadis AK, Hermann R, Brede O. The 2-benzoyl xanthone/triethylamine system as a type II photoinitiator: A laser flash photolysis and computational study. J Photochem Photobiol A Chem 2011. [DOI: 10.1016/j.jphotochem.2011.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
|
18
|
Martín R, Jiménez LB, Alvaro M, Scaiano JC, García H. Photoinduced formation and characterization of electron-hole pairs in azaxanthylium-derivatized short single-walled carbon nanotubes. Chemistry 2009; 15:8751-9. [PMID: 19603432 DOI: 10.1002/chem.200900372] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
2-Azaxanthone, a nitrogenated derivative of the well-studied organic chromophore xanthone, has been covalently bound through 2-(ethylthio)ethylamido linkers to the carboxylic acid groups of short, soluble single-walled carbon nanotubes (CNTs) of 450 nm average length, and the resulting azaxanthylium-functionalized CNTs (AZX-CNT, 8.5 wt % AZX content) characterized by solution (1)H NMR, Raman and IR spectroscopy and thermogravimetric analysis. Comparison of the quenching of the triplet excited state of AZX (steady-state and time-resolved) and of the transient optical spectra of CNTs and AZX-CNT shows that the covalent linkage boosts the interaction between the azaxanthylium moiety and the short CNT units. The triplet excited state of the azaxanthylium derivative is quenched by CNT with and without covalent bonding, but when it is covalently bonded, the singular transient spectrum is compatible with the photogeneration of electron holes through electron transfer from CNT to excited azaxanthylium units.
Collapse
Affiliation(s)
- Roberto Martín
- Instituto de Tecnología Química CSIC-UPV, Universidad Politécnica de Valencia, Av. De Los Naranjos s/n, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
19
|
Tetraalkylammonium Salts of Amino Acids and Sulfur-Containing Amino Acids as Effective Co-Initiators of Free Radical Polymerization in the Presence of Aromatic Ketones. MACROMOL CHEM PHYS 2008. [DOI: 10.1002/macp.200800122] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
|
21
|
Broglia MF, Bertolotti SG, Previtali CM, Montejano HA. Solvatochromic effects on the fluorescence and triplet–triplet absorption of phenosafranine in protic and aprotic solvents. J Photochem Photobiol A Chem 2006. [DOI: 10.1016/j.jphotochem.2005.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Heinz B, Schmidt B, Root C, Satzger H, Milota F, Fierz B, Kiefhaber T, Zinth W, Gilch P. On the unusual fluorescence properties of xanthone in water. Phys Chem Chem Phys 2006; 8:3432-9. [PMID: 16855722 DOI: 10.1039/b603560d] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-excited xanthone is known to undergo ultrafast intersystem crossing (ISC) in the 1 ps time domain. Correspondingly, its fluorescence quantum yield in most solvents is very small ( approximately 10(-4)). Surprisingly, the quantum yield in water is 100 times larger, while ISC is still rapid ( approximately 1 ps), as seen by ultrafast pump probe absorption spectroscopy. Temperature dependent steady state and time resolved fluorescence experiments point to a delayed fluorescence mechanism, where the triplet (3)npi* state primarily accessed by ISC is nearly isoenergetic with the photo-excited (1)pipi* state. The delayed fluorescence of xanthone in water decays with a time constant of 700 ps, apparently by internal conversion between the (3)npi* state and the lowest lying triplet state (3)pipi*.
Collapse
Affiliation(s)
- B Heinz
- Department für Physik, Ludwig-Maximilians-Universität, Oettingenstr. 67, D-80538, München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Conti C, Galeazzi R, Giorgini E, Tosi G. FT-IR of trichloroacetoimidates in different solvent systems. J Mol Struct 2005. [DOI: 10.1016/j.molstruc.2004.11.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Satzger H, Schmidt B, Root C, Zinth W, Fierz B, Krieger F, Kiefhaber T, Gilch P. Ultrafast Quenching of the Xanthone Triplet by Energy Transfer: New Insight into the Intersystem Crossing Kinetics. J Phys Chem A 2004. [DOI: 10.1021/jp047583+] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Krieger F, Fierz B, Bieri O, Drewello M, Kiefhaber T. Dynamics of unfolded polypeptide chains as model for the earliest steps in protein folding. J Mol Biol 2003; 332:265-74. [PMID: 12946363 DOI: 10.1016/s0022-2836(03)00892-1] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The rate of formation of intramolecular interactions in unfolded proteins determines how fast conformational space can be explored during folding. Characterization of the dynamics of unfolded proteins is therefore essential for the understanding of the earliest steps in protein folding. We used triplet-triplet energy transfer to measure formation of intrachain contacts in different unfolded polypeptide chains. The time constants (1/k) for contact formation over short distances are almost independent of chain length, with a maximum value of about 5 ns for flexible glycine-rich chains and of 12 ns for stiffer chains. The rates of contact formation over longer distances decrease with increasing chain length, indicating different rate-limiting steps for motions over short and long chain segments. The effect of the amino acid sequence on local chain dynamics was probed by using a series of host-guest peptides. Formation of local contacts is only sixfold slower around the stiffest amino acid (proline) compared to the most flexible amino acid (glycine). Good solvents for polypeptide chains like EtOH, GdmCl and urea were found to slow intrachain diffusion and to decrease chain stiffness. These data allow us to determine the time constants for formation of the earliest intrachain contacts during protein folding.
Collapse
Affiliation(s)
- Florian Krieger
- Department of Biophysical Chemistry, Biozentrum der Universität Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Gastilovich E, Klimenko V, Nurmukhametov R, Serov S. Radiative deactivation of states in molecules with heteroatoms on the C2v axis. Xanthone. Chem Phys 2003. [DOI: 10.1016/s0301-0104(03)00273-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|