1
|
Gajardo HA, Morales M, Larama G, Luengo-Escobar A, López D, Machado M, Nunes-Nesi A, Reyes-Díaz M, Planchais S, Savouré A, Gago J, Bravo LA. Physiological, transcriptomic and metabolomic insights of three extremophyte woody species living in the multi-stress environment of the Atacama Desert. PLANTA 2024; 260:55. [PMID: 39020000 DOI: 10.1007/s00425-024-04484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
MAIN CONCLUSIONS In contrast to Neltuma species, S. tamarugo exhibited higher stress tolerance, maintaining photosynthetic performance through enhanced gene expression and metabolites. Differentially accumulated metabolites include chlorophyll and carotenoids and accumulation of non-nitrogen osmoprotectants. Plant species have developed different adaptive strategies to live under extreme environmental conditions. Hypothetically, extremophyte species present a unique configuration of physiological functions that prioritize stress-tolerance mechanisms while carefully managing resource allocation for photosynthesis. This could be particularly challenging under a multi-stress environment, where the synthesis of multiple and sequential molecular mechanisms is induced. We explored this hypothesis in three phylogenetically related woody species co-occurring in the Atacama Desert, Strombocarpa tamarugo, Neltuma alba, and Neltuma chilensis, by analyzing their leaf dehydration and freezing tolerance and by characterizing their photosynthetic performance under natural growth conditions. Besides, the transcriptomic profiling, biochemical analyses of leaf pigments, and metabolite analysis by untargeted metabolomics were conducted to study gene expression and metabolomic landscape within this challenging multi-stress environment. S. tamarugo showed a higher photosynthetic capacity and leaf stress tolerance than the other species. In this species, a multifactorial response was observed, which involves high photochemical activity associated with a higher content of chlorophylls and β-carotene. The oxidative damage of the photosynthetic apparatus is probably attenuated by the synthesis of complex antioxidant molecules in the three species, but S. tamarugo showed the highest antioxidant capacity. Comparative transcriptomic and metabolomic analyses among the species showed the differential expression of genes involved in the biosynthetic pathways of key stress-related metabolites. Moreover, the synthesis of non-nitrogen osmoprotectant molecules, such as ciceritol and mannitol in S. tamarugo, would allow the nitrogen allocation to support its high photosynthetic capacity without compromising leaf dehydration tolerance and freezing stress avoidance.
Collapse
Affiliation(s)
- Humberto A Gajardo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Melanie Morales
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Giovanni Larama
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Ana Luengo-Escobar
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Dariel López
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Mariana Machado
- Departamento de Biología Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biología Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Séverine Planchais
- Institute of Ecology and Environmental Sciences of Paris (iEES), Sorbonne Université, UPEC, CNRS, IRD, INRAE, 75005, Paris, France
| | - Arnould Savouré
- Institute of Ecology and Environmental Sciences of Paris (iEES), Sorbonne Université, UPEC, CNRS, IRD, INRAE, 75005, Paris, France
| | - Jorge Gago
- Research Group On Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de Les Illes Balears/Institute of Agro-Environmental Research and Water Economy-INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
2
|
Contreras-Díaz R, Carevic FS, van den Brink L, Huanca-Mamani W, Jung P. Structure, gene composition, divergence time and phylogeny analysis of the woody desert species Neltuma alba, Neltuma chilensis and Strombocarpa strombulifera. Sci Rep 2024; 14:13604. [PMID: 38871769 DOI: 10.1038/s41598-024-64287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Neltuma alba (Algarrobo blanco), Neltuma chilensis (Algarrobo Chileno) and Strombocarpa strombulifera (Fortuna) are some of the few drought resistant trees and shrubs found in small highly fragmented populations, throughout the Atacama Desert. We reconstructed their plastid genomes using de novo assembly of paired-end reads from total genomic DNA. We found that the complete plastid genomes of N. alba and N. chilensis are larger in size compared to species of the Strombocarpa genus. The Strombocarpa species presented slightly more GC content than the Neltuma species. Therefore, we assume that Strombocarpa species have been exposed to stronger natural selection than Neltuma species. We observed high variation values in the number of cpSSRs (chloroplast simple sequence repeats) and repeated elements among Neltuma and Strombocarpa species. The p-distance results showed a low evolutionary divergence within the genus Neltuma, whereas a high evolutionary divergence was observed between Strombocarpa species. The molecular divergence time found in Neltuma and Strombocarpa show that these genera diverged in the late Oligocene. With this study we provide valuable information about tree species that provide important ecosystem services in hostile environments which can be used to determine these species in the geographically isolated communities, and keep the highly fragmented populations genetically healthy.
Collapse
Affiliation(s)
- Roberto Contreras-Díaz
- Centro Regional de Investigación de Desarrollo Sustentable de Atacama (CRIDESAT), Universidad de Atacama, Copayapu 485, Copiapó, Chile.
- Núcleo Milenio de Ecología Histórica Aplicada Para los Bosques Áridos (AFOREST), Santiago, Chile.
| | - Felipe S Carevic
- Laboratorio de Ecología Vegetal, Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Campus Huayquique, Iquique, Chile
- Núcleo Milenio de Ecología Histórica Aplicada Para los Bosques Áridos (AFOREST), Santiago, Chile
| | - Liesbeth van den Brink
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Wilson Huanca-Mamani
- Laboratorio de Biología Molecular de Plantas, Facultad de Ciencias Agronómicas, Centro de Genética y Genómica UASARA, Universidad de Tarapacá, 1000000, Arica, Chile
| | - Patrick Jung
- Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Carl-Schurz-Str. 10-16, 66953, Pirmasens, Germany
| |
Collapse
|
3
|
Time A, Acevedo E. Effects of Water Deficits on Prosopis tamarugo Growth, Water Status and Stomata Functioning. PLANTS (BASEL, SWITZERLAND) 2020; 10:plants10010053. [PMID: 33383674 PMCID: PMC7823844 DOI: 10.3390/plants10010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 06/01/2023]
Abstract
The effect of water deficit on growth, water status and stomatal functioning of Prosopis tamarugo was investigated under controlled water conditions. The study was done at the Antumapu Experiment Station of the University of Chile. Three levels of water stress were tested: (i) well-watered (WW), (ii) medium stress intensity (low-watered (LW)) and (iii) intense stress (non-watered (NW)), with 10 replicates each level. All growth parameters evaluated, such as twig growth, specific leaf area and apical dominance index, were significantly decreased under water deficit. Tamarugo twig growth decreased along with twig water potential. The stomatal conductance and CO2 assimilation decreased significantly under the water deficit condition. Tamarugo maintained a high stomatal conductance at low leaf water potential. In addition, tamarugo reduced its leaf area as a strategy to diminish the water demand. These results suggest that, despite a significant decrease in water status, tamarugo can maintain its growth at low leaf water potential and can tolerate intense water deficit due to a partial stomatal closing strategy that allows the sustaining of CO2 assimilation in the condition of reduced water availability.
Collapse
Affiliation(s)
- Alson Time
- Programa Magister en Ciencias Agropecuarias, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa, La Pintana, Santiago 11315, Chile
- Laboratory Relation Soil-Water-Plant (SAP), Department of Agricultural Production, Faculty of Agronomic Sciences, University of Chile, Santiago 1004, Chile
| | - Edmundo Acevedo
- Laboratory Relation Soil-Water-Plant (SAP), Department of Agricultural Production, Faculty of Agronomic Sciences, University of Chile, Santiago 1004, Chile
| |
Collapse
|
4
|
Fernández-Marín B, Gulías J, Figueroa CM, Iñiguez C, Clemente-Moreno MJ, Nunes-Nesi A, Fernie AR, Cavieres LA, Bravo LA, García-Plazaola JI, Gago J. How do vascular plants perform photosynthesis in extreme environments? An integrative ecophysiological and biochemical story. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:979-1000. [PMID: 31953876 DOI: 10.1111/tpj.14694] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/14/2019] [Accepted: 01/07/2020] [Indexed: 05/24/2023]
Abstract
In this work, we review the physiological and molecular mechanisms that allow vascular plants to perform photosynthesis in extreme environments, such as deserts, polar and alpine ecosystems. Specifically, we discuss the morpho/anatomical, photochemical and metabolic adaptive processes that enable a positive carbon balance in photosynthetic tissues under extreme temperatures and/or severe water-limiting conditions in C3 species. Nevertheless, only a few studies have described the in situ functioning of photoprotection in plants from extreme environments, given the intrinsic difficulties of fieldwork in remote places. However, they cover a substantial geographical and functional range, which allowed us to describe some general trends. In general, photoprotection relies on the same mechanisms as those operating in the remaining plant species, ranging from enhanced morphological photoprotection to increased scavenging of oxidative products such as reactive oxygen species. Much less information is available about the main physiological and biochemical drivers of photosynthesis: stomatal conductance (gs ), mesophyll conductance (gm ) and carbon fixation, mostly driven by RuBisCO carboxylation. Extreme environments shape adaptations in structures, such as cell wall and membrane composition, the concentration and activation state of Calvin-Benson cycle enzymes, and RuBisCO evolution, optimizing kinetic traits to ensure functionality. Altogether, these species display a combination of rearrangements, from the whole-plant level to the molecular scale, to sustain a positive carbon balance in some of the most hostile environments on Earth.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna, Tenerife, 38200, Spain
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Javier Gulías
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - Carlos M Figueroa
- UNL, CONICET, FBCB, Instituto de Agrobiotecnología del Litoral, 3000, Santa Fe, Argentina
| | - Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - María J Clemente-Moreno
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Golm, Germany
| | - Lohengrin A Cavieres
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - León A Bravo
- Lab. de Fisiología y Biología Molecular Vegetal, Dpt. de Cs. Agronómicas y Recursos Naturales, Facultad de Cs. Agropecuarias y Forestales, Instituto de Agroindustria, Universidad de La Frontera, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - José I García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Ctra. Valldemossa km 7.5, 07122, Palma, Spain
| |
Collapse
|
5
|
Garrido M, Silva H, Franck N, Arenas J, Acevedo E. Evaluation of Morpho-Physiological Traits Adjustment of Prosopis tamarugo Under Long-Term Groundwater Depletion in the Hyper-Arid Atacama Desert. FRONTIERS IN PLANT SCIENCE 2018; 9:453. [PMID: 29686691 PMCID: PMC5900453 DOI: 10.3389/fpls.2018.00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 05/06/2023]
Abstract
Water extraction from the underground aquifers of the Pampa del Tamarugal (Atacama Desert, Chile) reduced the growing area of Prosopis tamarugo, a strict phreatic species endemic to northern Chile. The objective of this work was to evaluate the effect of various architectural and morpho-physiological traits adjustment of P. tamarugo subjected to three groundwater depletion intervals (GWDr): <1 m (control), 1-4 m and 6-9 m. The traits were evaluated at three levels, plant [height, trunk cross-section area, leaf fraction (fGCC), and crown size], organ [length of internodes, leaf mass per unit area (LMA), leaflet mass and area], and tissue level [wood density (WD), leaf 13C, 18O isotope composition (δ), and intrinsic water use efficiency (iWUE)]. In addition, soil water content (VWC) to 1.3 m soil depth, pre-dawn and midday water potential difference (ΔΨ), and stomatal conductance (gs) were evaluated. At the deeper GWDr, P. tamarugo experienced significant growth restriction and reduced fGCC, the remaining canopy had a significantly higher LMA associated with smaller leaflets. No differences in internode length and WD were observed. Values for δ13C and δ18O indicated that as GWDr increased, iWUE increased as a result of partial stomata closure with no significant effect on net assimilation over time. The morpho-physiological changes experienced by P. tamarugo allowed it to acclimate and survive in a condition of groundwater depletion, keeping a functional but diminished canopy. These adjustments allowed maintenance of a relatively high gs; ΔΨ was not different among GWDrs despite smaller VWC at greater GWDr. Although current conservation initiatives of this species are promising, forest deterioration is expected continue as groundwater depth increases.
Collapse
Affiliation(s)
- Marco Garrido
- Soil-Plant-Water Relations Laboratory, Agricultural Production Department, Faculty of Agronomical Sciences, Universidad de Chile, Santiago, Chile
| | - Herman Silva
- Soil-Plant-Water Relations Laboratory, Agricultural Production Department, Faculty of Agronomical Sciences, Universidad de Chile, Santiago, Chile
| | - Nicolás Franck
- Soil-Plant-Water Relations Laboratory, Agricultural Production Department, Faculty of Agronomical Sciences, Universidad de Chile, Santiago, Chile
| | - Jorge Arenas
- Faculty of Natural Renewable Resources, Desert Agriculture, Universidad Arturo Prat, Iquique, Chile
| | - Edmundo Acevedo
- Soil-Plant-Water Relations Laboratory, Agricultural Production Department, Faculty of Agronomical Sciences, Universidad de Chile, Santiago, Chile
- *Correspondence: Edmundo Acevedo
| |
Collapse
|
6
|
Garrido M, Silva P, Acevedo E. Water Relations and Foliar Isotopic Composition of Prosopis tamarugo Phil., an Endemic Tree of the Atacama Desert Growing at Three Levels of Water Table Depth. FRONTIERS IN PLANT SCIENCE 2016; 7:375. [PMID: 27064665 PMCID: PMC4811898 DOI: 10.3389/fpls.2016.00375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/11/2016] [Indexed: 05/06/2023]
Abstract
Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the "Pampa del Tamarugal", Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD) that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m, and 7.1 ± 0.1 m, (the last GWD being our reference) were selected and groups of four individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and mid-day water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ(13)C and δ(18)O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behavior and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P. tamarugo after experiencing increases in GWD has great value for the implementation of conservation strategies. The thresholds presented in this paper should prove useful for conservation purposes of this unique species.
Collapse
Affiliation(s)
- Marco Garrido
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Universidad de ChileSantiago, Chile
| | - Paola Silva
- Soil-Plant-Water Relations Laboratory, Agricultural Production Department, Faculty of Agronomical Sciences, University of ChileSantiago, Chile
| | - Edmundo Acevedo
- Soil-Plant-Water Relations Laboratory, Agricultural Production Department, Faculty of Agronomical Sciences, University of ChileSantiago, Chile
- *Correspondence: Edmundo Acevedo
| |
Collapse
|
7
|
Calderon G, Garrido M, Acevedo E. Prosopis tamarugo Phil.: a native tree from the Atacama Desert groundwater table depth thresholds for conservation. REVISTA CHILENA DE HISTORIA NATURAL 2015. [DOI: 10.1186/s40693-015-0048-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Delatorre J, Pinto M, Cardemil L. Effects of water stress and high temperature on photosynthetic rates of two species of Prosopis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 92:67-76. [DOI: 10.1016/j.jphotobiol.2008.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 02/23/2008] [Accepted: 04/01/2008] [Indexed: 11/25/2022]
|
9
|
Solar Ultraviolet‐B Radiation at Zackenberg: The Impact on Higher Plants and Soil Microbial Communities. ADV ECOL RES 2008. [DOI: 10.1016/s0065-2504(07)00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|